

Solid Mechanics (plane stress/strain)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2013 Computational Design Lab. All rights reserved.

- Beam model: 2D
 - ✓ Textbook of "Solid Mechanics"
- Beam model: 3D
- 2D plane stress/strain model
 - ✓ Kirsh's problem
- Assignment

PLANE STRESS

PLANE STRESS

The plane stress variant of the 2D interface is useful for analyzing thin in-plane loaded plates. For a state of plane stress, the out-of-plane components of the stress tensor are zero.

Figure 14-2: Plane stress models plates where the loads are only in the plane; it does not include any out-of-plane stress components.

The 2D interface for plane stress allows loads in the x and y directions, and it assumes that these are constant throughout the material's thickness, which can vary with x and y. The plane stress condition prevails in a thin flat plate in the xy-plane loaded only in its own plane and without any z direction restraint.

3

PLANE STRAIN

PLANE STRAIN

The plane strain variant of the 2D interface that assumes that all out-of-plane strain components of the total strain ε_z , ε_{yz} , and ε_{xz} are zero.

Figure 14-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant throughout the thickness of the material, but the thickness can vary with x and y. The plane strain condition prevails in geometries, whose extent is large in the z direction compared to in the x and y directions, or when the z displacement is in some way restricted. One example is a long tunnel along the z-axis where it is sufficient to study a unit-depth slice in the xy-plane.

4

STIFFNESS MATRIX

Plane stress

Plane strain

TURNER TRIANGLE (1)

$$\begin{aligned} \mathbf{u}_{x} &= u_{x1}\zeta_{1} + u_{x2}\zeta_{2} + u_{x3}\zeta_{3}, \qquad u_{y} = u_{y1}\zeta_{1} + u_{y2}\zeta_{2} + u_{y3}\zeta_{3}. \\ &= \mathbf{D}\mathbf{N}\mathbf{u}^{e} = \frac{1}{2A} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \mathbf{B}\mathbf{u}^{e} \end{aligned}$$

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} & E_{13} \\ E_{12} & E_{22} & E_{23} \\ E_{13} & E_{23} & E_{33} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix} = \mathbf{E} \mathbf{e}$$

$$\mathbf{K}^{e} = A h \mathbf{B}^{T} \mathbf{E} \mathbf{B} = \frac{h}{4A} \begin{bmatrix} y_{23} & 0 & x_{32} \\ 0 & x_{32} & y_{23} \\ y_{31} & 0 & x_{13} \\ 0 & x_{13} & y_{31} \\ y_{12} & 0 & x_{21} \\ 0 & x_{21} & y_{12} \end{bmatrix} \begin{bmatrix} E_{11} & E_{12} & E_{13} \\ E_{12} & E_{22} & E_{23} \\ E_{13} & E_{23} & E_{33} \end{bmatrix} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix}.$$

- <u>Stiffness matrix of Turner triangle</u>
- 2D plane stress/strain model
 - ✓ Kirsh's problem
- Thick plate
 - ✓ Benchmark problem LE10

TURNER TRIANGLE (2)

$$E_{0} = 60, v = 0.25, h = 1$$

$$E_{\text{plane stress}} = \begin{bmatrix} 64 & 16 & 0 \\ 16 & 64 & 0 \\ 0 & 0 & 24 \end{bmatrix} \quad E_{\text{plane strain}} = \begin{bmatrix} 72 & 24 & 0 \\ 24 & 72 & 0 \\ 0 & 0 & 24 \end{bmatrix}$$

$$\mathbf{K}\mathbf{e}_{\text{plane stress}} = \begin{bmatrix} 11 & 5 & -10 & -2 & -1 & -3 \\ 5 & 11 & 2 & 10 & -7 & -21 \\ -10 & 2 & 44 & -20 & -34 & 18 \\ -2 & 10 & -20 & 44 & 22 & -54 \\ -1 & -7 & -34 & 22 & 35 & 15 \\ 3 & -21 & 18 & -54 & -15 & 75 \end{bmatrix} \quad \mathbf{K}\mathbf{e}_{\text{plane strain}} = \begin{bmatrix} 12 & 6 & -12 & 0 & 0 & -6 \\ 6 & 12 & 0 & 12 & -6 & -24 \\ -12 & 0 & 48 & -24 & -36 & 24 \\ 0 & 12 & -24 & 48 & 24 & -60 \\ 0 & -6 & -36 & 24 & 36 & -18 \\ -6 & -24 & 24 & -60 & -18 & 84 \end{bmatrix}$$

8

9

PHYSICS SELECTION

STUDY TYPE SELECTION

File Home Definitions Geometry Materials Physics	Mesh Study Results	₩ Stationary 선택
Select Studis Generation Studies Frequency-Domain Modal Model Dependent Time-Dependent Custom Studies Empty Study	Stationary study is used when field variables do not change over time. Examples: In electromagnetics, it is used to compute static electric or magnetic fields, as well as direct currents. In heat transfer, it is used to compute the temperature field at thermal equilibrium. In sold mechanics, it is used to compute deformations, stresses, and strains at static equilibrium. In fluid flow it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute stady-state chemical composition in steady flows. In chemical reactions, it is used to compute the chemical composition at equilibrium of a reacting system. It is also possible to compute several solutions, such as a number of load cases, or to track the nonlinear response to a slowly varying load.	2 Done 클릭
Added study:		
Stationary		i i
Added physics interfaces:		
E Beam (beam)		
Physics Physics Help S Cancel Done		

DISCRETIZATION

GEOMETRY CREATION

Bezier Polygon을 이용하여 삼각형 기하형상 생성 (0,0) (2,2) (3,1)

MATERIAL PROPERTY

STIFFNESS MATRIX

KIRSCH'S PROBLEM: THEORY

Infinite plate containing a circular hole (Kirsh, G. (1898), V.D.I., 42, 797-807)

stress concentration factor = 3 independent of *R* solution applicable to finite plates with width > 4R

Consider portion of plate within concentric circle of radius $R' \gg R$ so that stress field is not perturbed by hole (Saint-Venant's Principle)

stress field at
$$r = R'$$
 (Mohr's cirle):
$$\begin{cases} \sigma_r = \frac{\sigma}{2} (1 + \cos 2\theta) \\ \sigma_{r\theta} = -\frac{\sigma}{2} \sin 2\theta \end{cases}$$

solution:
$$\begin{cases} \sigma_r = \frac{\sigma}{2} \left(1 - \frac{R^2}{r^2} \right) + \frac{\sigma}{2} \left(1 + 3\frac{R^4}{r^4} - 4\frac{R^2}{r^2} \right) \cos 2\theta \\ \sigma_{\theta} = \frac{\sigma}{2} \left(1 + \frac{R^2}{r^2} \right) - \frac{\sigma}{2} \left(1 + 3\frac{R^4}{r^4} \right) \cos 2\theta \\ \sigma_{r\theta} = -\frac{\sigma}{2} \left(1 - 3\frac{R^4}{r^4} + 2\frac{R^2}{r^2} \right) \sin 2\theta \end{cases}$$

- Stiffness matrix of Turner triangle
- 2D plane stress/strain model
 - ✓ Kirsh's problem
- Thick plate
 - ✓ Benchmark problem LE10

KIRSCH'S PROBLEM: FEM

- 2D approximation
 - Plane stress
 - Plane stain
- Material Properties
 - $E = 200 \times 10^9$
 - v = 0.3
- Element Properties
 - Thickness = 1?
- Loads: $\sigma_0 = 1$
- BCs: none

DIMENSION SELECTION

PHYSICS SELECTION

STUDY TYPE SELECTION

File	Mesh Study Results	🍟 Stationary 선택
Select Studis Meigenfrequency Frequency Domain Frequency-Domain Modal Stationary Control Dependent Stationary Meigenfrequency-Domain Modal Meigenfrequency-Domain Meigenfrequency-Domain Meigenfreque	Stationary study is used when field variables do not change over time. Examples: In electromagnetics, it is used to compute static electric or magnetic fields, as well as direct currents. In heat transfer, it is used to compute the temperature field at thermal equilibrium. In solid mechanics, it is used to compute deformations, stresses, and strains at static equilibrium. In fluid flow it is used to compute the steady flow and pressure fields. In chemical species transport, it is used to compute steady-state chemical composition in steady flows. In chemical reactions, it used to compute the chemical composition at equilibrium of a reacting system. It is also possible to compute several solutions, such as a number of load cases, or to track the nonlinear response to a slowly varying load.	2Done 클릭
Added study:		
Added physics interfaces:		
Beam (beam)		
Physics Help S Cancel Done		

PLANE STRESS

Solid Mechanics 클릭

2D Approximation Plane stress 로 변경

DISCRETIZATION

26

Copyright © 2013 Computational Design Lab. All rights reserved.

GEOMETRY CREATION

MATERIAL PROPERTY

BOUNDARY CONDITION

2D/3D BAD ASPECT RATIO ELEMENT

- "thin" structures modeled as continuous bodies
 - Elongated or "skinny" element
- Aspect ratio
 - Ratio between its largest and smallest dimension
 - > 3: caution
 - > 10: alarm

MESH REFINEMENT

Copyright © 2013 Computational Design Lab. All rights reserved.

QUADRILATERAL ELEMENT

PLANE STRAIN

SYMMETRY CONDITION

GEOMETRY CREATION

¼ 모델 기하형상 생성

BC CONDITION

RESULT

ASSIGNMENT

삼각형요소, 사각형 요소에 따라 해석값이 달라짐 요소의 형태와 차수, 요소개수에 따른 해석값을 도출하

고 경향 및 수렴 여부 파악

이 문제에서 가장 바람직한 요소망의 형태는?