Solid Mechanics (beam)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2016 Computational Design Lab. All rights reserved.

CONTENTS

- Beam model: 2D
 - ✓ Textbook of "Solid Mechanics"
- Beam model: 3D
- Assignment

STRUCTURAL MECHANICS MODULE

PHYSICS			GEOMETRY LEVEL					
	DEFAULT NAME	DEPENDENT VARIABLES	POINTS	EDGES	BOUNDARIES	DOMAINS		
STRUCTURAL MECHANICS								
Solid Mechanics	solid	u , (p)	\checkmark	\checkmark	\checkmark	\checkmark		
Shell	shell	$\mathbf{u}, a_{x_i} a_{y_i} \\ a_z$	\checkmark	1	1			
Plate	plate	u , $a_{x_i} a_y$	\checkmark		\checkmark	\checkmark		
Beam	beam	u , θ	\checkmark	\checkmark				
Truss	truss	u	\checkmark	\checkmark				
Membrane	mem	u	\checkmark	\checkmark	\checkmark			
Thermal Stress	ts	u , (p), T	\checkmark	\checkmark	\checkmark	\checkmark		
Joule Heating and Thermal Expansion	tem	u , (p), T, V	V	V	\checkmark	\checkmark		
Piezoelectric Devices	pzd	u,V	\checkmark	\checkmark	\checkmark	1		
Fluid Flow								
Fluid-Structure Interaction	fsi	u _{solid} , u _{fluid} , p	\checkmark	\checkmark	1	1		

- Beam model: 2D
 - ✓ Textbook of "Solid Mechanics"
- Beam model: 3D
- Assignment

BEAMS

Beams

The Beam interface () is intended for the modeling of slender structures (beams) that can be fully described by cross-section properties, such as area and moments of inertia. The Beam interface defines stresses and strains using Hermitian elements and Euler-Bernoulli theory. Beam elements are used to model frame structures, both planar and three-dimensional. It is also suitable for modeling reinforcements of solid and shell structures. The Beam interface includes a library for rectangular, box, circular, pipe, H-profile, U-profile, and T-profile beam sections. Additional features include damping, thermal expansion, and initial stresses and strains. The preset studies for this physics interface are almost the same as for the Solid Mechanics interface, with two exceptions—it does not include the Linear Buckling or Prestressed study types.

EXAMPLE 7.1 (PP.471)

Analytical solution

- Geometry
 - L = 10 ft
 - $P_{B} = 4.5$ kips
 - $M_B = 50$ kips-in
- Material Properties
 - A-36 steel
 - E = 29 x10³ ksi
- Element Properties
 - Wide-flange beam
 - W10x30
 - I = 170 in⁴

kips: kilo pounds ksi: kilo pounds per square inch

$$\begin{cases} \delta_B = \frac{1}{EI} \left[M_B \left(\frac{L^2}{2} \right) + P_B \left(\frac{L^3}{3} \right) \right] = 0.0730 + 0.526 = 0.599 \text{ in} \\ \theta_B = \frac{1}{EI} \left[M_B \left(L \right) + P_B \left(\frac{L^2}{2} \right) \right] = 0.00122 + 0.00657 = 0.00779 \text{ rad} \end{cases}$$

WIDE-FLANGE BEAM

	Area			Flange Web Elastic Properties					Plastia			
	0.000	Deal	Denth Width Thickness		771. J. J.	Axis $X - X$			Axis Y-Y			Modulus
Designation*	A in ²	d in.	b_f in.	t_f in.	t_w in.	I_x in ⁴	S _x in ³	r _x in.	Iy in ⁴	Sy in ³	ry in.	Z _x in ³
W36×230	67.6	35.90	16.470	1.260	0.760	15000	837	14.9	940	114	3.73	943
×150	44.2	35.85	11.975	0.940	0.625	9040	504	14.3	270	45.1	2.47	581
W33×201	59.1	33.68	15.745	1.150	0.715	11500	684	14.0	749	95.2	3.56	772
×130	38.3	33.09	11.510	0.855	0.580	6710	406	13.2	218	37.9	2.39	467
W30×173	50.8	30.44	14.985	1.065	0.655	8200	539	12.7	598	79.8	3.43	605
× 90	26.4	29.53	10.400	0.610	0.470	3620	245	11.7	115	22.1	2.09	283
W27×146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	461
× 84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	244
W24× 94	27.7	24.31	9.065	0.875	0.515	2700	222	9.87	109	24.0	1.98	254
× 62	18.2	23.74	7.040	0.590	0.430	1550	131	9.23	34.5	9.80	1.38	153
W21×101	29.8	21.36	12.290	0.800	0.500	2420	227	9.02	248	40.3	2.89	253
× 73	21.5	21.24	8.295	0.740	0.455	1600	151	8.64	70.6	17.0	1.81	172
× 50	14.7	20.83	6.530	0.535	0.380	984	94,5	8.18	24.9	7.64	1.30	110
W18×130	38.2	19.25	11.160	1.200	0.670	2460	256	8.03	278	49.9	2.70	291
× 76	22.3	18.21	11.035	0.680	0.425	1330	146	7.73	152	27.6	2.61	163
W18× 60	17.6	18.24	7.555	0.695	0.415	984	108	7.47	50.1	13.3	1.69	123
× 50	14.7	17.99	7.495	0.570	0.355	800	88.9	7.38	40.1	10.7	1.65	101
W16×100 × 67	29.4 19.7	16.97 16.33	10.425	0.985	0.585	1490 954	175 117	7.10	186 119	35.7 23.2	2.51	198 130
× 30 × 40	14.7	16.01	6.995	0.505	0.305	518	64.7	6.63	28.9	8.25	1.59	72.9
W14×176 ×120	51.8 35.3	15.22	15.650 14.670	1.310 0.940	0.830	2140 1380	281 190	6.43 6.24	838 495	107 65.7	4.02	320 212
\times 82 \times 53 \times 26	24.1 15.6 7.69	14.31 13.92 13.91	8.060 5.025	0.855 0.660 0.420	0.310 0.370 0.255	882 541 245	123 77.8 35.3	6.05 5.89 5.65	57.7 8.91	29.3 14.3 3.54	2.48 1.92 1.08	87.1 40.2
W12×152	44.7	13.71	12.480	1.400	0.870	1430	209	5.66	454	72.8	3.19	243
× 96	28.2	12.71	12.160	0.900	0.550	833	131	5.44	270	44.4	3.09	147
× 65 × 50	19.1 14.7	12.12	12.000 8.080	0.605	0.390 0.370	533 394	87.9 64.7	5.28 5.18	174 56.3	29.1 13.9	3.02 1.96	96.8 72.4
× 35 × 22	6.48	12.50	4.030	0.520	0.300	156	45.6 25.4	5.25 4.91	4.66	2.31	0.847	29.3
$W10 \times 60$ $\times 45$ $\times 30$ $\times 12$	17.6 13.3 8.84 3.54	10.22 10.10 10.47	10.080 8.020 5.810 3.960	0.680 0.620 0.510 0.210	0.420 0.350 0.300 0.190	341 248 170	66.7 49.1 32.4	4.39 4.32 4.38 3.90	116 53.4 16.7	23.0 13.3 5.75	2.57 2.01 1.37 0.785	74.6 54.9 36.6
W 8× 48	14.1	8.50	8.110	0.685	0.400	184	43.3	3.61	60.9	15.0	2.08	49.0
× 40	11.7	8.25	8.070	0.560	0.360	146	35.5	3.53	49.1	12.2	2.04	39.8
× 35	10.3	8.12	8.020	0.495	0.310	127	31.2	3.51	42.6	10.6	2.03	34.7
× 21	6.16	8.28	5.270	0.400	0.250	75.3	18.2	3.49	9.77	3.71	1.26	20.4
× 15	4.44	8.11	4.015	0.315	0.245	48.0	11.8	3.29	3.41	1.70	0.876	13.6
W 6× 25	7.34	6.38	6.080	0.455	0.320	53.4	16.7	2.70	17.1	5.61	1.52	18.9
× 20	5.87	6.20	6.020	0.365	0.260	41.1	13.4	2.66	13.3	4.41	1.50	14.9
× 16	4.74	6.28	4.030	0.405	0.260	32.1	10.2	2.60	4.43	2.20	0.966	11.7

D.1. Properties of Steel Wide-Flange (W) Shapes (U.S. Customary Units)

*W(nominal depth in inches) \times (weight in pounds per foot)

Copyright © 2016 Computational Design Lab. All rights reserved.

DIMENSION SELECTION

PHYSICS SELECTION

Stationary 선택

STUDY TYPE SELECTION

Stationary	\
The Stationary study is used when field variables do not change over time. Examples: In electromagnetics, it is used to compute static electric or magnetic fields, as well as direct currents. In heat transfer, it is used to compute the temperature field at thermal equilibrium. In solid mechanics, it is used to compute deformations, stresses, and strains at static equilibrium. In fluid flow it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute steady-state chemical composition in steady flows. In chemical reactions, it is used to compute the chemical composition at equilibrium of a reacting system. It is also possible to compute several solutions, such as a number of load cases, or to track the nonlinear response to a slowly varying load.	2 Done 클릭
	<text><text><text><text></text></text></text></text>

DIMENSIONLESS UNIT

GEOMETRY CREATION

Bezier Polygon 생성

2¹²⁰ 길이의 선분 생성

lb-inch 단위로 계산할 예정 따라서 10 ft = 120 in.

MATERIAL PROPERTY

BOUNDARY CONDITION

Beam 마우스 우클릭

2 Fixed Constraint 클릭

BOUNDARY CONDITION

LOADING CONDITION

2 Point Load 클릭

LOADING CONDITION

한 개의 요소가 되도록 메시 생성

그 후 compute 로 유한요소 해석 수행

Copyright © 2016 Computational Design Lab. All rights reserved.

2D Plot Group 에서 Line

최대 변위는 0.5258

Analytical solution

Error: 0.038%

0.526

추가 후 beam.disp 를 확인

POST-PROCESSING

Expression 을 thz 로 변경

최대 각도는 6.572e-3

Analytical solution 6.57e-3

Error: 0.03%

LOADING CONDITION

POST-PROCESSING

최대 변위는 0.598

Analytical solution 0.599

Error: 0.17%

POST-PROCESSING

SYSTEM EQUATION BY HAND

$$\frac{EA}{L}\begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix}\begin{bmatrix} u_1\\ u_2 \end{bmatrix} = \begin{bmatrix} 0\\ P \end{bmatrix} \qquad \qquad \underbrace{EI}_{L^3}\begin{bmatrix} 12 & 6L & -12 & 6L\\ 6L & 4L^2 & -6L & 2L^2\\ -12 & -6L & 12 & -6L\\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} \begin{bmatrix} v_1\\ \theta_1\\ v_2\\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ M \end{bmatrix} \rightarrow \begin{bmatrix} v_2\\ \theta_2 \end{bmatrix} = \begin{bmatrix} \frac{ML^2}{2EI}\\ \frac{ML}{EI}\\ \frac{ML}{EI}\\ \frac{EI}{EI}\\ \frac{12}{12} & 6L & -12 & 6L\\ \frac{EI}{L^3}\begin{bmatrix} 12 & 6L & -12 & 6L\\ 6L & 4L^2 & -6L & 2L^2\\ -12 & -6L & 12 & -6L\\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} \begin{bmatrix} v_1\\ \theta_1\\ v_2\\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ P\\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} v_2\\ \theta_2 \end{bmatrix} = \begin{bmatrix} \frac{PL^3}{3EI}\\ \frac{PL^2}{2EI}\\ \frac{PL^2}{2EI} \end{bmatrix}$$

SYSTEM EQUATION BY HAND

$1.64e^{8}$	0	$-2.05e^{6}$	$8.22e^{7}$	0	$2.05e^{6}$	$\left\lceil \theta_{2} \right\rceil$	$\lceil M \rceil$
0	$2.14e^{6}$	0	0	$-2.14e^{6}$	0	$ u_2 $	P_{x}
$-2.05e^{6}$	0	$3.42e^4$	$-2.05e^{6}$	0	$-3.42e^4$	v_2	P_{y}
$8.22e^{7}$	0	$-2.05e^{6}$	$1.64e^{8}$	0	$2.05e^{6}$	$\left \theta_{1} \right ^{-}$	0
0	$-2.14e^{6}$	0	0	$2.14e^{6}$	0	u_1	0
$2.05e^{6}$	0	$-3.42e^4$	$2.05e^{6}$	0	$3.42e^{4}$	$\begin{bmatrix} v_1 \end{bmatrix}$	0

ASSEMBLE OPTION

ASSEMBLE OPTION

COMPARISON

$$\mathbf{K}_{by\,hand} = \begin{bmatrix} 1.64e^8 & 0 & -2.05e^6 & 8.22e^7 & 0 & 2.05e^6 \\ 0 & 2.14e^6 & 0 & 0 & -2.14e^6 & 0 \\ -2.05e^6 & 0 & 3.42e^4 & -2.05e^6 & 0 & -3.42e^4 \\ 8.22e^7 & 0 & -2.05e^6 & 1.64e^8 & 0 & 2.05e^6 \\ 0 & -2.14e^6 & 0 & 0 & 2.14e^6 & 0 \\ 2.05e^6 & 0 & -3.42e^4 & 2.05e^6 & 0 & 3.42e^4 \end{bmatrix}$$

1.6433E8	0.0000	-2.0542E6	8.2167E7	0.0000	2.0542E6
0.0000	2.1363E6	0.0000	0.0000	-2.1363E6	0.0000
-2.0542E6	0.0000	34236	-2.0542E6	0.0000	-34236
8.2167E7	0.0000	-2.0542E6	1.6433E8	0.0000	2.0542E6
0.0000	-2.1363E6	0.0000	0.0000	2.1363E6	0.0000
2.0542E6	0.0000	-34236	2.0542E6	0.0000	34236

Stiffness matrix by COMSOL

CAE

- Beam model: 2D
 - ✓ Textbook of "Solid Mechanics"
- Beam model: 3D
- Assignment

CANTILEVERED HANDLE

CAE

DIMENSION SELECTION

PHYSICS SELECTION

STUDY TYPE SELECTION

File Home Definitions Geometry Materials	Physics Mesh Study Results	Stationary 선택
Select Study	Stationary study is used when field variables do not change over time. Examples: In electromagnetics, it is used to compute static electric or magnetic fields, as well as direct currents. In heat transfer, it is used to compute the temperature field at thermal equilibrium. In solid mechanics, it is used to compute deformations, stresses, and strains at static equilibrium. In fluid flow it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute steady-state chemical composition in steady flows. In chemical reactions, it is used to compute the chemical composition at equilibrium of a reacting system. It is also possible to compute several solutions, such as a number of load cases, or to track the nonlinear response to a slowly varying load.	2Done 클릭
Added study:		
C Stationary		
Added physics interfaces:		
<section-header> Beam (beam)</section-header>		
Physics		

GEOMETRY CREATION

MATERIAL PROPERTY

BOUNDARY CONDITION

LOADING CONDITION

Copyright © 2016 Computational Design Lab. All rights reserved.

3번 부재의 회전 각도는 thx Expression 으로 확인

0.0367 rad 회전

ASSIGNMENT

[Obtain both analytical and numerical solutions]

The cantilevered handle is made from mild steel that has been welded at the joints.

- Determine the location of the critical stress.
- Determine the principal stresses and the maximum shear stress.
- Determine the vertical deflection at the tip. (Use superposition for the analytical solution.)

[solutions] $\sigma_1 = 113.7$ MPa, $\sigma_2 = -9.4$ MPa, $\tau_{max} = 61.6$ MPa, $y_D = -2.55$ mm