Contents

- Multifreedom constraints
- Master-slave method
- Penalty method
- Lagrange multiplier method

CAE MFC - 1

Multifreedom Constraints (1)

Single freedom constraint examples

$$u_{x4} = 0$$
 (linear, homogeneous)
 $u_{y9} = 0.6$ (linear, non-homogeneous)

Multifreedom constraint examples

$$u_{x2} = \frac{1}{2}u_{y2} \text{ (linear, homogeneous)}$$

$$u_{x2} - 2u_{x4} + u_{x6} = 0.25 \text{ (linear, non-homogeneous)}$$

$$\left(x_5 + u_{x5} - x_3 + u_{x3}\right)^2 + \left(y_5 + u_{y5} - y_3 + u_{y3}\right)^2 = 0 \text{ (nonlinear, homogeneous)}$$

Multifreedom Constraints (2)

Sources

- "skew" displacement BCs
- Coupling nonmatched FEM meshes
- Global-local and multiscale analysis
- Incompressibility
- Model reduction

MFC application methods

- Master-slave elimination
- Penalty function augmentation
- Lagrange multiplier adjunction

Procedure Summary in Static Analysis

Example: 1D structure

multifreedom constraint: $u_2 = u_6$ or $u_2 - u_6 = 0$ (rigid link) unconstrained master stiffness equations

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} \Leftrightarrow \mathbf{Ku} = \mathbf{f}$$

Example: Master-Slave Method

taking u_2 as master and u_6 as slave

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} \Leftrightarrow \mathbf{u} = \mathbf{T}\hat{\mathbf{u}}$$

unconstrained master stiffness equations: $\mathbf{K}\mathbf{u} = \mathbf{f}$ master-slave transformation: $\mathbf{u} = \mathbf{T}\hat{\mathbf{u}}$ replace \mathbf{u} and premultiply both sides by \mathbf{T}^T : $\mathbf{T}^T\mathbf{K}\mathbf{T}\hat{\mathbf{u}} = \mathbf{T}^T\mathbf{f}$ modified stiffness equations: $\hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$

Example: Master-Slave Method

modified stiffness equations

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\ 0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\ 0 & K_{67} & 0 & 0 & 0 & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + f_6 \\ f_3 \\ f_4 \\ f_5 \\ f_7 \end{bmatrix}$$

$$\Leftrightarrow \hat{K}\hat{u} = \hat{f} \xrightarrow{\text{solve for } \hat{u}} u = T\hat{u}$$

Example: Multiple MFCs (1)

Suppose
$$u_{1} + 4u_{4} = 0$$

 $2u_{3} + u_{4} + u_{5} = 0$

$$\begin{cases}
u_{2} - u_{6} = 0 \\
u_{1} + 4u_{4} = 0 \\
2u_{3} + u_{4} + u_{5} = 0
\end{cases}$$

$$u_{3} = -\frac{1}{2}(u_{4} + u_{5}) = \frac{1}{8}u_{1} - \frac{1}{2}u_{5}$$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/8 & 0 & -1/2 & 0 \\ -1/4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_5 \\ u_7 \end{bmatrix} \Leftrightarrow \mathbf{u} = \mathbf{T}\hat{\mathbf{u}}$$

Example: Multiple MFCs (2)

$$\begin{aligned}
u_{2} - u_{6} &= 0 \\
u_{1} + 4u_{4} &= 0 \\
2u_{3} + u_{4} + u_{5} &= 0
\end{aligned}
\xrightarrow{\text{master: 1,2,5,7}} \begin{cases}
u_{6} &= u_{2} \\
4u_{4} &= -u_{1} \\
2u_{3} + u_{4} &= -u_{5}
\end{cases}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 4 & 0 \\
2 & 1 & 0
\end{bmatrix} \begin{bmatrix}
u_{3} \\
u_{4} \\
u_{6}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix} \begin{bmatrix}
u_{1} \\
u_{2} \\
u_{5}
\end{bmatrix} \rightarrow \mathbf{A}_{s} \mathbf{u}_{s} + \mathbf{A}_{m} \mathbf{u}_{m} = 0 \rightarrow \mathbf{u}_{s} = -\mathbf{A}_{s}^{-1} \mathbf{A}_{m} \mathbf{u}_{m}$$

Example: Non-homogeneous MFCs

$$u_2 - u_6 = 0.2$$

Pick again u_6 as slave, put into matrix form:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \mathbf{u} = \mathbf{T}\hat{\mathbf{u}} + \mathbf{g}$$

$$\overset{\text{gap}}{\overset{\text{gap}}{\text{vector}}}$$

premultiply both sides by $\mathbf{T}^T \mathbf{K}$, replace $\mathbf{K} \mathbf{u} = \mathbf{f}$ and pass data to RHS

$$\mathbf{T}^{T}\mathbf{K}\mathbf{u} = \mathbf{T}^{T}\mathbf{K}\left(\mathbf{T}\hat{\mathbf{u}} + \mathbf{g}\right) \to \mathbf{T}^{T}\mathbf{K}\mathbf{T}\hat{\mathbf{u}} = \mathbf{T}^{T}\left(\mathbf{K}\mathbf{u} - \mathbf{K}\mathbf{g}\right)$$

$$\to \mathbf{T}^{T}\mathbf{K}\mathbf{T}\hat{\mathbf{u}} = \mathbf{T}^{T}\left(\mathbf{f} - \mathbf{K}\mathbf{g}\right) \xrightarrow{\hat{\mathbf{f}} = \mathbf{T}^{T}\left(\mathbf{K}\mathbf{u} - \mathbf{K}\mathbf{g}\right)} \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$
modified force vector

Example: Non-homogeneous MFCs

modified stiffness equations

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\ 0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\ 0 & K_{67} & 0 & 0 & 0 & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + f_6 - 0.2K_{66} \\ f_2 + f_6 - 0.2K_{66} \\ f_3 \\ f_4 \\ f_5 - 0.2K_{56} \\ f_7 - 0.2K_{67} \end{bmatrix}$$

$$\Leftrightarrow \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}} \xrightarrow{\text{solve for } \hat{\mathbf{u}}} \mathbf{u} = \mathbf{T}\hat{\mathbf{u}} + \mathbf{g}$$

Example: Model Reduction

Example: Model Reduction

Lots of slaves, few masters. Only masters are left.

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5/6 & 1/6 \\ 4/6 & 2/6 \\ 3/6 & 3/6 \\ 2/6 & 4/6 \\ 1/6 & 5/6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_7 \\ 2 \text{ masters} \end{bmatrix}$$

apply the congruential transformation we get the reduced stiffness equations

$$\begin{bmatrix} \hat{K}_{11} & \hat{K}_{17} \\ \hat{K}_{17} & \hat{K}_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_7 \end{bmatrix} = \begin{bmatrix} \hat{f}_1 \\ \hat{f}_7 \end{bmatrix}$$

5 slaves

Master-Slave Method

Advantages

- Exact of precaution taken
- Easy to understand
- Retains positive definiteness
- Important applications to model reduction

Disadvantages

- Requires user decisions
- Messy implementation for general MFCs
- Hinders sparsity of master stiffness equations
- Sensitive to constraint dependence
- Restricted to linear constraints

CAE MFC - 14

Penalty Function Method: Physical Interpretation

add "penalty element" of axial rigidity w

$$w\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = 0 \xrightarrow{\text{premultiply}} w \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \mathbf{K}^{(7)} \mathbf{u}^{(7)} = \mathbf{f}^{(7)}$$

w: "penalty weight" assigned to the constraint

Penalty Function Method

upon merging the penalty element, the modified stiffness equations are

$\int K_{11}$	K_{12}	0	0	0	0	0	$\lceil u_1 \rceil$		$\lceil f_1 \rceil$
K_{12}	$K_{22} + w$	K_{23}	0	0	-w	0	u_2		f_2
0	K_{12} $K_{22} + w$ K_{23} 0 0 $-w$ 0	K_{33}	K_{34}	0	0	0	u_3		f_3
0	0	K_{34}	$K_{_{44}}$	K_{45}	0	0	u_4	=	f_4
0	0	0	K_{45}	K_{55}	K_{56}	0	u_5		f_5
0	-w	0	0	K_{56}	$K_{66} + w$	K_{67}	u_6		f_6
$\bigcup_{i=1}^{n} 0_i$	0	0	0	0	K_{67}	K_{77}	$\lfloor u_7 \rfloor$		$\lfloor f_7 \rfloor$

This modified system is submitted to the equation solver.

Note that **u** remains the same arrangement of DOFs

But which penalty weight to use?

Square Root Rule:
$$w = 10^k \sqrt{10^p} = 10^{k+p/2}$$

k: order of the largest stiffness coefficient before adding penalty elements

p: digits of the working machine precison

Penalty Function Method: General MFCs

$$3u_3 + u_5 - 4u_6 = 1 \rightarrow \begin{bmatrix} 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = 1$$

premultiply both sides by
$$\begin{bmatrix} 3 & 1 & -4 \end{bmatrix}^T : \begin{bmatrix} 9 & 3 & -12 \\ 3 & 1 & -4 \\ -12 & -4 & 16 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$$

"penalty element" stiffness equations

scale by w and merge:

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} + 9w & K_{34} & 3w & -12w & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 3w & K_{45} & K_{55} + w & K_{56} - 4w & 0 \\ 0 & 0 & -12w & 0 & K_{56} - 4w & K_{66} + 16w & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 + 3w \\ f_4 \\ f_5 + w \\ f_6 - 4w \\ f_7 \end{bmatrix}$$

Penalty Function Method

Advantages

- General application including nonlinear MFCs
- Easy to implement using FE library and standard assembler
- No change in vector of unknowns
- Retains positive definiteness
- Insensitive to constraint dependence

Disadvantages

- Selection of weights left to users: big burden
- Accuracy limited by ill-conditioning

CAE

MFC - 19

Lagrange Multiplier Method: Physical Interpretation

force-pair that enforces MFC

$\int K_{11}$	K_{12}	0	0	0	0	0	$\lceil u_1 \rceil$		$\lceil f_1 \rceil$
K_{12}	K_{22}	K_{23}	0	0	0	0	$ u_2 $		$f_2 - \lambda$
0	K_{23}	K_{33}	K_{34}	0	0	0	u_3		$\begin{bmatrix} f_1 \\ f_2 - \lambda \\ f_3 \\ f_4 \\ f_5 \\ f_6 + \lambda \\ f_7 \end{bmatrix}$
0	0	K_{34}	$K_{_{44}}$	K_{45}	0	0	u_4	=	f_4
0	0	0	K_{45}	K_{55}	K_{56}	0	u_5		f_5
0	0	0	0	K_{56}	K_{66}	K_{67}	u_6		$f_6 + \lambda$
$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	0	K_{67}	K_{77}	$\lfloor u_7 \rfloor$		$oxed{ \int f_7 }$

Lagrange Multiplier Method

Because λ is unknown, it is passed to the LHS and appended to the node-displacement vector:

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 1 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 \\ 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix}$$

This is now a system of 7 equations and 8 unknowns.

Need an extra equation: MFC

Lagrange Multiplier Method

Appended MFC as an additional equation (adjunction):

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ 0 \end{bmatrix}$$

This is the *multiplier* - *augmented system*.

The new coefficient matrix is called the *bordered stiffness*.

Lagrange Multiplier Method: Multiple MFCs

Three MFCs: $u_2 - u_6 = 0$, $5u_2 - 8u_7 = 3$, $3u_3 + u_5 - 4u_6 = 1$ Step#1: append the 3 constraints

$\int K_{11}$	K_{12}	0	0	0	0	0		$\lceil f_1 \rceil$
K_{12}	K_{22}	K_{23}	0	0	0	0	 Г., Т	f_2
0	K_{23}	K_{33}	K_{34}	0	0	0	$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$	f_3
0	0	K_{34}	K_{44}	K_{45}	0	0	$\begin{bmatrix} u_2 \end{bmatrix}$	$ f_4 $
0	0	0	K_{45}	K_{55}	K_{56}	0	$\begin{bmatrix} u_3 \\ u \end{bmatrix}$	f_5
0	0	0	0	K_{56}	K_{66}	K_{67}	$ u_4 =$	f_6
0	0	0	0	0	K_{67}	K_{77}	$\begin{bmatrix} u_5 \end{bmatrix}$	$ f_7 $
0	1	0	0	0	-1	0	$\begin{bmatrix} u_6 \end{bmatrix}$	0
0	5	0	0	0	0	-8	$\lfloor u_7 \rfloor$	3
0	0	3	0	1	-4	0		$\lfloor 1 \rfloor$

Lagrange Multiplier Method: Multiple MFCs

Three MFCs:
$$\underbrace{u_2 - u_6}_{\lambda_1} = 0$$
, $\underbrace{5u_2 - 8u_7}_{\lambda_2} = 3$, $\underbrace{3u_3 + u_5 - 4u_6}_{\lambda_3} = 0$

Step#2: append multipliers, symmetrize and fill

K_{11}	K_{12}	0	0	0	0	0	0	0	0	$\lceil u_1 \rceil$	f_1
K_{12}	K_{22}	K_{23}	0	0	0	0	1	5	0	u_2	f_2
0	K_{23}	K_{33}	K_{34}	0	0	0	0	0	3	u_3	f_3
0	0	K_{34}	K_{44}	K_{45}	0	0	0	0	0	u_4	f_4
0	0	0	K_{45}	K_{55}	K_{56}	0	0	0	1	u_5	f_5
0	0	0	0	K_{56}		K_{67}	-1	0	-4	u_6	f_6
0	_										
	0	0	0	0	K_{67}	K_{77}	0	-8	0	u_7	f_7
0	1	0	0	0	K_{67} -1	K_{77}	0	-8 0	0	u_7 λ_1	$\begin{bmatrix} f_7 \\ 0 \end{bmatrix}$
	1 5	0 0 0	0 0 0	0 0 0		<i>K</i> ₇₇ 0 −8	0 0 0			_ ′	_

Lagrange Multiplier Method

Advantages

- General application
- Exact
- No user decisions: black-box
- Disadvantages
 - Difficult implementation
 - Additional unknowns
 - Loses positive definiteness
 - Sensitive to constraint dependence

CAE MFC - 25

MFC Application Methods: Summary

	Master-slave Elimination	Penalty function	Lagrange multiplier
Physical interpretation	Model reduction	Penalty element (flexible link)	Rigid link (reaction force)
Generality	fair	Excellent	Excellent
Ease of implementation	Poor to fair	Good	Fair
Sensitivity to user decisions	High	High	Small to none
Accuracy	Variable	Mediocre	Excellent
Sensitivity as regards constraint dependence	High	None	High
Retains positive definiteness	Yes	Yes	No
Modifies unknown vector	Yes	No	Yes

CAE MFC - 26