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Computational Model2| &%

e Point Model : X4 E Mo 2 A3}

« Curve Model : 2N& 3MOE HT

e Surface Model : 4 Ho 2 MO

e Solid Model : 24|2| 2N AES H O

 Hybrid Model : SfLIo| REIZ M oM O OIK =
D& 0|8

CAD Geometry - 2




A DS TS
ot Ho{AlO

H =4l (non-parametric equation)
— 2 gt== (implicit form): f(x,y) = 0
QF k= (explicit form): y = f(x)

o Of7 HAl (parametric equation)
— P(u) = [x(u), y(u), z(u) ]
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o7 Ha4] 'Sl
(parametric form)

do Y= (=0  r0=x0.y0)
AbXESY z=f(xY) f(x,y,2)=0 B

372t I {Z= g(xy) {g(x, y,2)=0 O=C0y0:20
e z=f(xY) f(x,y,2)=0 r(u.y) =

(x(u,v), y(u,v), z(u,v))
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Curve, Surfacel ¥d& 2t

X % y=—bJl-x2/a’ a

(acos@,bsin 6) 6
y = b1 X/ a2 x> y? r(9) = sl
\\/bl y o ©=psn e

= r2=x>—-v?2 I COS¢ COoSE

2= Xy X4y +Z-1"=0 r(9,¢) = rcosZsine

z=—\/r2—x2—y2 V) = |
rsing
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Curve Equations

parametric form: x = Rcos#, y=Rsing, z=0(0< 8 < 2r)
implicit form: x>+ y*—R* =0, z=0
explicit form: y=+JyR*-x*, z=0

circle!

nonparametri c{

e Parametric form

— Points can be generated in sequence along the curve by
substituting small increments of the parametric values

 Nonparametric implicit form

— Not sure which variable to choose as the independent
variable and to increment at each evaluation

— Two values (+/-) for the dependent variable, which one?

 Nonparametric explicit form

— Same inherent problem even though it differentiates the
independent variable from the dependent variable
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Parametric Curve

x| M {x(t)=(1—t)xo+txl 1
Y(t) = L)y, +1y, o, 1
=r(t)=01Q-t)P, +tP, t=0

LM (helix):

r(@) = (acose,asine,ie)
27
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Oh7f HaeAMol &
. aXNo=z mHsy| ALt
— Computer Graphics, NC Tool Path Generation0f| 2|
e 2D/3D M, 1 HO| Hd HE|/} H|==5|LC}.
e XIS A/ ZHO| _-|?|-_'<'540| -9-O|oH:f
¢« 0|, 2|H, Scalingf 2= H=zH0| £l LC}.
. E'.*‘-’rl7f A8 dds 7196H7| b
- o= HEQr A o5ty HAH #EoE = UL,

.I

« Computer= 0|E23ct 2| 80|
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Conic Section Curves (1)
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ax’ + by’ +c+2fx+2gy+2hxy =0

‘h?—ab<0:dlipse
{h*—ab=0: parabola

h* —ab > 0: hyperbola
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Conic Section Curves (2)

Al

Triangle Section Plane Ellipse
Through Generators

Section Plane
Through Apex

S,
9
&7
Q

Section Plane Parallel Sectioh Plane Hla
to end generator. Parallel to Axis.

Q/ Ellipse Y Trapezium
o/ .
| /‘ @
P
' 7,

S——
Cylinder through Sq. Pyramid through
generators. all slant edges
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Conic Section Curves (3)

o/ = 5 )

(circle/ (X=%)" +(y=-¥.) =T
circular arc)
Etel/epRlee

(ellipse/ —+ >
elliptic arc) a b

B X _Y 4
a~ b

(hyperbola)

Z=M 2
(parabola)

CAD

9

i BH

(X=rcosO+ X
y=rsingd+y,

(X =acosé+ x

3
ly=Dbsind+y,

(x =acoshu
|y =Dbsinhu

X = cu?

Ly =t
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Conic Section Curves (4)

ax® + by + c+ 2fx+2gy+2hxy =0
— x> +b’y* + ¢+ f &+ g'y+h'xy =0 (5 unknowns)

« 3PTS (PO, P1, Q0) F-Q]
— Two end points + Two tangents p= Q- Q|
— Fullness factor p p >0.75 : hyperbola
. 5PTS (PO, P1, P2, P3, P4) p=0.75: parabola
— Two end points + Three intermediate points p <0.75 elipse

— Is it a hyperbola, parabola, or ellipse ?
Qo
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Examples

— A circle of unit radius is centered at (0, 1, 1) and locate on
the yz-plane as illustrated in the figure. Derive the parametric
equation of the circle by applying the proper transformation

matrices.

— Derive the parametric equation of an ellipse in the xy-plane,
which has a center at (Xc, Yc) and the major and the minor
axes lillustrated in the figure.

2

e
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CATIA V5: Sketcher Profile / Conic (1)

ertcherproﬁlm Conic
aOc Aol - loW kY

« Ellipse

— Center->Major Semi-Axis Endpoint [Radius(+Angle)]-=>Minor
Semi-Axis Endpoint

« Parabola by Focus
— Focus—>Apex-> Start Point->End Point

axis of symmetry directrix ( Yy

—p), focus(0, p)

y+ pz\/x2+(y— p)’ — x* =4py
origin(h,k) = (x=h)* = 4p(y-k)

latus
rectum
-

— y=ax’+bx+c

1§

| y 1

= —ax* »a=—=,F=—
Y X’ 4a

vertex

directrix
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CATIA V5: Sketcher Profile / Conic (2)

-sketcherprofile s  Conic &
QOc Qo)

 Hyperbola by Focus
— Focus—>Center->Apex-> Start Point->End Point
— Eccentricity e = (center to focus) / (center to apex)

i6in(0.0
X ¥ weton
a.2 b2 anot?grc Sg(l ;1(t£ ),<0P) Ye)
X %Y,
XF — XA2+ 2A P ;
Xp2— X,
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CATIA V5: Sketcher Profile / Conic (3)
Fk‘*“hefpmﬁm Conic

O Qo) O & N

 Conic
— Two Points (parameter)

e Start and End Tangent
« Tangent Intersection Point

0 < parameter < 0.5: dlipse
0.5 < parameter < 1.0: hyperbola
parameter = 0.5: parabola

— Four Points
« Tangent at Passing Point .
— Five Points , - oM
arameter = OT
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Splines: Background (1)
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Splines: Background (2)

 Flexure: 2
M=
dx
 Moment:
M (x)=P(I —x)

* Displacement:
— Cubic polynomial in x
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Spline (1)

« X SMe| Atrad HEAEE
- B2 3= 5519 ez HA ?
— Kool Ao ez fd ?
« 2Xt 2M0|| 25 SHAIE
— OXtSMo EHed
« ARC: N7{e| M= X|Lt= (N-1)Xt =2 A
— X}o|B 2 Br2 AAEF & 9 oscillation 24 ®
- XS IME S ZZUOR BHSIE HE 2EXAE B
— CATIA 0| A= 15Kt S M 77FX[ K| &2
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Spline (2)

« SPLINE: €& == X|L= 3N
© 217 AOIE Of2f JHol ZNZZOR o2 X
— ZF 2 M XZF (ARC) : 3X} (or 5K} =4
— O|X|==: 47§ (or 67})
— two points, two tangents, (two 2" order derivatives)
— TMZZbo|| 4k, 6% S0| AFRE|X| %= 0|2
e Cubic splines

“Control

Points” \ r’(1)

« Refinements / /Qg(l)
— B-spines =7

— Non-Uniform Rational B-splines (NURBS) ;’(g)‘/
(1))
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e Spline
— Control points: solid square points
— Large number of control points?
» Create construction points that are constrained first
* Modify? Recreate better than edit
« Connect with a spline
— Continuity in Point (CO)
— Continuity in Tangent (C1): tension at each endpoint
— Continuity in Curvature (C2): tension at each endpoint
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CATIA: Sketcher-> Constraint

Modification of geometric
models through variational

geometry

Robert Light and David Gossard*

Systems for computerided mechanical design use geo-

metric models for drafting, analysis and programming of

NC machines. Because design is iterative in nature, the
wology, geometry or g of a g model

must be modified many times during the design cycle.

The effectiveness of future CAD systems will depend in

large part upon the ease with which geometric models

can be created and modified.

This paper presents the results of a research effort to
develop flexible procedures for the definition and modifi-
cation of geometric modeis! A central idea of this effort is
that dimensions, such as appear on a mechanical drawing,
are g natural descriptor of geometry and provide the most
appropriate means for altering a geometric model.

A procedure is described by-which geometry is deter-

cant reduction of the number of constraint equations to
be solved and the effect of sparse matrix methods in
reducing the time required to solve the equations.

BACKGROUND

The use of constraints to define geometry can be seen in
Sutherland's early work.' Sutherland fade use of con-
straints as a design aid in the creation of a part, but did
not use geometric constraints for definition and modifica-
tion of part geometry. Requicha? used directed graphs to
represent the relationship between dimensions and geo-
metry. Three graphs were constructed to show the dimen-
sional relations in the x, y and z directions. Hence, this
approach is limited to geometries consisting of rectilinear
segments, Gopin® made the first use of directed-graphs to
define and modify geometry in an interactive CAD system.
This CAD system restricted the part geometries to

mined from a set of The geometry spond-
ing to an altered dimension is found through the sit
eous solution of the set of Pi

F
in this paper are the basic approach to modifications of
geometric models, a procedure for significant reduction of
the number of constraint equations to be solved, and the
effect of sparse matrix methods in reducing the time
required to solve the equations.

< ded design, g model,

In this paper a procedure is described by which geometry
is determined from a set of dimensions. A geometric
model is defined with respect to a set of characteristic
points in 3-space. Dimensions are treated as constraints
limiting the permissible locations of these characteristic
points. Each di intis. bya
noniinear eguation involving the coordinates of associated
characteristic points. A given dimensioning scheme is
represented by 2 set of such equations. The geometry
corresponding to an altered dimension is found through the
imul lution of the set of i i
These technigues were incorporated into a prototype
2D CAD system. This system allows freehand sketch
input 1o define the general shape of the part. The user
interactively defines the dimensioning scheme and the
desired values of the dimensions. By solving the system of
constraint equations, the geometry of the part is updated
to be consistent with the new set of dimensional vaiues.
Presented in this paper are the basic approach to
modification of geometric models, a procedure for signifi-

Deere and Company Technical Center, Moline, IL, USA
“Ci Design L v, of 1
Institute of T 2 G d

A, USA

g and d

More recently, Hillyard and Braid*?* showed that small
variations in geometry could be related to variations in
dimensions by a ‘rigidity matrix’. Light® and Lin et al”
showed that generalized dimensional constraints could be
used to modify geometry through large shape variations, and
that geometric properties could be used to constrain geo-
metry. This was demonstrated on prototype 2D and 3D
CAD systems.

GEOMETRY

As shown in Figure 1, the geometry of an object is defined
by a set of N characteristic points. This set includes points

Xe¥y A%

x5

Figure 1. Shape definition points

volume 14 numher 4 ik 1083 0010 149€722/040209-0€ $72.00 © 1982 Butiiworth & Co (Publishers) Ltd 209
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Geometry

« Defined by a set of N characteristic points

x={X, Y, Z ... X, Y, z,}
X=X % X . X, X, %}

where n=3N

» Generalized dimensional constraints
— Implicit: right angles
— EXxplicit distance between two points

l

A

d : vector of dimensional values
F(x,d)=0 i=1 2..., m where {x:geometry vector
m: number of constraints

_ _ 6 : to prevent 3D rigid body translation and rotation
constraint equations _ - . : .
(m-—6): designer's specific choice of dimensions
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Geometric Constraints

: : Entities :
Dimension name ) Equation
constrained

Horizontal distance R, R X,—-X,-D=0
Vertical distance R, R Y,-Y,-D=0
Linear distance R, R (X, = X,) +(Y,-Y,) =D?*=0
Distance from point to 5 BB UsV D=0 | U = X‘gp_;‘(z I+ TP;I:‘Z J
line 1 23 = 23 o3
V =(X2—X1)i +(Y2 —Yl) ]

RRxPR|

Angular dimension PP, PP,

CAD Geometry - 25



Area of an N-sided 2D polygon

Azéz{Z(xmﬂ—YiXm)}

] [

| =1,2,...,number of pointsin contour
j =12,...,number of contours
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CAD

' ]

1=12,...,a a:number of points, point indices are sequential around contour

]=12,...,p p:number of arcsin contour
n=12,...,N N :number of contours

| +1if defining ahole
b {—1 if defining an exterior boundary
(X.Y;) and (X,,Y,) end points of the arc
(X.,Y,) center of thearc
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Solving for Geometry

F(x,d)=0—>F (xo,d)+EAx=OeJAx:r

X,
_fll f12 fln—
f f f .
J=| * % " | where fij=E
; ; ; 0X;
_fml fm2 fmn_
AX={Ax AX, ... Ax}
r={-F, -F, ... -F }

m: number of constraint equations
n: number of degrees of freedom (coordinates)
. _ m> n: shapeisoverdimensioned (too many or redundant dimensions)
m= n: Jacobian is structurally singular _ _ _ , _
m< n: shapeis underdimensioned (too few dimensions)
m=n: Jacobian can be singular satisfying a redundant dimensioning scheme

— necessary and sufficient condition for avalid dimensiong scheme: non-singular Jacobian
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Implementation

« Define approximate geometry
* Assign dimensional constraints

_/‘- — a s /
_,__.——"'/77—-.’7-- _ / \
—/-—d -\“— \“
- Ty i 1
) C//

~,

.

e
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- -_ I \\

w D) Q ‘,
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Example
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Selection of a dimensional constraint Modified geometry
ABICIDIEIFIGIHIT] 1112]3 PERDMETER = 171 94733
JIKILIMIN[OIPIQIR] '4]516] - PR, of
SITIUIVIWIX[Y 2l _718]3] - 338 re3e7
! T I 1L 1 = : .
ol [T 1111110 & %= 7ma  Calculation of
bo 4 4 = -g8194, 47559 . .
X CENTROID= 1S 33951 Geometric properties
- Y CENTROID= 1B. 48749
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