Powertrain Component Modeling

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

CONTENTS

- Powertrain Library
- Clutch
- Engine
- Gear / Transmission
- Drag Force
- Driver Controller
- Assignment

CAE

POWERTRAIN LIBRARY

Library tree

Search:

Name

۵

- Description
- Electrochemistry Components \triangleright
- Fuel Cell 51C \triangleright
 - Powertrain
 - 🛞 tr_fluid_data
 - 🔺 🚞 All
 - tr_fluid_data
 - zeroforcesource
 - 🔔 zerospeedsource
 - zerotorquesource
 - 🛄 zeroomegasource
 - torquecon ö
 - omegacon
 - rotary2signal1
 - rotary2signal2
 - masscon
 - zeromfsource ٠
 - shaft

CLUTCH

$$F_{fric} = F_{dyn} \times \tanh\left(2 \times \frac{\omega_{rel}}{d\omega}\right)$$

Title
maximum Coulomb friction torque (dynami
rotary stick velocity threshold

	Value	Unit
ction torque (dynamic)	100	Nm
eshold	1	rev/min

Parameters of signal03 [UD00-1] 🙆 🗕 🕜 Title Value Unit 3 number of stages cyclic ΠO 0 s time at which duty cycle starts 1 null output at start of stage 1 output at end of stage 1 1 null duration of stage 1 3 s output at start of stage 2 1 null output at end of stage 2 0 null duration of stage 2 1 s output at start of stage 3 0 null output at end of stage 3 0 null duration of stage 3 1e+06 s

CAE

CLUTCH

CLUTCH

CLUTCH

③ clutch friction torque = 200 Nm 🌇

and engine speed [rev/min]	to	rque	,dat	a
Parameters offsignalus (UDUU-I)				_
3 🔛 🛃 🧭	Qalua		11-14	
litle	Value		Unit	
number of stages		5		
cyclic		no		
time at which duty cycle starts		U	s	
output at start of stage 1		1	null	
output at end of stage 1		1	null	
duration of stage 1		10	s "	
output at start of stage 2		ļ	null	
output at end of stage 2		U .	null	
duration of stage 2			S	
output at start of stage 3		U 0	null	
output at end of stage 5		U 9	nuli	
ouration of stage 5		2	S	
output at start of stage 4		1	nuii	
output at end of stage 4		1	nuli	
ouration of stage 4			S	
output at start of stage 5			nuii	
duration of store F		10,00	nun	
duration of stage 5		16+00	S	
Parameters of signal03 [UD00-1]	Watc	h para	meters	S
				1
[Indif] signalos - user delined oddy cycle o	ιαφαί (πα	"]		
1.0				
0.8 -				
0.6 -				
0.4				
0,2 -				
		0	25	
		0	25	

simulation mode 변경 후, 엔진 parameter에 torque맵 파일 경로 지정 J_eng, J_veh, clutch parameter 값 입력 Act. Profile에 function value 수식 입력 (1-x)

TPS에 해당 parameter 값 입력

The Run Parameters에서 Final time, Print interval setting
Run 및 Engine, Vehicle
RPM 확인

Engine1

CAE

ENGINE

이전에 구성한 clutch model에서 Act. profile 부 분 변경 (입력으로 받도록..) clutch subsystem 생성

GEAR

GEAR

CAE

GEAR

rigid shaft 모델 구성 (기존

TRANSMISSION

Rotary Mechanical Node

Engine Tq.

Parameters of signal03_2 [UD00-1]			
🛃 💽 🕜			
Title	Value	Unit	
number of stages	2		
cyclic	no		
time at which duty cycle st…	0	s	
output at start of stage 1	0	null	
output at end of stage 1	250	null	
duration of stage 1	2	s	
output at start of stage 2	250	null	
output at end of stage 2	250	null	
duration of stage 2	1e+06	s	
3			

Clutch1

arameters of signal03 [UD00-2]		
🛃 💽 🕜		
Title	Value	Unit
number of stages	4	
cyclic	no	
time at which duty cycle st…	0	s
output at start of stage 1	1	null
output at end of stage 1	0	null
duration of stage 1	0,2	s
output at start of stage 2	0	null
output at end of stage 2	0	null
duration of stage 2	4.8	s
output at start of stage 3	0	null
output at end of stage 3	1	null
duration of stage 3	0,2	s
output at start of stage 4	1	null
output at end of stage 4	1	null
duration of stage 4	1e+06	s

Clutch2

Parameters of signal03_1 [UD00-3	3]		
🗛 🖪 🧭			
Title	Value	Unit	
number of stages	4		
cyclic	no	_	
time at which duty cycle st…	5	s	
output at start of stage 1	1	null	
output at end of stage 1	0	null	
duration of stage 1	0,2	s	
output at start of stage 2	0	null	
output at end of stage 2	0	null	
duration of stage 2	4.8	s	
output at start of stage 3	0	null	
output at end of stage 3	1	null	
duration of stage 3	0,2	s	
output at start of stage 4	1	null	
output at end of stage 4	1	null	
duration of stage 4	1e+06	s	

각 모델 Parameter 입력 (shaft는 rigid 값 적용)

Engine Torque, Clutch Act. profile 입력

21

2-speed TM

Engine RPM

결과 확인

CAE

DRAG FORCE

$$R_d = \frac{1}{2} C_d A_{front} \rho_{air} V_{car}^2$$

 $R_r = \mu_r \times w$

 $R_g = w \sin \theta_{grad}$

$$R_a = ma = J_{eq} \alpha_{whl} R_{tire}$$

powertrain library 내 vehicle model 제공

longitudinal외 vertical, pitch현상 같이 표현 (입력변수 많음, 생략)

Real parameters

	Title	Variable name	Unit	Default value
1	carbody mass (including engine block)	mvehi	kg	1500
2	carbody pitch inertia (including engine block)	J	kgm**2	800
3	total unsprung mass at front	smassF	kg	40
4	total unsprung mass at rear	smassR	kg	40
5	X-position of carbody COG (Grid Frame, including engine block)	хсдр	mm	1000
6	Z-position of carbody COG (Grid Frame, including engine block)	zcgp	mm	250
7	X-position of rear wheel axis (Grid Frame)	xe	mm	2400
8	Z-position of rear wheel axis (Grid Frame)	ze	mm	0
9	Cx - drag coefficient in longitudinal direction	Cx	null	0.3
10	Cz - drag coefficient in vertical direction	Cz	null	0
11	Cm - drag coefficient for pitch	Cm	null	0
12	Sx - frontal area	Sx	m**2	1
13	air density	rhoair	kg/m**3	1.226
14	X-position of engine COG (Grid Frame)	Xeng	mm	1000
15	Z-position of engine COG (Grid Frame)	Zeng	mm	250
16	pitch inertia of engine at engine COG	Jeng	kgm**2	50
17	engine mass	Meng	kg	120
18	X-position of the COR (Grid Frame)	Xrefg	mm	0
19	Z-position of the COR (Grid Frame)	Zrefg	mm	0
20	Z-position of front wheels centers (Road Frame)	Zo	m	0.3
21	windage coefficient in longitudinal direction	rwvehx	N/(m/s)**2	0.6
22	windage coefficient in vertical direction	rwvehz	N/(m/s)**2	0
23	windage coefficient for pitch	rwvehy	N/(m/s)**2	0

DRAG FORCE

DRAG FORCE

Ready

T=20.000

Title	Value		Unit
🝘 dummy state variable for estimati…		0	1/s
🛞 integral part		0	null
controller type 💦 👔	8	PID	
limit output 🛛 🎽	8	ΠO	
proportional gain		1	null
integral gain 🛛 🤍		0	null
derivative gain		0	null
time constant for first order lag used t \cdots		0,001	null

٢

0.1

-0.1

Ready

T=10.000

ASSIGNMENT

Electric Power System Modeling : Battery & Simple Motor (by Simulink)

1. Reference Model (AMESim)

Battery		
Parameters of drv_battery_2 [DRVBAT03-1]		
Title	Value	Unit
🛞 potential at port 2	122	V
estate of charge at port 4	50	%
number of cells in series per battery bank	1	
number of battery banks in parallel	1	
number of battery banks in series	1	
discontinuity handling	active	
tables dependencies	state of charge (SOC)	
rated capacity of the battery	108,3	Ah
voltage time constant	0.5	s
filename for open circuit voltage (for one cell) [\cdots	CAE/ocv.data	
filename for internal resistance (for one cell) [CAE/resistance.data	

OCV Format: 1D Table SI X1 Y 0 0.075 1 2 10 0,065 3 20 0,057 30 0,056 4 5 40 0,053 6 50 0,052 7 60 0,051 70 0,05 8 9 80 0,05 10 90 0,05

Recipitance					
Format: 1D Table 🛛 🥅					
	X1	γ			
1	0	80			
2	10	114			
3	20	117			
4	30	119			
5	40	121			
6	50	122			
7	60	123			
8	70	124			
9	80	125			
10	90	130			
11	100	140			

Resistance

🔺 📻 IFP Drive

- 1) T_motor = 100 Nm 2) J_motor = 100 kgm²
- ③ Motor Temp. = 25 deg

100

11

0,05

Motor

Parameters of drv_electricmotortherm [DRVELMT0A-1]

🚵 🗕 🕐		
Title	Value	Unit
motor torque at port 2	0	Nm
data type for electric motor modeling	constant values	
time constant to determine the torque	0,1	s
maximum power	15000	W
maximum torque	150	Nm
mean efficiency	1	null
maximum rotary velocity	8000	rev/min

ASSIGNMENT

2. SOC calculation

Motor Tq. = 100 (

2) Result (Simulation Time : 100 s)

$$\frac{dSOC}{dt} = -\frac{dq}{dt} \bullet \frac{100}{C_{nom}} [\%] \qquad \begin{array}{l} SOC:\\ C_{nom}:\\ SOC = SOC_{initial} - \int I \, dt \bullet \frac{100}{C_{nom}} [\%] \end{array}$$

state of charge [%] rated capacity [As]

 $w_{motor} = IW = VI$ (WITHOUT IOSSES)

Mechanical Energy : $W = T_W$ Electrical Energy : W = VI

		tle		🕘 Value	Unit
		input voltage		117.486	۷
+ ,	ž î	input current		85.0314	A
€		rotor relative rot	ary vel:	locity 99.9	rad/s
	Title	🕘 Value	Unit	Mechanical En	ergy
	potential at port 1	0	۷	Electrical Ener	av :
	current at port 1	85.0314	A		97.
	potential at port 2	117.486	۷		
	current at port 2	-85.0314	A	SOC: SOC =	SOC
	open circuit voltage at port 3	121.892	V		
	state of charge at port 4	48.9248	%		
	depth of discharge	51.0752	%		5 0 /
	charge used by the load	1.16448	Ah	=:	00 - 2

: $W_{mec} = Tw = 100 \times 99.9 = 9990 W$ $W_{elec} = VI = 117.49 \times 85.03 = 9990 W$ $\sum_{initial} -\int I \, dt \bullet \frac{100}{C_{nom}} [\%]$ = 48.925 % 4192.02 108.3×3600