

MATLAB 기초

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2016 Computational Design Lab. All rights reserved.

CAE

CONTENTS

- Overview
- MATALB Environment
- Mathematical operations
- Built-in functions
- Graphics
- Case study
- Assignment

2

OVERVIEW

- The Language of Technical Computing
 - To analyze and design the systems and products transforming real world
 - Machine learning, signal processing, image processing, computer vision, communications, computational finance, control design, robotics, and much more
- Features
 - Matrix-based language
 - Vast library of prebuilt toolboxes
 - Integrated with other languages
 - Video : <u>MATLAB Overview</u>

HOMEPAGE

http://www.mathworks.com

4

The MATLAB Environment

✓ Interface

✓ Command Window / Workspace

✓ Scalars

- ✓ Arrays, Vectors and Matrices
- ✓ The Colon Operator
- ✓ Character Strings

INTERFACE

MATLAB 7.9.0 (R2009b)] 🍟 Workspace: 저장된 데이터
<u>File Edit Debug Parallel Desktop Wind</u>	ow <u>H</u> elp	🛛 🕒 를 보여주는 창
: 🗂 📁 🔏 🐘 🛍 🤊 (*) 🏜 🚮 🖹 🖉	C:#Users#sean#Documents#MATLAB	
Shortcuts 🖪 How to Add 🖪 What's New		
Workspace	🕝 Editor - C.#Users#sean#Desktop#sample#sample1.m 🛛 🏞 🗙	
🛅 📷 🗃 骗 🧠 Stac <u>k</u> : 💯 Select d 🔻] 🗋 🖆 📓 🕉 ங 🛍 🤊 (* 🎍 🗁 + 🏘 🖛 🚸 🎣 💌 + 🔂 🏖 🖷 🎕 🕼 🕮 🕮 🕼 Stack: Base 🕞 🍂 🖽 🖽 🗗 🗗 🖛 🛪	
Name 🔺 Value	[*] ⁸ ¹ / ₆ − 1.0 + ÷ 1.1 × ⁴ / ₂ ⁴ / ₂ ¹	∥ ≱ Editor: m-file 프로그래밍
	1 % Topology Optimization	
	2 - function [],v]=sample1	
	3 4 Y Brobles Settings	
	5 - top.nx = 120; % The number of elements in the horizontal axis	Canana di Liata mu Tili L 🗗
	6 - top.ny = 80; % The number of elements in the vertical axis	😗 Command History: 시난 명
_	7 - top.vol = .3; % Volume constraint	- eu ue
<u> </u>	8 - top.pnl = 3; % Penalization parameter	1 3 이 이 뒤
	9 - top.rfil = 1.5; % Filtering distance	
	10 % Parameters for optimization	
	II - opt.swi=U; % UC	
		Command Window; III E Z
		The command window. 매글립
	15	📕 🖉 명령어를 인려하느 고
	16 % Initialization	
	17 - rho=top.vol+ones(top.ny,top.nx);	
	18 - itr = 0;	
	19 - mini=1.e3U; 20 - constitue=0;	
	20 - convirageo,	
Command History I+ I * X	22 X Display initial configuration	
-hold on	27 - colorson(group)-inspace(1-rbo)-covic([0,1])-	
postcrossplot(struct_fem,1,[92,	main.m × sample1.m ×	
'lindata','Br',	Command Window 💛 🗖 🛪 X	
- cont', internal',		
- linxdata',{'(atan(y/x)*180/pi*	MATLAB desktop keyboard shortcuts, such as Ctrl+S, are now customizable.	
- title, Br []],	In addition, many keyboard shortcuts have changed for improved consistency	
irefinei jeutei	across the desktop.	i i
icoloumi 1):	To support the heat state and the second state and the second state of the second stat	
Garid off	restore previous default settings by selecting "B2009a Windows Default Set"	
x 13, 2, 13, 9, 2, 21,	from the "Active settings" drop-down list. For more information, see Help.	
~~~ 13. 2. 14 오후 1:54%		l i
% 13. 2. 21 오후 6:28%	Click here if you do not want to see this message again.	
_% 13. 2. 24 오후 8:25% 📃		
	lã ≫	
start Ready	OVR .:	

# **COMMAND/WORKSPACE**



7

#### **COMMAND/WORKSPACE**



Morkspace	e		
<u>F</u> ile <u>E</u> dit	<u>View Graphics Debug Desktop Window Help</u>		ъ.
ا 🖻 📹 🖻	🛍 喝   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	
Name 🔺	Value	Min	Max
🛨 ans	29	29	29
			(
L			

Command Window		📲 a = 4 엔터 를 입력하면
<u>Edit Debug Desktop Window Help</u>	2	workspace 에 상수 a 가 저 장됨
Workspace	OVR .:	
<u>File Edit View G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	r	
🛅 📹 📲 骗 Stac <u>k</u> : Base 👻 💯 Select data to plot	•	
Name 🔺 Value	Min Max	
⊞ a 4	4 4 2	

Command Window <u>File Edit Debug Desktop Window Help</u> >> a = 4 a = 4 fx >> 1 fx >> 1		<ul> <li>✔ 상수를 입력할 때 뒤에 세미 콜론(;) 을 붙이면 결과값이 창에 뜨지 않음</li> <li>✔ 하지만 workspace 에 상수 A 가 저장됨</li> </ul>
	OVR:	
Workspace          Eile       Edit       View       Graphics       Debug       Desktop       Window       Help         Image: Stack Interview       Image: Stack Interview	Min Max 6 6 4 4	
	.::	



-	Comman	d Window				
Eile	e <u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	Help	۲
	>> a					^
	a =					
	4					
	>> A	<b>M</b>	2			
	A =	1				=
	6					
	>> x					
	× =					
fx	1					-
						OVR .::

📣 Workspace						
<u>File Edit Vie</u>	ew <u>G</u> raphics	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		2
1 🖬 🛍 🛍	Stack: Bas	ie 👻 🕼 Select o	data to plot		-	
Name 📥	Value				Min	Max
A 🗄	6				6	6
💾 a	4				4	4
<b>⊞</b> ×	1				1	1

♥ 저장되어있는 상수의 값을 확인하고 싶을 경우 command line 에 상수 이 름을 치면 확인 가능

12

#### COMPLEX VALUE



<u>File E</u> dit <u>V</u> i	ew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		
🖲 📹 🐿 🛍	📕   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	_
Name 🔺	Value	Min	Max
H x	2.0000 + 4.0000i	2.000	2.000
H y	2.0000 + 4.0000i	2.000	2.000

i 와 j 는 매틀랩에서 기본적 으로 제공하는 허수를 의미 함 (√−1) workspace 에 i 와 j 가 상수 로 선언이 되지 않을 경우 허수로 인식

# **COMPLEX VALUE**

	۸ (	Comma	nd Window				
	<u>F</u> ile	<u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	Help	ĸ
		>> i = >> x = x =	= 1; = 2 + i+4	<b>W</b>			
j	fx	»	,	J			
							OVR

📣 Workspace		Charroline, M	and the			
<u>F</u> ile <u>E</u> dit <u>V</u> ie	ew <u>G</u> raphics	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		يد ا
1 🖬 🐿 🛍	Stack: Bas	se 👻 😡 Select	data to plot	•		
Name 🔺	Value			1	Min	Max
i i x	1 6			1	5	1 6

🍟 i 가 선언이 될 경우 허수로 인식하지 않음

### FORMAT

📣 Com	Command Window									
Eile E >> 1 ans	Eile       Edit       Debug       Desktop       Window       Help       Pi         >> pi       ans =       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									
	3.141592653589793									
type	Result	Example								
short	Scaled fixed-point format with 5 digit	3.1416								
long	Scaled fixed-point with 15 digits for double and 7 digits for single	3.14159265358979								
short e	Floating-point format with 5 digits	3.1416e+000								
long e	Floating-point format with 15 digits for double and 7 digits for single	3.141592653589793e+000								
short g	Best of fixed- or floating-point format with 5 digits	3.1416								
long g	Best of fixed- or floating-point format with 15 digits for double and 7 digits for single	3.14159265358979								
short eng	Engineering format with at least 5 digits and a power that is a multiple of 3	3.1416e+000								
long eng	Enginerring format with exactly 16 significant digits and a power that is a multiple of 3	3.14159265358979e+000								
bank	Fixed dollars and cents	3.14								



#### **ROW VECTOR**

📣 Cor	mmand	Window	1							Ŋ
<u>F</u> ile	<u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp				۲	
>> a	• a =   = 1	(123 2	45] 3	4 5	é					
fx <b>;</b> >>					•					
									OVR .::	J
	r									
	-	Norksp	ace	44					x	
	<u> </u>	<u>E</u> dit	t <u>V</u> iew	<u>G</u> raphic	s De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp	Y	
	5		1 11 2 11		- 11					

Workspace

File

Edit

View

Graphics

Debug

Desktop

Window

Help

Name

Value

Min

Max

H

a

[1,2,3,4,5]

1

5



### **COLUMN VECTOR**

📣 Command Window	- 0 <b>X</b>
<u>F</u> ile <u>E</u> dit De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	r
>> a = [1 2 3 4 5]	
a =	
1 2 3 4 5	
>> b = [2;4;6;8;10]	
b =	
2	
8	
10	
$Jx \gg$	
	OVR

📣 Workspac	e		
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		2
1	🛍 👞   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	
Name 🔺	Value	Min	Max
⊞ a ⊞ b	[1,2,3,4,5] [2;4;6;8;10]	1 2	5 10

괄호 기호 [] 와 세미 콜론(;) 을 이용하여 열 벡터를 저장 | 할 수 있음

# **COLUMN VECTOR**

📣 Co	omman	d Window				
<u>F</u> ile	<u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	Help	لا ا
) fx; >	> b = = 4 6 8 10	[2,4,6,1	8,10]'			

📣 Workspa	ce		
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> e	elp	¥
1 🖬 🖆	📲 🧠   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	
Name 🔺	Value	Min	Max
a ∎b	[1,2,3,4,5] [2;4;6;8;10]	1 2	5 10

♥ 혹은 행 벡터로 입력 한 뒤 작은 따옴표 ' (transpose)를 │ 이용하여 열 벡터로 입력 가 │ 능

18

# MATRIX

*	Comr	nand	Window										x
Eil	e <u>E</u>	dit	De <u>b</u> ug	Desktop	<u>W</u> in	dow	<u>H</u> elp						¥
	>> A A =	( =	[1 2 3;	456;78	39]								
		1 4 7	2 5 8	3 6 9		<b>F</b>	)						
	>> A	. =	[123 456 789]										
	A =	1 4 7	2 5 8	3 6 9									
fx;	>>											0	VR .::
	4	Wo	orkspace	•									
	Ei	le	Edit	<u>V</u> iew (	<u>G</u> raph Stac <u>k</u>	nics c Ba	De <u>b</u> ug <u>D</u> es se →   🐼 s	sktop Select d	<u>W</u> indow ata to plot	<u>H</u> elp	•	لا 	
	Na	ame			Va	ue					Min	Max	
		A a b			[1,2 [1,2 [2;4	2,3;4, 2,3,4, 1;6;8;	5,6;7,8,9] 5] 10]				1 1 2	9 5 10	

1	매트 [:] 은 벡 랑 동	릭스를 터를 일	를 입력 입력	력하는 하는	<u>-</u> 방 방식	뷥 이
	행 벡 콜론 입력	터를 (;)으 <u>ë</u> 가능	입력 로 열·	한 즉 을 구	후, 세 분하	미 여
	옥면음번음 엔줄째	괄호를 터 로 넘 방식	기호 입력 어가 으로	[를 할 <del>경</del> 기 때 입력 [;]	시작 영우 [  문에 할 수	하나두있

#### MATRIX

-	Com	nmand	Window					x
Eile	e j	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	<u>H</u> elp		¥
			456					~
			789]					
	Α -	-						
		1	2	3				
		4	5	6				
		7	8	9				
	>>	A =	[[1 4 7]	].[258	]. [369	].]		Ш
	A =	=				<b>P</b>		
		1	2	3				
		4	5	ę				
		7	8	9				
fx	>>							-
							0'	VR .:

📣 Workspace			
<u>F</u> ile <u>E</u> dit <u>V</u> ie	ew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		צי
1 🖬 🛍 🛍	🐁   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	
Name 🔺	Value	Min	Max
A 🗄	[1,2,3;4,5,6;7,8,9]	1	9
🗮 a	[1,2,3,4,5]	1	5
🛨 b	[2;4;6;8;10]	2	10
			.:

Transpose 기호를 사용, 다 음과 같이 각각의 열 벡터를 이용하여 매트릭스를 구성 할 수 있음

# MATRIX: WHO(S)

-	Command	d Window	1					
Eil	e <u>E</u> dit	De <u>b</u> ug	Desktop	Window H	lelp			لا الا
	1	2	3					*
	4	5	6					
	7	8	9					
	>> who							
	Your va	riables	are:					
	Aab	E				Ś	Ĩ	
	>> whos					ľ		
	Name	Si	ze	Bytes	Class	Attributes		
	۵	34	3	72	double			=
	a	1×	5	40	double	1		
	b	5×	1	40	double	1		
fr	~							
J.	//							()/P
				-				OVR

	3
-	
Min	Max
1	9
1	5
2	10
	• Min 1 1 2



#### **MATRIX: ELEMENT**

-	Co	mmar	nd Win	dow			
Ei	le	<u>E</u> dit	Deb	ug <u>D</u> eskto	op <u>W</u> indow	<u>H</u> elp	د
1	>	> b(4	)				
	a	ns =					
		8		<b>P</b>			
	>:	> A(2	2,3)				
	a	ns =					
	L	E	i				
fx	>	>					
							OVR

📣 Workspace						
<u>File E</u> dit	<u>V</u> iew <u>G</u> raphics [	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		2
1	🕯 喝 🛛 Stac <u>k</u> : 🛛 Base	🕞 👻 Select o	lata to plot		-	
Name 🔺	Value				Min	Max
<b>⊞</b> A	[1,2,3;4,5,	6;7,8,9]			1	9
🛨 a	[1,2,3,4,5]				1	5
🛨 b	[2;4;6;8;10	)]			2	10



#### **MATRIX: BUILT IN FUNCTION**

<b>/</b> (	Comman	d Window	V			
<u>F</u> ile	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	Help	لا ا
	>> E =	zeros(2	2,3)			
	E =					
	0	0	<b>1</b>			
		0				
	·· -	Unes(1,	3)			
	u - ,					
	1	I				
Jx;	>>					
						OVR .::

📣 Workspace			
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		ъ Ч
1 🖻 📹 🖷 🖷	Stac <u>k</u> : Base 👻 🖓 Select data to plot	-	
Name 🔺	Value	Min	Max
E	[0,0,0;0,0,0]	0	0
⊞u	[1,1,1]	1	1

V zeros(m,n) m by n 의 0으로 채워진 매 트릭스를 저장 ones(m,n) m by n 의 1로 채워진 매트 릭스를 저장

1	📣 Command Window								
I	ile	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	<u>H</u> elp	لا		
	>> t	t = = 1	1:5 2	3	4 5	1			
f	κ̂ »>	•							
							OVR .::		

📣 Workspace							<u>}</u>
<u>F</u> ile <u>E</u> dit <u>V</u>	iew <u>G</u> raphics I	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp			з
1 🖬 🖬 🛍	Stack: Base	e 👻 😡 Select o	lata to plot		•		
Name 🔺	Value				Min	Max	
🖿 t	[1,2,3,4,5]				1	5	
							_



Elle       Edit       Debug       Desktop       Window       Help       Image: Market and the state	📣 Command Window										
>> t = 10:-1:5 t = 10 9 8 7 6 5 fx >>	<u>File E</u> dit De <u>b</u> ug <u>D</u> esktop <u>W</u> in	ndow <u>H</u> elp	۲								
OVR	>> t = 10:-1:5 t = 10 9 8 7 fx >>	6 5									
			OVR								

📣 Workspace	42		
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		2
10 🖬 🐿 🛍 🗞	Stack: Base 👻 Select data to plot	-	
Name 🔺	Value	Min	Max
🖽 t	[10,9,8,7,6,5]	5	10

🍟 - 값을 이용하여 줄어드는 배열을 저장할 수 있음



📣 Workspace			
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		Ľ
1 🖻 🖆 🛍 🖷	Stac <u>k</u> : Base 👻 Select data to plot	-	
Name 🔺	Value	Min	Max
A	[1,2,3;4,5,6;7,8,9]	1	9
🛨 ans	[4,5,6]	4	6



	<b>/</b> (	Command Window									
	<u>F</u> ile	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	Help	r				
		>> t(2 ans = 9	:4) 8	7							
	fx	>>									
							010				
L					_		OVR				

📣 Workspa	ce			
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow	<u>H</u> elp		Ľ
1 🖬 💼	🕌 🧠   Stac <u>k</u> : Base 🕞   💯 Select data to plot	•	-	
Name 🔺	Value		Min	Max
	[9,8,7] [10,9,8,7,6,5]		7 5	9 10

배열값 역시 콜론을 이용하 여 원하는 위치의 값을 확인 할 수 있음

#### LINSPACE FUNCTION

A Command Window										
E	ile	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	<u>H</u> elp				r
	2	>> lins	pace(O,	1,6)						
	a	ans =								
	l		0	0.2000	0.4000	0.6000	0.8000	1.0000		
f.	<b>ç</b> >	>>								
										OVR
-										

📣 Workspa	ce					
<u>F</u> ile <u>E</u> dit	View Graphics	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		¥د ا
1 🖬 💼	🛍 喝 🛛 Stac <u>k</u> : Ba	ase 👻 🔛 Select o	data to plot		-	
Name 🔺	Value				Min	Max
🛨 ans	[0,0.200	00,0.4000,0.6000,0.8	000,1]		0	1

linspace(x1,x2,n)

값 x1 부터 x2 까지 선형적 으로 n 등분한 결과값을 저 장

### LOGSPACE FUNCTION

1	Command Window									
E	ile <u>I</u>	Edit De <u>b</u>	ig <u>D</u> esktop	Window	<u>H</u> elp	لا				
	>> ans	logspace =	(-1,2,4)			<b>*</b>				
	L	0.1000	1.0000	10.0000	100.0000					
f:	ç >>									
						OVR .:				
-										

📣 Workspa	ce		
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp		¥د ا
1 🖬 💼	📲 喝   Stac <u>k</u> : Base 👻   💯 Select data to plot	-	
Name 🔺	Value	Min	Max
🛨 ans	[0.1000,1,10,100]	0.1000	100

logspace(x1,x2,n)

값 10^{x1} 부터 10^{x2} 까지 로그 스케일로 n 등분한 결과값 을 저장

#### **CHARACTER STRING**

A Command Window		
<u>File Edit Debug D</u> esktop <u>W</u> indow	Help	r
>> f = 'Miles ';		
>> g = 'Davis';		
>> x - [1 9]		
× =		
Niles Desta		
Miles Davis		
fx; >>		
L		OVR

📣 Workspa	ce					• X
<u>F</u> ile <u>E</u> dit	View <u>G</u> raphics De	e <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		لا ا
1	🛍 喝   Stac <u>k</u> : Base	🕞 🕼 Select o	data to plot		-	
Name 🔺	Value				Min	Max
ab f	'Miles '					
ab g	'Davis'					
ab X	'Miles Davis	t				
						.:

🍟 작은 따옴표 두 개를 이용하 여 글자열을 저장할 수 있음

CAE

#### **CHARACTER STRING**

-	Command Window										
Ei	e	<u>E</u> dit	De <u>b</u> ug	Desktop	Window	<u>H</u> elp				צ	
	>) 6 a	> a = 78] =	[123	45					Ű		
		1	2	З	4 5	6	7	8			
fx	>>>	>									
			_		_			-		OVR	

📣 Workspa	ce					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> raphics	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		2
1 🖬 🖆	🛍 🐻   Stac <u>k</u> : Ba	ase 👻 🗐 🐼 Select	data to plot		-	
Name 🔺	Value				Min	Max
🛨 a	[1,2,3,4	,5,6,7,8]			1	8



#### **CHARACTER STRING**

Command Window	
<u>Eile Edit Debug D</u> esktop <u>W</u> indow <u>H</u> elp	Ľ
>> a = [1 2 3 4 5 6 7 8] a =	
1 2 3 4 5 6 7 8	
$f_{x} \gg  $	
<u> </u>	
Command Window	
<u>File E</u> dit De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	۲.
>> quote = ['Any fool can make a rule, ' ' and any fool will mind it']	
quote =	
Any fool can make a rule, and any fool will mind it	
<i>Jx</i> [°] ≫ [	
	OVR



CAE

Mathematical operations

#### ✓ Operators

- ✓ Mathematical operation
- ✓ Vector product
- ✓ Vector-matrix multiplication
- ✓ Matrix-matrix multiplication
- ✓ Mixed operation

CAE

#### **OPERATORS**

^	Exponentiation	4^2 = 8
I	Negation (unary operation)	-8 = -8
* /	Multiplication and Division	2*pi = 6.2832 pi/4 = 0.7854
\	Left Division	6\2 = 0.3333
+	Addition and Subtraction	3+5 = 8 3-5 = -2

🎬 매틀랩 연산 기호

# MATHEMATICAL OPERATION

-	Comma	and Window	v			
Eil	e <u>E</u> di	t De <u>b</u> ug	Desktop	Window	Help	د
	>> y	= -4^2				
	у =					
	-1	6	<u></u>			
	>> x	= (-4)^2				
	× =					
	1	6				
fx,	>>		_			
						OVR:

📣 Workspace			
<u>F</u> ile <u>E</u> dit <u>V</u> ie	ew <u>G</u> raphics De <u>b</u> ug <u>D</u> esktop <u>W</u> ind	dow <u>H</u> elp	د د
1 🖬 🐿 🛍	🖐   Stac <u>k</u> : Base 👻   💯 Select data to	plot 👻	
Name 🔺	Value	Min	Max
i x i y	16 -16	16 -16	16 -16



CAE

# **VECTOR PRODUCT**

$$a = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{bmatrix}$$

-	Command	d Window	,				
Eil	e <u>E</u> dit	De <u>b</u> ug	Deskto	p <u>W</u> i	ndow	<u>H</u> elp	لا ا
	>> a*b						^
	ans =						
	110						
	 >> b*a						
	ans =						
	2	4	6	8	10		
	4	8	12	16	20		Ξ
	6	12	18	24	30		
	8	16	24	32	40		
	10	20	30	40	50		
£	1						
Jx	>>						
		_	_		_		OVR .:

저장되어있는 변수가 벡터 혹은 매트릭스일 경우 벡터 연산으로 연산 작용이 됨
# **VECTOR-MATRIX MULTIPLICATION**

|벡터와 매트릭스의 연산

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$



차수가 맞지 않을 경우 오류 메세지를 출력

# **VECTOR-MATRIX MULTIPLICATION**

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

📣 Command Window	
<u>File Edit Debug Desktop Window H</u> elp	لا د
ans =	
30 36 42	
>> A+b	
ans =	
32	8
122	
>> A+a ??? Error using ==> mtimes Inner matrix dimensions must agree.	
$f_{\mathbf{x}} \gg  $	-
	OVR .::

미함

연산기호 ^ 을 매트릭스 연 산에 적용할 경우 제곱을 의

# MATRIX-MATRIX MULTIPLICATION

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

-	A Command Window								
Eil	e <u>E</u> dit	De <u>b</u> ug	Deskto	p <u>W</u> indow <u>H</u> elp	r				
	>> A*A								
	ans =								
	30	36	42						
	66	81	96						
	102	126	150	<b>**</b>					
	>> A^2								
	ans =								
	30	36	42						
	66	81	96						
	102	126	150						
fx	>>								
					OVR .::				

# **MIXED OPERATION**

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$





Built-in functions

# ✓ Log

# ✓ Elfun

# ✓ Round

✓ Ceil

# ✓ Floor

# ✓ Others

# LOG

exp. log10, log2, logm, real log



	<i>*</i>
	매틀랩에 기본적으로 저장 되어있는 함수들이 있음
	예를들어 로그함수를 이용 하고 싶을 경우, help 명령 어를 이용하여 <u>doc log</u> 를 클릭하면 log 함수에 관한 문서가 팝업됨
	팝업된 창에는 로그 함수의 설명과 이용방법에 대해 나 와있음
s if	
urned	

# **ELFUN**

ſ	📣 Command Wind	low		
1	<u>File Edit Debu</u>	ig <u>D</u> esktop <u>W</u> indow <u>H</u> elp	2	🎁 🎁 🗍
1	>> help elfu			🍐 한 수
	Elementary	math functions.		
				'인위
	Trigonomet	ric.		
	sin	- Sine.		
	sind	- Sine of argument in degrees.		i
	sinh	- Hyperbolic sine.		
	asin	- Inverse sine.		
	asind	- Inverse sine, result in degrees.		1
ł	<u>asinh</u>	- Inverse hyperbolic sine.	E	
	cos	- Cosine.		
	cosd	- Cosine of argument in degrees.		
	cosh	- Hyperbolic cosine.		
	acos	- Inverse cosine.		i
	acosd	- Inverse cosine, result in degrees.		
	acosh	- Inverse hyperbolic cosine.		
	<u>tan</u>	- Tangent.		i
	tand	- Tangent of argument in degrees.		
	tanh	- Hyperbolic tangent.		
	atan	- Inverse tangent.		
	atand	<ul> <li>Inverse tangent, result in degrees.</li> </ul>		
	at an2	- Four quadrant inverse tangent.		
	atanh	- Inverse hyperbolic tangent.		1
	sec	- Secant.		
	secd	- Secant of argument in degrees.		
	sech	- Hyperbolic secant.		1
	asec	– Inverse secant.		
	asecd	- Inverse secant, result in degrees.		i
	asech	- Inverse hyperbolic secant.		
	CSC	- Cosecant.		
	cscd	- Cosecant of argument in degrees.		
	<u>cscn</u>	- Hyperbolic cosecant.		
	acsc	- Inverse cosecant.		
	acsco	- Inverse cosecant, result in degrees.		1
	acsch	- Inverse hyperbolic cosecant.		
	cot	- colangent.		
	coto	- cotangent of argument in degrees.		
	fx corn	- hyperburne cotangent.	-	
	acut	- mverse cutangent.	0\/P	
	4			

그 외 기본적인 수학 관련 함수는 help elfun 으로 확 | 인 할 수 있음

### ROUND

#### $E = \begin{bmatrix} -1.6 & -1.5 & -1.4 & 1.4 & 1.5 & 1.6 \end{bmatrix}$

A Command Window	
<u>Eile Edit Debug Desktop Window H</u> elp	۲
>> E = [-1.6 -1.5 -1.4 1.4 1.5 1.6]	
E =	
-1.6000 -1.5000 -1.4000 1.4000 1.5000 1.6000	
>> round(E)	
ans =	
-2 -2 -1 1 2 2	
$f_{x} \gg  $	
	OVR

♥ round 함수는 각 원소별로 올림하여 정수로 만들어 주 │ 는 함수

#### CEIL



#### $E = \begin{bmatrix} -1.6 & -1.5 & -1.4 & 1.4 & 1.5 & 1.6 \end{bmatrix}$

-	Comman	d Window	1			
Eile	e <u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	Help	لا الا
	E =					<u>^</u>
	-1.6	6000 -	1.5000	-1.4000	1.4000 1.5000 1.6000	
	>> rour	nd(E)				
	ans =					
	-2	-2	-1	1 2	2	E
	>> ceil	(E)				
	ans =					
	-1	-1	-1	2 2	2	
fx,	>>					-
						OVR:

# **FLOOR**

₩ floor 함수는 내림 함수

#### $E = \begin{bmatrix} -1.6 & -1.5 & -1.4 & 1.4 & 1.5 & 1.6 \end{bmatrix}$

-	Comr	mand	Window					
Ei	le <u>E</u>	dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> inc	low	<u>H</u> elp	لا
	ans	=						•
		-2	-2	-1	1	2	2	
	>> (	ceil	(E)					
	ans	=						
		-1	-1	-1	2	2	2	
	>> 1	floo	r(E)					E
	ans	=						
		-2	-2	-2	1	1	1	
fx	>>							· .
								OVK .:

# OTHERS

$F = \begin{bmatrix} 3 & 5 & 4 \end{bmatrix}$	6 1]	₩ sum: 각 원소를 전부 더한
Command Window		● 결과를 줄력
<u>File Edit Debug Desktop Window Help</u>	¥ ۸	min: 행 또는 열 중에서 제 일 작은값을 출력
ans = 19		max: 행 또는 열 중에서 제 일 큰 값을 출력
ans = 1		mean: 행 또는 열 중에서 평균값을 계산
ans =		prod: 각 원소를 전부 곱한 결과를 출력
ans =	<b>1</b>	sort: 각 원소를 낮은 순서다 로 배치
3.8000		
ans =		
360		
ans =		
<b>fx</b> 1 3 4 5 6	*	
L	OVR .:	

- Graphics
  - ✓ Example
  - ✓ Plot
  - ✓ Specifiers
  - ✓ Subplot & 3D plot

#### EXAMPLE

Falling parachutist

 $F = ma = F_D - F_U = \begin{cases} mg - cv \\ mg - cv^2 \end{cases}$ Case I:  $\frac{dv}{dt} = g - \frac{c}{m}v \rightarrow$  nonhomogeneous linear differential equation Case II:  $\frac{dv}{dt} = g - \frac{c}{m}v^2 \rightarrow$  nonhomogeneous nonlinear differential equation < Solution > Case I:  $v_h = c_1 e^{\lambda t} \rightarrow \lambda = -\frac{c}{2}$  $v = c_1 e^{\left(-\frac{c}{m}\right)t} + c_2 \rightarrow \frac{c}{m} c_2 = g \rightarrow c_2 = \frac{gm}{c}$  $v = c_1 e^{\left(-\frac{c}{m}\right)t} + \frac{gm}{c} \leftarrow (t = 0, v = 0) \Longrightarrow c_1 = -\frac{gm}{c}$  $v = \frac{gm}{c} \left| 1 - e^{\left(-\frac{c}{m}\right)t} \right|$ : analytical (or exact) solution Case II:  $v = \sqrt{\frac{gm}{c}} \tanh\left(\sqrt{\frac{gc}{m}}t\right)$ 



# VARIABLES & CONSTANTS



50

# **DEPENDENT VARIABLE**

-	Com	nmand W	indow	_				- 0 <b>X</b>
Fi	е	Edit De	ebug	Desktop	Window	Help		۲
	>>	v1 = g*	•m/cd•	•(1-exp(	-cd/m∗t))			<u>^</u>
	v1	=						
		10 5/91	J					
		38,9533	3					
		58.2165	5					
		77.3388	3					
		96.3212	2					
	1	115.1647	7					
	1	133.8704	1					
	1	152.4393	3					
		170.8723	; ,					
	>>	v2 = so	art(g	⊧m/cd)*t	anh(sqrt(	g∗cd∕m)∗t)		E
	٧2	=						
		ſ	ı					
		18.7292	2					
		33.1118	3					
		42.0762	2					
		46.9575	5					
		49,4214	1 -					
		50.6175						
		51,4560	)					
		51.5823	3					
		51.6416	6					
JĶ							1	-
	_							OVR

♥ 예제에서 구한 exact solution 에 맞게 case 1 은 ↓ v1 으로 case 2 는 v2 로 속 ↓ 도를 계산

# PLOT





와 함수값 b 를 이용하여 그 래프를 출력하는 함수 두 벡터 혹은 배열의 크기가 맞아야 그래프가 출력이 됨 hold on 명령어는 현재 plot 이 되어있는 figure 를 hold 시킴으로써 새로운 plot 을 그릴때 그 위에 덧대서 그림 을 그릴 수 있게하는 명령어

plot(a,b) 함수는 독립변수 a

# NAMING



# **SPECIFIERS**

Colors		Symbols		Line Types		
Blue	b	Point	•	Solid	-	
Green	g	Cicle	0	Dotted	:	
Red	r	X-mark	Х	Dashdot		
Cyan	С	Plus	+	Dashed		
Magenta	m	Star	*			
Yellow	у	Square	S			
Black	k	Diamond	d			
White	W	Triangle(down)	V			
		Triangle(up)	٨			
		Triangle(left)	<			
		Triangle(right)	>			
		Pentagram	р			
		Hexagram	h			

그래프에 다양한 데이터가 존재하여 여러가지 형식으 로 구분해야할 경우 색깔, 기호 및 선 형식에 따라 구 분할 수 있음

# **SYMBOL**



전 페이지의 명령어를 입력 하는 방법은 plot(x,y,'명령어') 방식으로 입력 가능

예시는 데이터를 o 표시로 그림을 출력하는 방법









SUBPLOT & 3D PLOT

- Case study
- Assignment

## CASE STUDY

**Background.** Your textbooks are filled with formulas developed in the past by renowned scientists and engineers. Although these are of great utility, engineers and scientists often must supplement these relationships by collecting and analyzing their own data. Sometimes this leads to a new formula. However, prior to arriving at a final predictive equation, we usually "play" with the data by performing calculations and developing plots. In most cases, our intent is to gain insight into the patterns and mechanisms hidden in the data.

In this case study, we will illustrate how MATLAB facilitates such exploratory data analysis. We will do this by estimating the drag coefficient of a free-falling human based on Eq. (2.1) and the data from Table 2.1. However, beyond merely computing the drag coefficient, we will use MATLAB's graphical capabilities to discern patterns in the data.

#### Data

#### **Results figures**

TABLE 2.1	Data for	the mass an	id associated	l terminal ve	locities of a	number of ju	mpers.
m, kg	83.6	60.2	72.1	91.1	92.9	65.3	80.9
$v_t, m/s$	53.4	48.5	50.9	55.7	54	47.7	51.1

$$v_t = \sqrt{\frac{gm}{c_d}} \quad (2.1)$$



# SOLUTION OF CASE STUDY

📝 Edit	tor - C:\Users\Sean\Desktop\Untitled.m				
<u>F</u> ile	<u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp				XSK
: 🎦 (	🚔 🔜   & ங 🛍 🤊 (°   🌭 📨 -   🏘 🗢 🔶 🈥   돈 - 🗟 🗶 🖷 🎕 🗊 .	■ 】 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Stac <u>k</u> : Ba	ase – <i>fx</i>	
i 🍋 G	🗏   − 1.0 +   ÷ 1.1 ×   ‰ ‰   0				
1 -	clear all; clc;				
2 -	m = [83.6 60.2 72.1 91.1 92.9 65.3 80.9];				
3 -	vt = [53.4 48.5 50.9 55.7 54 47.7 51.1];				
4 -	g = 9.81;				
5 -	cd = g+m./vt.^2;				
6 -	cdavg = mean(cd);				
7 -	vpred = sqrt(g*m/cdavg);				
8 -	<pre>subplot(2,1,1); plot(vt,vpred, o',vt,vt)</pre>				
9 -	xlabel('measured')				
10 -	ylabel('predicted')				
11 -	title('Plot of predicted versus measured velocities')				
12 -	<pre>subplot(2,1,2);plot(m,cd,'o')</pre>				
13 -	xlabel('mass (kg)')				
14 -	ylabel('estimated drag coefficient (kg/m)')				
15 -	title('Plot of drag coefficient versus mass')				
🤄 mair	n.m × sample1.m × Untitled.m ×				
	script		Ln 6	Col 52	2 OVR:

# SOLUTION OF CASE STUDY



#### ASSIGNMENT

**2.21** Figure P2.21*a* shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.21*b*, deflection y (m) can be computed with

$$y = \frac{w_0}{120EIL}(-x^5 + 2L^2x^3 - L^4x)$$

where E = the modulus of elasticity and I = the moment of inertia (m⁴). Employ this equation and calculus to generate MATLAB plots of the following quantities versus distance along the beam:

(a) displacement (y),

**(b)** slope  $[\theta(x) = dy/dx]$ ,



(c) moment  $[M(x) = EId^2y/dx^2]$ , (d) shear  $[V(x) = EId^3y/dx^3]$ , and (e) loading  $[w(x) = -EId^4y/dx^4]$ .

Use the following parameters for your computation: L = 600 cm, E = 50,000 kN/cm², I = 30,000 cm⁴,  $w_0 = 2.5$  kN/cm, and  $\Delta x = 10$  cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots.

**2.22** The *butterfly curve* is given by the following parametric equations:

$$x = \sin(t) \left( e^{\cos t} - 2\cos 4t - \sin^5 \frac{t}{12} \right)$$
$$y = \cos(t) \left( e^{\cos t} - 2\cos 4t - \sin^5 \frac{t}{12} \right)$$

Generate values of x and y for values of t from 0 to 100 with  $\Delta t = 1/16$ . Construct plots of (a) x and y versus t and (b) y versus x. Use subplot to stack these plots vertically and make the plot in (b) square. Include titles and axis labels on both plots and a legend for (a). For (a), employ a dotted line for y in order to distinguish it from x.

**2.23** The butterfly curve from Prob. 2.22 can also be represented in polar coordinates as

$$r = e^{\sin\theta} - 2\cos(4\theta) - \sin^5\left(\frac{2\theta - \pi}{24}\right)$$

Generate values of r for values of  $\theta$  from 0 to  $8\pi$  with  $\Delta\theta = \pi/32$ . Use the MATLAB function polar to generate the polar plot of the butterfly curve with a dashed red line. Employ the MATLAB Help to understand how to generate the plot.

Origins of MATLAB, by Cleve Moler

MATLAB is now a full-featured technical computing environment, but it started as a simple

"Matrix Laboratory." Three men, J.H. Wilkinson, George Forsythe, and John Todd, played

important roles in the origins of MATLAB.



Wilkinson was a British mathematician who spent his entire carrer at the National Physical Laboratory (NPL) in Teddington, outside London. Working on a simplified version of a sophisticated design by Alan Turning, Wilkinson and colleagues at NPL bulit the Pilot Automatic Computing Engine (ACE), one of Britain's first sotred program digital computers. THe Pilot ACE ran its first program in May 1950. Wikinson did matrix computations on the machine and went on to become the world's leading authority on numerical linear algebra.



*J. H. Wilkinson and the Pilot ACE,* 1951, National Physical Laboratory, Teddington, England.

At about the same time, mathematicians at the Institue for Numerical Analysis (INA), a branch of the National Bureau of Standards, located at UCLA, were working with the Standards Western Automatic Computer (SWAC), one of the USA's first computers. Researchers at INA included George Forsythe, John Todd, and Olga Taussky-Todd. When the INA dissolved in 1957, Forsythe joined the faculty at Stanford and the Todds joined the faculty at Caltech



Institute for Numerical Analysis, early 1950s, UCLA. George Forsythe is in the center, and John Todd is looking over Forsythe's shoulder.

I went to Caltech as a freshman in 1957 and two years later took John Todd's Math 105,

Numerical Analysis. We did some of our homework with mechanical calculators, but we also used the Burroughs 205 Datatron, one of only a few dozen computers in southern California at the time.



The Burroughs 205 Datatron, 1959, a vacuum tube computer with 4,000 words of magnetic drum memory. Programs for the Datatron were written in absolute numeric machine language and punched on paper tape.

One of the projects that I did under Todd's direction in 1960 involved Hilbert matrices. These

are famous, ill-conditioned test matrices with elements

$$h_{i,j} = 1/(i+j-1), i,j = 1, ..., n$$

I wrote my programs in absolute numeric machine language and punched them on paper tape.

If I'd had MATLAB at the time, my project would have involved computing

H = single(hilb(6))

#### H =

1.0000000 0.5000000 0.3333333 0.2500000 0.2000000 0.1666667 0.5000000 0.3333333 0.2500000 0.2000000 0.1666667 0.1428571 0.3333333 0.2500000 0.2000000 0.1666667 0.1428571 0.1250000 0.2500000 0.2000000 0.1666667 0.1428571 0.1250000 0.111111 0.2000000 0.1666667 0.1428571 0.1250000 0.111111 0.1000000 0.1666667 0.1428571 0.1250000 0.111111 0.1000000 0.0909091

I would then compute the inverse of H.

inv(H)

ans =						
35.80	-624.43	3322.96	-7464.70	7455.60	-2731.09	
-624.41	14546.09	-87179.65	209060.31	-217634.53	82038.44	
3322.81	-87180.05	557732.38	-1393901.88	1493100.13	-574728.88	
-7464.46	209065.14	-1393927.13	3584568.00	-3920712.00	1533448.13	
7455.48	-217644.66	1493161.50	-3920799.75	4357413.00	-1725818.00	
-2731.10	82044.30	-574766.00	1533516.50	-1725855.38	690537.44	

The exact inverse of the Hilbert matrix has integer elements. A function in MATLAB computes it with a recursive algorithm.

invhilb(	6)					
ans =						
36.00	-630.00	3360.00	-7560.00	7560.00	-2772.00	
-630.00	14700.00	-88200.00	211680.00	-220500.00	83160.00	
3360.00	-88200.00	564480.00	-1411200.00	1512000.00	-582120.00	
-7560.00	211680.00	-1411200.00	3628800.00	-3969000.00	1552320.00	
7560.00	-220500.00	1512000.00	-3969000.00	4410000.00	-1746360.00	
-2772.00	83160.00	-582120.00	1552320.00	-1746360.00	698544.00	

I would compare these last two matrices and say the difference was the result of roundoff error introduced by the inversion process. I was wrong. I would learn a few years later from Wilkinson that the roundoff error introduced in computing H in the first place has more effect on the final answer than the error introduced by the inversion process.

In 1961, it was time for graduate school. Todd recommended that I go to Stanford and work with his friend George Forsythe. At the time, Forsythe was a professor in the math department, but he was starting the process that would create Stanford's computer science department, one of the world's first, in 1965.

In 1962, after Forsythe's numerical analysis course and a visit to Stanford by Wilkinson, I wrote a Fortran program to solve systems of simultaneous linear equations. Decks of punched cards for the program were distributed fairly widely at the time, including via SHARE, the IBM User's Group.



A few punched cards from a Fortran program for solving simultaneous linear equations, 15 years before the introduction of the MATLAB backslash operator.

Alston Householder from Oak Ridge National Laboratory and the University of Tennessee began a series of research conferences on numerical algebra in the late 1950s. These are now held every three or four years and are called the Householder Conferences. As a graduate student, I went to the third conference in the series in 1964 and obtained a photo of the organizing committee. Much later, that photo was used in the first documentation of the image function in MATLAB.



The organizing committee for the 1964 Gatlinburg/Householder meeting on Numerical Algebra. All six members of the committee – J. H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, and F. L. Bauer – have influenced MATLAB.

My 1965 Ph.D. thesis under Forsythe's direction was entitled "Finite Difference Methods for the

Eigenvalues of Laplace's Operator." The primary example, on which both Forsythe and

Wilkinson had worked earlier, was the L-shaped membrane, now the MathWorks logo.

		2-titiget (Instrum	
		mana é	interior prime of
	1,745	without a series	
	1,754	8.104H (MP-C)	i.a
	1/20	A REAL PROPERTY.	1.0
	6.90	sales and	#1A
	L784	8.060° E.G.R	+
66	L'An	A HARD THESE	14.8
	4,500	prints were	24
	s.Her	wine length	3.4
	1/80	1.048 8328	6.8
	1,148	14435-948.0	
	-		))))
	18		4

The first eigenvalue and eigenfunction of the L-shaped membrane. Click on image to see enlarged view.



*This 1967 textbook contained working code in Algol, Fortran, and PL/I.*
Forsythe and I published a textbook about matrix computation in 1967 that was later listed by the Association for Computing Machinery as an important early text in computer science because it contained working software: programs in Algol, Fortran, and PL/I for solving systems of simultaneous linear equations.

Over several years in the late 1960s, Wilkinson and a number of colleagues published papers in *Numerische Mathematik* that included algorithms in Algol for various aspects of matrix computation. These algorithms were eventually collected in a 1971 book edited by Wilkinson and Reinsch.





Even today, more than 30 years after its publication, this collection of algorithms for matrix computation is an important reference. Click on image to see enlarged view. Wilkinson describing a matrix algorithm to an audience at Argonne in the early 1970s.

Every summer for 15 years, Wilkinson lectured in a short course at the University of Michigan and then visited Argonne National Laboratory for a week or two. Researchers at Argonne translated the Algol code for matrix eigenvalue computation from the Wilkinson and Reinsch handbook into Fortran to produce EISPACK. This was followed by LINPACK, a package of Fortran programs for solving linear equations.



The authors of LINPACK: Jack Dongarra, Cleve Moler, Pete Stewart, and Jim Bunch in 1978.



The EISPACK manual was published in 1976 and the LINPACK manual in 1979.

When we were developing EISPACK and LINPACK, I was a math professor at the University of New Mexico, teaching numerical analysis and matrix theory. I wanted my students to be able to use our new packages without writing Fortran programs, so I studied a book by Niklaus Wirth to learn about parsing computer languages.



A 1975 textbook by Niklaus Wirth, who later developed PASCAL.

In the late 1970s, following Wirth's methodology, I used Fortran and portions of LINPACK and EISPACK to develop the first version of MATLAB. The only data type was "matrix." The HELP command listed all of the available functions, with their names abbreviated.

ABS	ANS	ATAN	BASE	CHAR	CHOL	CHOP	CLEA	COND	CONJ	COS
DET	DIAG	DIAR	DISP	EDIT	EIG	ELSE	END	EPS	EXEC	EXIT
EXP	EYE	FILE	FLOP	FLPS	FOR	FUN	HESS	HILB	IF	IMAG
INV	KRON	LINE	LOAD	LOG	LONG	LU	MACR	MAGI	NORM	ONES
ORTH	PINV	PLOT	POLY	PRIN	PROD	QR	RAND	RANK	RCON	RAT
REAL	RETU	RREF	ROOT	ROUN	SAVE	SCHU	SHOR	SEMI	SIN	SIZE
SQRT	STOP	SUM	SVD	TRIL	TRIU	USER	WHAT	WHIL	WHO	WHY

There were only 80 functions. There were no M-files or toolboxes. If you wanted to add a

function, you had to modify the Fortran source code and recompile the entire program. Here is a sample program. If you change long to format long, it works with today's MATLAB.

The first graphics were very primitive.

```
pi = 4*atan(1);
x = 0:pi/40:2*pi;
y = x.*sin(3*x);
plot(x,y)
```



Many of the first plots were made by printing asterisks on the teletypes and typewriters that served as terminals.

This first Fortran MATLAB was portable and could be compiled to run on many of the computers that were available in the late 1970s and early 1980s. We installed it on the interactive time-sharing systems that were hosted by mainframe computers at universities and national laboratories.

The first "personal computer" that I used was the Tektronix 4081, which Argonne acquired in 1978. The machine was the size of a desk and consisted of a Tektronix graphics display attached to an Interdata 7/32, the first 32-bit minicomputer. There was only 64K, that's 64 *kilobytes* of memory. But there was a Fortran compiler, and so, by using memory overlay, we were able to run MATLAB.



The Tektronix 4081, 1978. A step on the way from time-sharing to workstations and PCs.

I visited Stanford in 1979 and taught CS237, the graduate numerical analysis course. I had the students use MATLAB for some of the homework. Half of the students in the class were from math and computer science, and they were not impressed by my new program. It was based on Fortran, it was not a particularly powerful programming language, and it did not represent current research work in numerical analysis. The other half of the students were from engineering, and they liked MATLAB. They were studying subjects that I didn't know anything about, such as control analysis and <u>signal processing</u>, and the emphasis on matrices in MATLAB proved to be very useful to them.

A few of the Stanford engineering students from my class joined two consulting companies in Palo Alto. These companies extended MATLAB to have more capability in control analysis and signal processing and, in the early 1980s, offered the resulting software as commercial products.

Jack Little, a Stanford- and MIT-trained control engineer, was the principal developer of one of the first commercial products based on Fortran MATLAB. When IBM announced their first PC in August, 1981, Jack quickly anticipated the possibility of using MATLAB and the PC for technical computing. He and colleague Steve Bangert reprogrammed MATLAB in C and added M-files, toolboxes, and more powerful graphics.



*Jack Little, founder and CEO of The MathWorks.*