Direct Stiffness Method by COMSOL

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2016 Computational Design Lab. All rights reserved.

CONTENTS

- Introduction
- COMSOL desktop
- COMSOL analysis: Heat Transfer
- COMSOL analysis: Truss structure
- Stiffness matrix confirm
- Prescribed displacement boundary condition
- Livelink with MATLAB

COMSOL MULTIPHYSICS

- Finite element analysis and simulation software package for various physics and engineering applications
- Founded by Savante Littmarck and Farhad Saeidi in 1986
- FEMLAB: Early version of COMSOL (before 2005)

Dr. h.c. Svante Littmarck CEO of the COMSOL Group

Mr. Farhad Saeidi President of COMSOL AB

CAE

COMSOL

			COMSOL Multiphysics®			
ELECTRICAL	MECHANICAL	FLUID	CHEMICAL	MULTIPURPOSE	INTERFACING	
AC/DC	Heat Transfer	CFD	Chemical Reaction	Optimization	LiveLink™	LiveLink™
Module	Module	Module	Engineering Module	Module®	for MATLAB®	for Excei®
RF	Structural	Microfluidics	Batteries &	Material	CAD Import	ECAD Import
Module	Mechanics Module	Module	Fuel Cells Module	Library	Module	Module
MEMS	Nonlinear Structural	Subsurface Flow	Electrodeposition	Particle Tracing	LiveLink™	LiveLink™
Module	Materials Module	Module	Module	Module	for SolidWorks®	for SpaceClaim®
Plasma	Geomechanics	Pipe Flow	Corrosion		LiveLink [™] for	LiveLink™ for
Module	Module	Module	Module		Inventor®	AutoCAD®
	Fatigue Module				LiveLink [™] for Creo™ Parametric	LiveLink™ for Pro/ENGINEER®
	Acoustics Module				LiveLink™ for Solid Edge®	File Import for CATIA®V5

AC/DC MODULE

Plasma Module

Dynamics of a Generator

This example shows how the circular motion of a rotor with permanent magnets in a generator results in an induced EMF in the stator winding. The generated voltage is calculated as a function of time during the rotation.

The plot on the left shows the magnetic flux density along with a contour plot of the magnetic potential. Note the brighter regions, which indicate the position of the permanent magnets in the rotor. The figure on the right shows the geometry and a simulation of the generator in 3D.

HEAT TRANSFER MODULE

Heat Transfer Module

Structural Mechanics Module

Nonlinear Structural Materials Module

> Geomechanics Module

> > Fatigue Module

Acoustics Module

Deformation of a Thermomechanical Microvalve

Thermomechanical microvalves are common flow control components in microfluidics systems. Here, an electric current generates movement by resistively heating the actuator structure, thereby causing mechanical stress and deformation.

In this example, a parametric study shows how an increasing voltage applied to each of the legs leads to temperature rise causing more and more deformation.

CFD MODULE

Boiling Water

This model studies the film boiling of water. A heat flux above the Leidenfrost point is applied at the surface of two cavities. A layer of vapor is maintained at the hot surface - liquid interface where film-boiling results.

The animation shows the fluids volume fraction over time as a surface and contour plot.

MULTIPHYSICS

COMSOL Multiphysics®

- COMSOL desktop
 - ✓ Toolbars & Ribbon tabs
 - ✓ Windows
 - ✓ Physics
 - ✓ Study types
 - ✓ Setting flow
 - ✓ Setting result

CREATING NEW MODEL

🗊 I 🖪 💻		6 A E		isi _ I.				Unitial and some	COMPOLING Reserves	
File 🗸	Model	Definitions	Geometry	Materials	Physics	Mesh	Study	Results		?
Nev	N				. ng inor					
Model										
Mod Wiza	lel Ird									
Applica	ation									
Applica Wiza	ation ard									
? H	ielp 🚫	Cancel 👿	Show on startup	2						
								4	94 MB 573 MB	

Blank Model

The Black Model option will open the COMSOL Desktop interface without any Component or Study.

TOOLBAR & RIBBON TABS

WINDOWS

WINDOWS

Graphics window

The Graphics window presents interactive graphics for Geometry, Mesh, and Results. Interactions include rotating, panning, zooming, and selecting. It is the default window for most Results and visualizations.

Information windows

The Information windows will display vital model information during the simulation, such as the solution time, solution progress, mesh statistics and solver logs, as well as Results tables, if any.

SETTING FLOW

New			Model Wizard
Model Model Wizard Blank Model			The Model Wizard will guide you in setting up the space dimension, physics, and study type, in a few steps
Application			 해석을 하기 위해 준비과정 은
P Help 🗙 Cancel	☑ Show on startup		차원 선택
Select Space Dimension 30 Autommetric 20 Autommetric 10 00 21 Help Cancel C Done	Select Physics Search Search Search Ac/DC Ac/DC Ac/DC Ac/DC Acoutis Acoutis Celectochemistry Fuid Flow Fuid Flow Fuid Flow Fuid Flow Fuid Flow Fuid Flow Add Add Add Add physics interfaces: Add Celectochemisto Celectochem	Select Study * *** Preset Studies **** Frequency Domain ************************************	해석 하고자 하는 물리현상 해석 타입 선택 으로 진행됨 ex) 3D – Solid Mechanics (solid) – Stationary

SETTING RESULT

HEAT TRANSFER

- Heat balance for a long, thin rod
 - Not insulated along its length
 - Steady state

 $\frac{d^2T}{dr^2} + h'(T_a - T) = 0$ $T(0) = T_1 = 40^{\circ}C$ $T(L) = T_2 = 200^{\circ}C$ boundary conditions $T_{a} = 20^{\circ}C$ (temperature of the surrounding air) $L = 10 \, m$ $h' = 0.01 m^{-2}$ (heat transfer coefficient) rate of heat dissipation to the surrounding air analytic solution: $T = 73.4523e^{0.1x} - 53.4523e^{-0.1x} + 20$

ANALYSIS FLOW

- ✓ Dimension selection
- ✓ Physics selection
- ✓ Study type selection

MODEL WIZARD

											 ¢	<mark>같</mark> Model Wizard 선택
ا 🤨		-	901	ñ 5 0 6	- II -				Untitled.mph -	COMSOL Multiphysics	×	—
Fil	е 🔻 🛛	Model	Definitions	Geometry	Materials	Physics	Mesh	Study	Results		?	1
	Ne	W										
	Mode	-										
	Mc Wiz	ph odel zard										
	Appli	cation										
	.mp Appli Wi:	A cation zard										
	?	Help <table-cell></table-cell>	Cancel 👿	Show on startu	p							
									49	4 MB 573 MB		
				T							 2	

DIMENSION SELECTION

PHYSICS SELECTION

Image: Solution for the solution of the solut	Mathematics에서 PDE Interface -> coefficient Form PDE (c)
Model Definitions Geoffreigy Materials Privates Nuclei Nuclei Sudy Nestitis Select Physics Image: Search Image: Search<	add 클릭
Remove e Space Dimension e Study ? Help ⊗ Cancel € Done	

PHYSICS SELECTION

つ I L > 二 R ら つ 毛 合 品 III C R III File - Model Definitions Geometry Materials Physics M	Untitled.mph - COMSOL Multiphysics sh Study Results	Added physics interfaces에 서 추가된 physics 확인
Model Definitions Geometry Materials Physics M Select Physics Image: Semiconductor Image: Semiconductor	study Results	· 지 수가진 physics 확인 Study 클릭
	541 MB 704 MB	

CAE

STUDY TYPE SELECTION

ANALYSIS FLOW

- ✓ Geometry creation
- ✓ Coefficient input
- ✓ Boundary condition input

PARAMETER INPUT

PARAMETER INPUT

GEOMETRY CREATION

GEOMETRY CREATION

CAE

COEFFICIENT INPUT

BOUNDARY CONDITION

BOUNDARY CONDITION

ANALYSIS FLOW

✓ Mesh creation✓ Compute

MESH CREATION

MESH CREATION

COMPUTE

ANALYSIS FLOW

✓ Result plot

RESULT PLOT

- COMSOL analysis: Truss structure
 - ✓ <u>Geometry creation</u>
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

EXAMPLE TRUSS STRUCTURE

Physical structure

Idealization as a pin-jointed bar assemblage

Geometric, material and fabrication properties

Support conditions and applied loads

MODEL WIZARD

											 ¢	<mark>같</mark> Model Wizard 선택
ا 🤨		-	901	ñ 5 0 6	- II -				Untitled.mph -	COMSOL Multiphysics	×	—
Fil	е 🔻 🛛	Model	Definitions	Geometry	Materials	Physics	Mesh	Study	Results		?	1
	Ne	W										
	Mode	-										
	Mc Wiz	ph odel zard										
	Appli	cation										
	.mp Appli Wi:	A cation zard										
	?	Help 🗙	Cancel 👿	Show on startu	p							
									49	4 MB 573 MB		
				T							 2	

DIMENSION SELECTION

PHYSICS SELECTION

		Hetitled make COMSOL Multiplereier) Structural Mechanics 모듈
	District Mark Church	Desults)의 Truss physics 신택
File Model Definitions Geometry Materials Select Physics 	Physics Mesh Study Search Truss It can be cables lik Geometri elastic.	Results SS s interface is used for modeling slender elements that can only sustain used for analyzing truss works where the edges are straight, or to mo te the deformation of a wire exposed to gravity. It is available in 3D an ic nonlinearity can be taken into account. The material is assumed to b	axial forces. del sagging id 2D. be linearly	og muss physics 전택 Add 클릭
Added physics interfaces:	Add 2 Remove			
 Space Dimension Help X Cancel V Done 	Study			
		534 MB 597 MB		
	- P			

PHYSICS SELECTION

🖸 🗅 📚 📮 💀 🐨 🖷 🚔 🖩 🐨 🐨 🚽 Untitled.mph - COMSOL Multiphysics 📃 🗖 🗙	♥ Added physics interfaces에 서 추가된 physics 확인
Node Definitions Geometry Materials Physics Meth Study Results Meth Select Physics Search Search Instantian Physics Interface Dependent Variables Option Search U Dependent Variables Dependent Variables Dependent Variables Option Option Search V V V V V Image: Provide the option Provide the option Search V V V V V V Image: Provide the option Provide the option	Y Study 클릭
548 MB 595 MB	

CAE

STUDY TYPE SELECTION

² Bezier Polygon 클릭

Add Linear 클릭

ELEMENT ORDER CHANGING

Model Builder 밑에 있는 눈 모양 메뉴 클릭

Discretization 클릭

ELEMENT ORDER CHANGING

Truss physics 클릭

Displacement field 를 Linear 로 변경

- COMSOL analysis: Truss structure
 - ✓ Geometry creation
 - ✓ <u>Material property</u>
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

Geometric, material and fabrication properties

Geometric, material and fabrication properties

- COMSOL analysis: Truss structure
 - ✓ Geometry creation
 - ✓ Material property
 - ✓ Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

Geometric, material and fabrication properties

Geometric, material and fabrication properties

- COMSOL analysis: Truss structure
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

More Constraints에서 Symmetry 클릭

Support conditions and applied loads

- COMSOL analysis: Truss structure
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

POINT LOAD

POINT LOAD

- COMSOL analysis: Truss structure
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

MESH CREATION

Mesh 1 마우스 우클릭

More Operations에서

Edge 클릭

MESH CREATION

MESH CREATION

Distribution 클릭
MESH CREATION

COMPUTE

- Stiffness matrix confirm
 - ✓ Global stiffness matrix by hand
 - ✓ Global stiffness matrix by COMSOL

Support conditions and applied loads

$\mathbf{f} = \mathbf{f}^{(1)}$	1) +	$-f^{(2)} +$	$f^{(3)} =$	$(\mathbf{K}^{(1)} +$	- K ⁽²⁾	+ K ⁽³⁾)u = I	Xu
				Ú				
f_{x1}		20	10	-10	0	-10	-10]	<i>u</i> _{<i>x</i>1}
f_{y1}		10	10	0	0	-10	-10	u_{y1}
f_{x2}	_	-10	0	10	0	0	0	<i>u</i> _{x2}
f_{y2}	-	0	0	0	5	0	-5	u_{y2}
f_{x3}		-10	-10	0	0	10	10	<i>u</i> _{x3}
f_{y3}		10	-10	0	-5	10	15	u_{y3}

CAE

- Stiffness matrix confirm
 - ✓ Global stiffness matrix by hand
 - ✓ Global stiffness matrix by COMSOL

Solver 1 마우스 우클릭

Other에서 Assemble 클릭

SYSTEM MATRIX

SYSTEM MATRIX

COMPARISON

Support conditions and applied loads

$$\mathbf{f} = \mathbf{f}^{(1)} + \mathbf{f}^{(2)} + \mathbf{f}^{(3)} = \left(\mathbf{K}^{(1)} + \mathbf{K}^{(2)} + \mathbf{K}^{(3)}\right)\mathbf{u} = \mathbf{K}\mathbf{u}$$

$$\begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{x2} \\ f_{y2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & 0 & 0 \\ -10 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & 0 & 10 & 10 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix}$$

COMSOL Result

Load Vector

Stiffness matrix

0	20.000	10.0000	-10.0000	0.0000	-10.0000	-10.0000
0	10.0000	10.0000	0.0000	0.0000	-10.0000	-10.0000
0	-10.0000	0.0000	10.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	5.0000	0.0000	-5.0000
2	-10.0000	-10.0000	0.0000	0.0000	10.0000	10.0000
1	-10.0000	-10.0000	0.0000	-5.0000	10.0000	15.000

LOCAL STIFFNESS MATRIX

Stiffness matrix by COMSOL

10.0000	0.0000	-10.0000	0.0000
0.0000	0.0000	0.0000	0.0000
-10.0000	0.0000	10.0000	0.0000
0.0000	0.0000	0.0000	0.0000

0.0000	0.0000	0.0000	0.0000
0.0000	5.0000	0.0000	-5.0000
0.0000	0.0000	0.0000	0.0000
0.0000	-5.0000	0.0000	5.0000

10.0000	10.0000	-10.0000	-10.0000
10.0000	10.0000	-10.0000	-10.0000
-10.0000	-10.0000	10.0000	10.0000
-10.0000	-10.0000	10.0000	10.0000

CAE

REDUCED STIFFNESS MATRIX

$$\begin{cases} \text{Displacement BCs: } u_{x1} = u_{y1} = u_{y2} = 0 \\ \text{Force BCs: } f_{x2} = 0, \ f_{x3} = 2, \ f_{y3} = 1 \end{cases}$$

$$\rightarrow \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ -10 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & 0 & 10 & 10 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix}$$

Strike out rows and columns pertaining to known displacements:

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} f_{x2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \Leftrightarrow \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Solve by Gauss elimination for unknown node displacements

Eliminated Stiffness matrix

10.000	0.0000	0.0000
0.0000	10.000	10.000
0.0000	10.000	15.000

Eliminated Load vector

0	
2	
1	ſ

NODAL DISPLACEMENT

NODAL DISPLACEMENT

CAE

NODAL DISPLACEMENT

NODAL DISPLACEMENT

Strike out rows and columns pertaining to known displacements:

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} f_{x2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \Leftrightarrow \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Solve by Gauss elimination for unknown node displacements

Nodal displacement by COMSOL

Displacement field, x component (m), Point: 1	Displacement field, x component (m), Point: 2	Displacement field, x component (m), Point: 3
0.0000	0.0000	0.40000
Displacement field, y component (m), Point: 1	Displacement field, y component (m), Point: 2	Displacement field, y component (m), Point: 3
0.0000	0.0000	-0.20000

EXAMPLE TRUSS STRUCTURE

CAE

BOUNDARY CONDITION

기존 경계조건인 pinned 와 symmetry 조건 삭제 후 Prescribed Displacement 경계조건 2 개 생성

BOUNDARY CONDITION

BOUNDARY CONDITION

COMPUTE

RESULT

Transfer effect of known displacements to RHS, and delete columns:

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} (-10) \times 0 + 0 \times (-0.5) + 0 \times 0.4 \\ (-10) \times 0 + (-10) \times (-0.5) + 0 \times 0.4 \\ (-10) \times 0 + (-10) \times (-0.5) + (-5) \times 0.4 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -2 \end{bmatrix}$$

Solving gives

In summary, the only changes to the SDM is in the application of displacement boundary conditions before solve

Nodal displacement by COMSOL

Displacement field, x component (m), Point: 1	Displacement field, x component (m), Point: 2	Displacement field, x component (m), Point: 3
0.0000	0.0000	-0.50000

Displacement field, y component (m), Point: 1	Displacement field, y component (m), Point: 2	Displacement field, y component (m), Point: 3
-0.50000	0.40000	0.20000

CAE

RESET HISTORY

Reset History 클릭

COMSOL에서 m-file 로 저 장할 때 작업 history 모두 저장됨

따라서 불필요한 history 를 삭제하기 위하여 Compact history 기능을 이용

SAVE AS M-FILE

COMSOL M-FILE STRUCTURE

function 부분을 삭제 후 mfile 을 실행하면 COMSOL desktop 결과와 동일한 결 과를 출력

단, COMSOL 5.2a with MATLAB 아이콘을 실행시 켜 나온 MATLAB 창을 이용 해야함

CAE

COMSOL M-FILE STRUCTURE

Z C:₩Use	ers₩Administ	rator₩Desktop₩Ex	ample.m	8					
편집	7	퍼블리시	보기			3		i 9 c -	
내로 만들: ▼	기 열기 기	금		삽입 🔜 🏂 🛃 ▾ 주석 % ‰ ‰ 들여쓰기 🛐 륜 📴	[[1]] ^[1]] 중단점 ▼	▶ 월행 실행 ▲행 실행	및 <mark>및</mark> 진행	실행 신건 실행 시긴 측정	•
10 -	파일 = ləhom	Modellhil.crea	탄색 te('Model');	편집	중단점		실행		
11									
12 -	model.mo	delPath('C:#Us	ers₩Administ	rator#Desktop');					
13									
14 -	model.mo	delNode.create	('compl');						
16			11. 2):						=
17								<u>m</u>	_
18 –	model.me	sh.create('mes	h1', 'geom1');				1	
19									
20 -	model.ge	om('geom1').cr	eate('b1', '	BezierPolygon');					
21 -	model.ge	om('geoml').fe	ature('bl'). .ture('bl').	set('p', {'O' '10'; 'O' +('w', ('1' '1'));	.0.});				
22 -	model ae	om('geom1') fe	ature(b1). ature('h1') -	set('degree' {'1'});					
24 -	model.ge	om('geom1').cr	eate('b2', '	BezierPolygon');					
25 –	model.ge	om('geom1').fe	ature('b2').	set('p', {'10' '10'; '0	· (10)})	;			
26 -	model.ge	om('geom1').fe	ature(' <mark>b2</mark> ').	set('w', {'1' '1'});					
27 –	model.ge	om('geom1').fe	ature(' <mark>b2</mark> ').	set('degree', {'1'});					
28 -	model.ge	om('geom1').cr	eate('b3', '	BezierPolygon');					
29 -	model.ge	om(igeomli).fe om(igeomli).fe	ature('b3'). ature('b3')	set('p', {'U' 'lU'; 'U' cot('w', {'l' 'l'});	10.});				
30 -	model.ge	om(geomi).te om('geomi') fe	ature(D3). sture('b3')	set(W , 1 /),					
32 -	model.ge	om('geom1').ru	n;	aet(degree , (1));					
33									
34 -	model.ph	ysics.create('	trussi, iTru	ss', 'geom <mark>t');</mark>					
35 —	model.ph	ysics('truss')	.create(' <mark>emm</mark>	2', 'Elastic', 1);					
36 -	model.ph	ysics('truss')	.feature('em	m2').selection.set([1])	;				
37 -	model.ph	ysics('truss')	.create('emm'	3', 'Elastic', 1); *8') estection est(10))					
30 - 39 -	model.ph	ysics(truss) veice('truse')	.reature(em .create('ced	ma).selection.set([3]) 2' 'CrossSectionBeam'	, 1):				
40 -	model.ph	vsics('truss')	.feature('cs	d2').selection.set([3])	; ,				
41 -	model.ph	ysics('truss')	.create('csd	3', 'CrossSectionBeam',	1);				
42 -	model.ph	ysics('truss')	.feature('cs	d3').selection.set([1])	;				-
					스크	리립트		라인 21	열 32 .::

model.geom 부분 COMSOL 작업창에서 생성 한 geometry 정보 그 외 model.physics model.mesh model.study model.sol model.result 등 model 뒤에 붙어있는 구 조로 어떤 정보를 저장하고 있는지 파악 가능

CAE

COMSOL M-FILE STRUCTURE

model.result 부분에 elimstiffness 가 table 1 에 입력된 것을 확인

model.result.table('tbl1').ge tReal 명령어로 table 1 의 데이터를 저장

ASSIGNMENT

CAE

E = 210 GPa $A = 6 \times 10^{-4} \text{ m}^2$

 $\therefore d_{1y} = 0.0337 \text{ m}$

① derive K matrix

- ② calculate y-displacement at node 1
- ③ compare with COMSOL result