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ORDINARY DIFFERENTIAL
EQUATIONS

PT7.1 MOTIVATION

In the first chapter of this book, we derived the following equation based on Newton’s sec-
ond law to compute the velocity v of a falling parachutist as a function of time t [recall
Eq. (1.9)]:

dv

dt
= g − c

m
v (PT7.1)

where g is the gravitational constant, m is the mass, and c is a drag coefficient. Such equa-
tions, which are composed of an unknown function and its derivatives, are called differen-
tial equations. Equation (PT7.1) is sometimes referred to as a rate equation because it
expresses the rate of change of a variable as a function of variables and parameters. Such
equations play a fundamental role in engineering because many physical phenomena are
best formulated mathematically in terms of their rate of change.

In Eq. (PT7.1), the quantity being differentiated, v, is called the dependent variable.
The quantity with respect to which v is differentiated, t, is called the independent variable.
When the function involves one independent variable, the equation is called an ordinary
differential equation (or ODE ). This is in contrast to a partial differential equation (or
PDE ) that involves two or more independent variables.

Differential equations are also classified as to their order. For example, Eq. (PT7.1) is
called a first-order equation because the highest derivative is a first derivative. A second-
order equation would include a second derivative. For example, the equation describing
the position x of a mass-spring system with damping is the second-order equation (recall
Sec. 8.4),

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (PT7.2)

where c is a damping coefficient and k is a spring constant. Similarly, an nth-order equation
would include an nth derivative.

Higher-order equations can be reduced to a system of first-order equations. For
Eq. (PT7.2), this is done by defining a new variable y, where

y = dx

dt
(PT7.3)

which itself can be differentiated to yield

dy

dt
= d2x

dt2
(PT7.4)
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698 ORDINARY DIFFERENTIAL EQUATIONS

Equations (PT7.3) and (PT7.4) can then be substituted into Eq. (PT7.2) to give

m
dy

dt
+ cy + kx = 0 (PT7.5)

or

dy

dt
= −cy + kx

m
(PT7.6)

Thus, Eqs. (PT7.3) and (PT7.6) are a pair of first-order equations that are equivalent to the
original second-order equation. Because other nth-order differential equations can be sim-
ilarly reduced, this part of our book focuses on the solution of first-order equations. Some
of the engineering applications in Chap. 28 deal with the solution of second-order ODEs by
reduction to a pair of first-order equations.

PT7.1.1 Noncomputer Methods for Solving ODEs

Without computers, ODEs are usually solved with analytical integration techniques. For
example, Eq. (PT7.1) could be multiplied by dt and integrated to yield

v =
∫ (

g − c

m
v
)

dt (PT7.7)

The right-hand side of this equation is called an indefinite integral because the limits of in-
tegration are unspecified. This is in contrast to the definite integrals discussed previously
in Part Six [compare Eq. (PT7.7) with Eq. (PT6.6)].

An analytical solution for Eq. (PT7.7) is obtained if the indefinite integral can be eval-
uated exactly in equation form. For example, recall that for the falling parachutist problem,
Eq. (PT7.7) was solved analytically by Eq. (1.10) (assuming v = 0 at t = 0):

v(t) = gm

c

(
1 − e−(c/m)t

)
(1.10)

The mechanics of deriving such analytical solutions will be discussed in Sec. PT7.2. For
the time being, the important fact is that exact solutions for many ODEs of practical im-
portance are not available. As is true for most situations discussed in other parts of this
book, numerical methods offer the only viable alternative for these cases. Because these
numerical methods usually require computers, engineers in the precomputer era were
somewhat limited in the scope of their investigations.

One very important method that engineers and applied mathematicians developed to
overcome this dilemma was linearization. A linear ordinary differential equation is one that
fits the general form

an(x)y(n) + · · · + a1(x)y′ + a0(x)y = f(x) (PT7.8)

where y(n) is the nth derivative of y with respect to x and the a’s and f ’s are specified func-
tions of x. This equation is called linear because there are no products or nonlinear func-
tions of the dependent variable y and its derivatives. The practical importance of linear
ODEs is that they can be solved analytically. In contrast, most nonlinear equations cannot
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PT7.1 MOTIVATION 699

be solved exactly. Thus, in the precomputer era, one tactic for solving nonlinear equations
was to linearize them.

A simple example is the application of ODEs to predict the motion of a swinging pen-
dulum (Fig. PT7.1). In a manner similar to the derivation of the falling parachutist prob-
lem, Newton’s second law can be used to develop the following differential equation (see
Sec. 28.4 for the complete derivation):

d2θ

dt2
+ g

l
sin θ = 0 (PT7.9)

where θ is the angle of displacement of the pendulum, g is the gravitational constant, and l
is the pendulum length. This equation is nonlinear because of the term sin θ. One way to
obtain an analytical solution is to realize that for small displacements of the pendulum from
equilibrium (that is, for small values of θ),

sin θ ∼= θ (PT7.10)

Thus, if it is assumed that we are interested only in cases where θ is small, Eq. (PT7.10) can
be substituted into Eq. (PT7.9) to give

d2θ

dt2
+ g

l
θ = 0 (PT7.11)

We have, therefore, transformed Eq. (PT7.9) into a linear form that is easy to solve
analytically.

Although linearization remains a very valuable tool for engineering problem solving,
there are cases where it cannot be invoked. For example, suppose that we were interested
in studying the behavior of the pendulum for large displacements from equilibrium. In such
instances, numerical methods offer a viable option for obtaining solutions. Today, the wide-
spread availability of computers places this option within reach of all practicing engineers.

PT7.1.2 ODEs and Engineering Practice

The fundamental laws of physics, mechanics, electricity, and thermodynamics are usually
based on empirical observations that explain variations in physical properties and states of
systems. Rather than describing the state of physical systems directly, the laws are usually
couched in terms of spatial and temporal changes.

Several examples are listed in Table PT7.1. These laws define mechanisms of change.
When combined with continuity laws for energy, mass, or momentum, differential equa-
tions result. Subsequent integration of these differential equations results in mathematical
functions that describe the spatial and temporal state of a system in terms of energy, mass,
or velocity variations.

The falling parachutist problem introduced in Chap. 1 is an example of the derivation
of an ordinary differential equation from a fundamental law. Recall that Newton’s second
law was used to develop an ODE describing the rate of change of velocity of a falling para-
chutist. By integrating this relationship, we obtained an equation to predict fall velocity as
a function of time (Fig. PT7.2). This equation could be utilized in a number of different
ways, including design purposes.

FIGURE PT7.1
The swinging pedulum.

�

l
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700 ORDINARY DIFFERENTIAL EQUATIONS

In fact, such mathematical relationships are the basis of the solution for a great num-
ber of engineering problems. However, as described in the previous section, many of the
differential equations of practical significance cannot be solved using the analytical meth-
ods of calculus. Thus, the methods discussed in the following chapters are extremely im-
portant in all fields of engineering.

FIGURE PT7.2
The sequence of events in the application of ODEs for engineering problem solving. The exam-
ple shown is the velocity of a falling parachutist.

F = ma

Analytical Numerical

v = (1 – e– (c/m)t)gm
c vi + 1 = vi + (g – vi)�t

c
m

= g – vdv
dt

c
m

Physical law

Solution

ODE

TABLE PT7.1 Examples of fundamental laws that are written in terms of the rate of
change of variables (t � time and x � position).

Law Mathematical Expression Variables and Parameters

Newton’s second law
�
d
d
v
t� � �m

F
�

Velocity (v), force (F ), and 
of motion mass (m)

Fourier’s heat law q � �k′
�
d
d
T
x
� Heat flux (q), thermal conductivity (k′)

and temperature (T )

Fick’s law of diffusion J � �D �
d
d
c
x
� Mass flux ( J ), diffusion coefficient (D), 

and concentration (c)

Faraday’s law �VL � L �
d
d
i
t

� Voltage drop (�VL), inductance (L), 
and current (i )(voltage drop across

an inductor)
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PT7.2 MATHEMATICAL BACKGROUND 701

PT7.2 MATHEMATICAL BACKGROUND

A solution of an ordinary differential equation is a specific function of the independent
variable and parameters that satisfies the original differential equation. To illustrate this
concept, let us start with a given function

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1 (PT7.12)

which is a fourth-order polynomial (Fig. PT7.3a). Now, if we differentiate Eq. (PT7.12),
we obtain an ODE:

dy

dx
= −2x3 + 12x2 − 20x + 8.5 (PT7.13)

This equation also describes the behavior of the polynomial, but in a manner different from
Eq. (PT7.12). Rather than explicitly representing the values of y for each value of x, Eq.
(PT7.13) gives the rate of change of y with respect to x (that is, the slope) at every value
of x. Figure PT7.3 shows both the function and the derivative plotted versus x. Notice how

FIGURE PT7.3
Plots of (a) y versus x and (b) dy/dx versus x for the function 
y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1.
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702 ORDINARY DIFFERENTIAL EQUATIONS

the zero values of the derivatives correspond to the point at which the original function is
flat—that is, has a zero slope. Also, the maximum absolute values of the derivatives are at
the ends of the interval where the slopes of the function are greatest.

Although, as just demonstrated, we can determine a differential equation given the
original function, the object here is to determine the original function given the differential
equation. The original function then represents the solution. For the present case, we can
determine this solution analytically by integrating Eq. (PT7.13):

y =
∫

(−2x3 + 12x2 − 20x + 8.5) dx

Applying the integration rule (recall Table PT6.2)∫
un du = un+1

n + 1
+ C n �= −1

to each term of the equation gives the solution

y = −0.5x4 + 4x3 − 10x2 + 8.5x + C (PT7.14)

which is identical to the original function with one notable exception. In the course of dif-
ferentiating and then integrating, we lost the constant value of 1 in the original equation
and gained the value C. This C is called a constant of integration. The fact that such an ar-
bitrary constant appears indicates that the solution is not unique. In fact, it is but one of an
infinite number of possible functions (corresponding to an infinite number of possible
values of C) that satisfy the differential equation. For example, Fig. PT7.4 shows six pos-
sible functions that satisfy Eq. (PT7.14).

FIGURE PT7.4
Six possible solutions for the integral of −2x3 + 12x2 − 20x + 8.5. Each conforms to a 
different value of the constant of integration C.

y

x
C = 0

C = – 1

C = – 2

C = 3

C = 2

C = 1
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PT7.3 ORIENTATION 703

Therefore, to specify the solution completely, a differential equation is usually accom-
panied by auxiliary conditions. For first-order ODEs, a type of auxiliary condition called
an initial value is required to determine the constant and obtain a unique solution. For ex-
ample, Eq. (PT7.13) could be accompanied by the initial condition that at x = 0, y = 1.
These values could be substituted into Eq. (PT7.14):

1 = −0.5(0)4 + 4(0)3 − 10(0)2 + 8.5(0) + C (PT7.15)

to determine C = 1. Therefore, the unique solution that satisfies both the differential equa-
tion and the specified initial condition is obtained by substituting C = 1 into Eq. (PT7.14)
to yield

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1 (PT7.16)

Thus, we have “pinned down’’ Eq. (PT7.14) by forcing it to pass through the initial condi-
tion, and in so doing, we have developed a unique solution to the ODE and have come full
circle to the original function [Eq. (PT7.12)].

Initial conditions usually have very tangible interpretations for differential equations
derived from physical problem settings. For example, in the falling parachutist problem,
the initial condition was reflective of the physical fact that at time zero the vertical veloc-
ity was zero. If the parachutist had already been in vertical motion at time zero, the solu-
tion would have been modified to account for this initial velocity.

When dealing with an nth-order differential equation, n conditions are required to ob-
tain a unique solution. If all conditions are specified at the same value of the independent
variable (for example, at x or t = 0), then the problem is called an initial-value problem.
This is in contrast to boundary-value problems where specification of conditions occurs at
different values of the independent variable. Chapters 25 and 26 will focus on initial-value
problems. Boundary-value problems are covered in Chap. 27 along with eigenvalues.

PT7.3 ORIENTATION

Before proceeding to numerical methods for solving ordinary differential equations, some
orientation might be helpful. The following material is intended to provide you with an
overview of the material discussed in Part Seven. In addition, we have formulated objec-
tives to focus your studies of the subject area.

PT7.3.1 Scope and Preview

Figure PT7.5 provides an overview of Part Seven. Two broad categories of numerical
methods for initial-value problems will be discussed in this part of this book. One-step
methods, which are covered in Chap. 25, permit the calculation of yi+1, given the differen-
tial equation and yi. Multistep methods, which are covered in Chap. 26, require additional
values of y other than at i.

With all but a minor exception, the one-step methods in Chap. 25 belong to what are
called Runge-Kutta techniques. Although the chapter might have been organized around
this theoretical notion, we have opted for a more graphical, intuitive approach to introduce
the methods. Thus, we begin the chapter with Euler’s method, which has a very straight-
forward graphical interpretation. Then, we use visually oriented arguments to develop two
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704 ORDINARY DIFFERENTIAL EQUATIONS

FIGURE PT7.5
Schematic representation of the organization of Part Seven: Ordinary Differential Equations.
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PT7.3 ORIENTATION 705

improved versions of Euler’s method—the Heun and the midpoint techniques. After this
introduction, we formally develop the concept of Runge-Kutta (or RK) approaches and
demonstrate how the foregoing techniques are actually first- and second-order RK meth-
ods. This is followed by a discussion of the higher-order RK formulations that are
frequently used for engineering problem solving. In addition, we cover the application of
one-step methods to systems of ODEs. Finally, the chapter ends with a discussion of adap-
tive RK methods that automatically adjust the step size in response to the truncation error
of the computation.

Chapter 26 starts with a description of stiff ODEs. These are both individual and sys-
tems of ODEs that have both fast and slow components to their solution. We introduce the
idea of an implicit solution technique as one commonly used remedy for this problem.

Next, we discuss multistep methods. These algorithms retain information of previous
steps to more effectively capture the trajectory of the solution. They also yield the trunca-
tion error estimates that can be used to implement step-size control. In this section, we ini-
tially take a visual, intuitive approach by using a simple method—the non-self-starting
Heun—to introduce all the essential features of the multistep approaches.

In Chap. 27 we turn to boundary-value and eigenvalue problems. For the former, we
introduce both shooting and finite-difference methods. For the latter, we discuss several ap-
proaches, including the polynomial and the power methods. Finally, the chapter concludes
with a description of the application of several software packages and libraries for solution
of ODEs and eigenvalues.

Chapter 28 is devoted to applications from all the fields of engineering. Finally, a
short review section is included at the end of Part Seven. This epilogue summarizes and
compares the important formulas and concepts related to ODEs. The comparison includes
a discussion of trade-offs that are relevant to their implementation in engineering prac-
tice. The epilogue also summarizes important formulas and includes references for ad-
vanced topics.

PT7.3.2 Goals and Objectives

Study Objectives. After completing Part Seven, you should have greatly enhanced your
capability to confront and solve ordinary differential equations and eigenvalue problems.
General study goals should include mastering the techniques, having the capability to
assess the reliability of the answers, and being able to choose the “best’’ method (or meth-
ods) for any particular problem. In addition to these general objectives, the specific study
objectives in Table PT7.2 should be mastered.

Computer Objectives. Algorithms are provided for many of the methods in Part Seven.
This information will allow you to expand your software library. For example, you may
find it useful from a professional viewpoint to have software that employs the fourth-order
Runge-Kutta method for more than five equations and to solve ODEs with an adaptive
step-size approach.

In addition, one of your most important goals should be to master several of the
general-purpose software packages that are widely available. In particular, you should be-
come adept at using these tools to implement numerical methods for engineering problem
solving.
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706 ORDINARY DIFFERENTIAL EQUATIONS

TABLE PT7.2 Specific study objectives for Part Seven.

1. Understand the visual representations of Euler’s, Heun’s, and the midpoint methods
2. Know the relationship of Euler’s method to the Taylor series expansion and the insight it provides

regarding the error of the method
3. Understand the difference between local and global truncation errors and how they relate to the choice

of a numerical method for a particular problem
4. Know the order and the step-size dependency of the global truncation errors for all the methods

described in Part Seven; understand how these errors bear on the accuracy of the techniques
5. Understand the basis of predictor-corrector methods; in particular, realize that the efficiency of the

corrector is highly dependent on the accuracy of the predictor
6. Know the general form of the Runge-Kutta methods; understand the derivation of the second-order

RK method and how it relates to the Taylor series expansion; realize that there are an infinite number of
possible versions for second- and higher-order RK methods

7. Know how to apply any of the RK methods to systems of equations; be able to reduce an nth-order
ODE to a system of n first -order ODEs

8. Recognize the type of problem context where step size adjustment is important
9. Understand how adaptive step size control is integrated into a fourth-order RK method

10. Recognize how the combination of slow and fast components makes an equation or a system of
equations stiff

11. Understand the distinction between explicit and implicit solution schemes for ODEs; in particular,
recognize how the latter (1) ameliorates the stiffness problem and (2) complicates the solution mechanics

12. Understand the difference between initial-value and boundary -value problems
13. Know the difference between multistep and one-step methods; realize that all multistep methods are

predictor-correctors but that not all predictor-correctors are multistep methods
14. Understand the connection between integration formulas and predictor-corrector methods
15. Recognize the fundamental difference between Newton-Cotes and Adams integration formulas
16. Know the rationale behind the polynomial and the power methods for determining eigenvalues; in

particular, recognize their strengths and limitations
17. Understand how Hoteller’s deflation allows the power method to be used to compute intermediate

eigenvalues
18. Know how to use software packages and/or libraries to integrate ODEs and evaluate eigenvalues
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25C H A P T E R 25

Runge-Kutta Methods

This chapter is devoted to solving ordinary differential equations of the form

dy

dx
= f(x, y)

In Chap. 1, we used a numerical method to solve such an equation for the velocity of the
falling parachutist. Recall that the method was of the general form

New value = old value + slope × step size

or, in mathematical terms,

yi+1 = yi + φh (25.1)

According to this equation, the slope estimate of φ is used to extrapolate from an old value
yi to a new value yi+1 over a distance h (Fig. 25.1). This formula can be applied step by step
to compute out into the future and, hence, trace out the trajectory of the solution.

FIGURE 25.1
Graphical depiction of a one-
step method.

y

x

Step size = h

Slope = �

xi xi + 1

yi + 1 = yi + �h
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All one-step methods can be expressed in this general form, with the only difference
being the manner in which the slope is estimated. As in the falling parachutist problem, the
simplest approach is to use the differential equation to estimate the slope in the form of the
first derivative at xi. In other words, the slope at the beginning of the interval is taken as an
approximation of the average slope over the whole interval. This approach, called Euler’s
method, is discussed in the first part of this chapter. This is followed by other one-step
methods that employ alternative slope estimates that result in more accurate predictions.
All these techniques are generally called Runge-Kutta methods.

25.1 EULER’S METHOD

The first derivative provides a direct estimate of the slope at xi (Fig. 25.2):

φ = f(xi , yi )

where f (xi, yi) is the differential equation evaluated at xi and yi. This estimate can be sub-
stituted into Eq. (25.1):

yi+1 = yi + f(xi , yi )h (25.2)

This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) method.
A new value of y is predicted using the slope (equal to the first derivative at the original
value of x) to extrapolate linearly over the step size h (Fig. 25.2).

EXAMPLE 25.1 Euler’s Method

Problem Statement. Use Euler’s method to numerically integrate Eq. (PT7.13):

dy

dx
= −2x3 + 12x2 − 20x + 8.5

708 RUNGE-KUTTA METHODS

FIGURE 25.2
Euler’s method.
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xxi + 1
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h

cha01064_ch25.qxd  3/25/09  11:27 AM  Page 708



from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1. Recall
that the exact solution is given by Eq. (PT7.16):

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1

Solution. Equation (25.2) can be used to implement Euler’s method:

y(0.5) = y(0) + f(0, 1)0.5

where y(0) = 1 and the slope estimate at x = 0 is

f(0, 1) = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

Therefore,

y(0.5) = 1.0 + 8.5(0.5) = 5.25

The true solution at x = 0.5 is

y = −0.5(0.5)4 + 4(0.5)3 − 10(0.5)2 + 8.5(0.5) + 1 = 3.21875

Thus, the error is

Et = true − approximate = 3.21875 − 5.25 = −2.03125

or, expressed as percent relative error, εt = −63.1%. For the second step,

y(1) = y(0.5) + f(0.5, 5.25)0.5

= 5.25 + [−2(0.5)3 + 12(0.5)2 − 20(0.5) + 8.5]0.5

= 5.875

The true solution at x = 1.0 is 3.0, and therefore, the percent relative error is −95.8%. The
computation is repeated, and the results are compiled in Table 25.1 and Fig. 25.3. Note that,

25.1 EULER’S METHOD 709

TABLE 25.1 Comparison of true and approximate values of the integral of 
y ′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at x = 0.
The approximate values were computed using Euler’s method with a step size
of 0.5. The local error refers to the error incurred over a single step. It is
calculated with a Taylor series expansion as in Example 25.2. The global
error is the total discrepancy due to past as well as present steps.

Percent Relative Error

x ytrue yEuler Global Local

0.0 1.00000 1.00000
0.5 3.21875 5.25000 −63.1 −63.1
1.0 3.00000 5.87500 −95.8 −28.0
1.5 2.21875 5.12500 131.0 −1.41
2.0 2.00000 4.50000 −125.0 20.5
2.5 2.71875 4.75000 −74.7 17.3
3.0 4.00000 5.87500 46.9 4.0
3.5 4.71875 7.12500 −51.0 −11.3
4.0 3.00000 7.00000 −133.3 −53.0
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although the computation captures the general trend of the true solution, the error is con-
siderable. As discussed in the next section, this error can be reduced by using a smaller step
size.

The preceding example uses a simple polynomial for the differential equation to facil-
itate the error analyses that follow. Thus,

dy

dx
= f(x)

Obviously, a more general (and more common) case involves ODEs that depend on both x
and y,

dy

dx
= f(x, y)

As we progress through this part of the text, our examples will increasingly involve ODEs
that depend on both the independent and the dependent variables.

25.1.1 Error Analysis for Euler’s Method

The numerical solution of ODEs involves two types of error (recall Chaps. 3 and 4):

1. Truncation, or discretization, errors caused by the nature of the techniques employed to
approximate values of y.

710 RUNGE-KUTTA METHODS

FIGURE 25.3
Comparison of the true solution with a numerical solution using Euler’s method for the integral 
of y � � �2x3 � 12x2 � 20x � 8.5 from x � 0 to x � 4 with a step size of 0.5. The initial
condition at x � 0 is y � 1.
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2. Round-off errors caused by the limited numbers of significant digits that can be re-
tained by a computer.

The truncation errors are composed of two parts. The first is a local truncation error
that results from an application of the method in question over a single step. The second is
a propagated truncation error that results from the approximations produced during the
previous steps. The sum of the two is the total, or global truncation, error.

Insight into the magnitude and properties of the truncation error can be gained by de-
riving Euler’s method directly from the Taylor series expansion. To do this, realize that the
differential equation being integrated will be of the general form

y′ = f(x, y) (25.3)

where y′ = dy/dx and x and y are the independent and the dependent variables, respec-
tively. If the solution—that is, the function describing the behavior of y—has continuous
derivatives, it can be represented by a Taylor series expansion about a starting value (xi, yi),
as in [recall Eq. (4.7)]

yi+1 = yi + y′
i h + y′′

i

2!
h2 + · · · + y(n)

i

n!
hn + Rn (25.4)

where h = xi+1 − xi and Rn = the remainder term, defined as

Rn = y(n+1)(ξ)

(n + 1)!
hn+1 (25.5)

where ξ lies somewhere in the interval from xi to xi+1. An alternative form can be developed
by substituting Eq. (25.3) into Eqs. (25.4) and (25.5) to yield

yi+1 = yi + f(xi , yi )h + f ′(xi , yi )

2!
h2 + · · · + f (n−1)(xi , yi )

n!
hn + O(hn+1) (25.6)

where O(hn+1) specifies that the local truncation error is proportional to the step size raised
to the (n + 1)th power.

By comparing Eqs. (25.2) and (25.6), it can be seen that Euler’s method corresponds
to the Taylor series up to and including the term f (xi, yi)h. Additionally, the comparison
indicates that a truncation error occurs because we approximate the true solution using 
a finite number of terms from the Taylor series. We thus truncate, or leave out, a part of 
the true solution. For example, the truncation error in Euler’s method is attributable to the
remaining terms in the Taylor series expansion that were not included in Eq. (25.2). 
Subtracting Eq. (25.2) from Eq. (25.6) yields

Et = f ′(xi , yi )

2!
h2 + · · · + O(hn+1) (25.7)

where Et = the true local truncation error. For sufficiently small h, the errors in the terms
in Eq. (25.7) usually decrease as the order increases (recall Example 4.2 and the accompa-
nying discussion), and the result is often represented as

Ea = f ′(xi , yi )

2!
h2 (25.8)
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or

Ea = O(h2) (25.9)

where Ea = the approximate local truncation error.

EXAMPLE 25.2 Taylor Series Estimate for the Error of Euler’s Method

Problem Statement. Use Eq. (25.7) to estimate the error of the first step of Exam-
ple 25.1. Also use it to determine the error due to each higher-order term of the Taylor
series expansion.

Solution. Because we are dealing with a polynomial, we can use the Taylor series to ob-
tain exact estimates of the errors in Euler’s method. Equation (25.7) can be written as

Et = f ′(xi , yi )

2!
h2 + f ′′(xi , yi )

3!
h3 + f (3)(xi , yi )

4!
h4 (E25.2.1)

where f ′(xi, yi) = the first derivative of the differential equation (that is, the second deriva-
tive of the solution). For the present case, this is

f ′(xi , yi ) = −6x2 + 24x − 20 (E25.2.2)

and f ′′(xi, yi) is the second derivative of the ODE

f ′′(xi , yi ) = −12x + 24 (E25.2.3)

and f (3)(xi, yi) is the third derivative of the ODE

f (3)(xi , yi ) = −12 (E25.2.4)

We can omit additional terms (that is, fourth derivatives and higher) from Eq. (E25.2.1) be-
cause for this particular case they equal zero. It should be noted that for other functions (for
example, transcendental functions such as sinusoids or exponentials) this would not neces-
sarily be true, and higher-order terms would have nonzero values. However, for the present
case, Eqs. (E25.2.1) through (E25.2.4) completely define the truncation error for a single
application of Euler’s method.

For example, the error due to truncation of the second-order term can be calculated as

Et,2 = −6(0.0)2 + 24(0.0) − 20

2
(0.5)2 = −2.5 (E25.2.5)

For the third-order term:

Et,3 = −12(0.0) + 24

6
(0.5)3 = 0.5

and the fourth-order term:

Et,4 = −12

24
(0.5)4 = −0.03125

These three results can be added to yield the total truncation error:

Et = Et,2 + Et,3 + Et,4 = −2.5 + 0.5 − 0.03125 = −2.03125
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which is exactly the error that was incurred in the initial step of Example 25.1. Note how
Et,2 > Et,3 > Et,4, which supports the approximation represented by Eq. (25.8).

As illustrated in Example 25.2, the Taylor series provides a means of quantifying the
error in Euler’s method. However, there are limitations associated with its use for this
purpose:

1. The Taylor series provides only an estimate of the local truncation error—that is, the
error created during a single step of the method. It does not provide a measure of
the propagated and, hence, the global truncation error. In Table 25.1, we have included
the local and global truncation errors for Example 25.1. The local error was computed
for each time step with Eq. (25.2) but using the true value of yi (the second column of
the table) to compute each yi+l rather than the approximate value (the third column), as
is done in the Euler method. As expected, the average absolute local truncation error
(25 percent) is less than the average global error (90 percent). The only reason that we
can make these exact error calculations is that we know the true value a priori. Such
would not be the case in an actual problem. Consequently, as discussed below, you
must usually apply techniques such as Euler’s method using a number of different step
sizes to obtain an indirect estimate of the errors involved.

2. As mentioned above, in actual problems we usually deal with functions that are more
complicated than simple polynomials. Consequently, the derivatives that are needed to
evaluate the Taylor series expansion would not always be easy to obtain.

Although these limitations preclude exact error analysis for most practical problems,
the Taylor series still provides valuable insight into the behavior of Euler’s method. Ac-
cording to Eq. (25.9), we see that the local error is proportional to the square of the step size
and the first derivative of the differential equation. It can also be demonstrated that the
global truncation error is O(h), that is, it is proportional to the step size (Carnahan et al.
1969). These observations lead to some useful conclusions:

1. The error can be reduced by decreasing the step size.
2. The method will provide error-free predictions if the underlying function (that is, the

solution of the differential equation) is linear, because for a straight line the second de-
rivative would be zero.

This latter conclusion makes intuitive sense because Euler’s method uses straight-line seg-
ments to approximate the solution. Hence, Euler’s method is referred to as a first-order
method.

It should also be noted that this general pattern holds for the higher-order one-step
methods described in the following pages. That is, an nth-order method will yield perfect
results if the underlying solution is an nth-order polynomial. Further, the local truncation
error will be O(hn+1) and the global error O(hn).

EXAMPLE 25.3 Effect of Reduced Step Size on Euler’s Method

Problem Statement. Repeat the computation of Example 25.1 but use a step size of
0.25.

25.1 EULER’S METHOD 713

cha01064_ch25.qxd  3/25/09  11:27 AM  Page 713



Solution. The computation is repeated, and the results are compiled in Fig. 25.4a.
Halving the step size reduces the absolute value of the average global error to 40 percent
and the absolute value of the local error to 6.4 percent. This is compared to global and local
errors for Example 25.1 of 90 percent and 24.8 percent, respectively. Thus, as expected, the
local error is quartered and the global error is halved.

Also, notice how the local error changes sign for intermediate values along the range.
This is due primarily to the fact that the first derivative of the differential equation is a
parabola that changes sign [recall Eq. (E25.2.2) and see Fig. 25.4b]. Because the local error
is proportional to this function, the net effect of the oscillation in sign is to keep the global
error from continuously growing as the calculation proceeds. Thus, from x = 0 to x = 1.25,
the local errors are all negative, and consequently, the global error increases over this
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FIGURE 25.4
(a) Comparison of two numerical solutions with Euler’s method using step sizes of 0.5 and 0.25.
(b) Comparison of true and estimated local truncation error for the case where the step size is
0.5. Note that the “estimated” error is based on Eq. (E25.2.5).
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interval. In the intermediate section of the range, positive local errors begin to reduce the
global error. Near the end, the process is reversed and the global error again inflates. If the
local error continuously changes sign over the computation interval, the net effect is usu-
ally to reduce the global error. However, where the local errors are of the same sign, the nu-
merical solution may diverge farther and farther from the true solution as the computation
proceeds. Such results are said to be unstable.

The effect of further step-size reductions on the global truncation error of Euler’s
method is illustrated in Fig. 25.5. This plot shows the absolute percent relative error at
x = 5 as a function of step size for the problem we have been examining in Examples 25.1
through 25.3. Notice that even when h is reduced to 0.001, the error still exceeds 0.1 per-
cent. Because this step size corresponds to 5000 steps to proceed from x = 0 to x = 5, the
plot suggests that a first-order technique such as Euler’s method demands great computa-
tional effort to obtain acceptable error levels. Later in this chapter, we present higher-order
techniques that attain much better accuracy for the same computational effort. However, it
should be noted that, despite its inefficiency, the simplicity of Euler’s method makes it an
extremely attractive option for many engineering problems. Because it is very easy to pro-
gram, the technique is particularly useful for quick analyses. In the next section, a com-
puter algorithm for Euler’s method is developed.
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FIGURE 25.5
Effect of step size on the global truncation error of Euler’s method for the integral of
y � � �2x3 � 12x2 � 20x � 8.5. The plot shows the absolute percent relative global error 
at x � 5 as a function of step size.
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25.1.2 Algorithm for Euler’s Method

Algorithms for one-step techniques such as Euler’s method are extremely simple to pro-
gram. As specified previously at the beginning of this chapter, all one-step methods have
the general form

New value = old value + slope × step size (25.10)

The only way in which the methods differ is in the calculation of the slope.
Suppose that you want to perform the simple calculation outlined in Table 25.1. That

is, you would like to use Euler’s method to integrate y′ = −2x3 + 12x2 − 20x + 8.5, with
the initial condition that y = 1 at x = 0. You would like to integrate out to x = 4 using a
step size of 0.5, and display all the results. A simple pseudocode to accomplish this task
could be written as in Fig. 25.6.

Although this program will “do the job” of duplicating the results of Table 25.1, it is
not very well designed. First, and foremost, it is not very modular. Although this is not very
important for such a small program, it would be critical if we desired to modify and im-
prove the algorithm.

Further, there are a number of issues related to the way we have set up the iterations.
For example, suppose that the step size were to be made very small to obtain better accu-
racy. In such cases, because every computed value is displayed, the number of output val-
ues might be very large. Further, the algorithm is predicated on the assumption that the
calculation interval is evenly divisible by the step size. Finally, the accumulation of x in the
line x = x + dx can be subject to quantizing errors of the sort previously discussed in
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FIGURE 25.6
Pseudocode for a “dumb” version of Euler’s method.

‘set integration range
xi � 0
xf � 4
‘initialize variables
x � xi
y � 1
‘set step size and determine
‘number of calculation steps
dx � 0.5
nc � (xf � xi)/dx
‘output initial condition
PRINT x, y
‘loop to implement Euler’s method
‘and display results
DOFOR i � 1, nc
dydx � �2x3 �12x2 � 20x � 8.5
y � y � dydx � dx
x � x � dx
PRINT x, y

END DO
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Sec. 3.4.1. For example, if dx were changed to 0.01 and standard IEEE floating point rep-
resentation were used (about seven significant digits), the result at the end of the calcula-
tion would be 3.999997 rather than 4. For dx = 0.001, it would be 3.999892!

A much more modular algorithm that avoids these difficulties is displayed in Fig. 25.7.
The algorithm does not output all calculated values. Rather, the user specifies an output in-
terval, xout, that dictates the interval at which calculated results are stored in arrays, xpm

and ypm. These values are stored in arrays so that they can be output in a variety of ways
after the computation is completed (for example, printed, graphed, or written to a file).

The Driver Program takes big output steps and calls an Integrator routine that takes
finer calculation steps. Note that the loops controlling both large and small steps exit
on logical conditions. Thus, the intervals do not have to be evenly divisible by the step
sizes.

The Integrator routine then calls an Euler routine that takes a single step with Euler’s
method. The Euler routine calls a Derivative routine that calculates the derivative value.

Whereas such modularization might seem like overkill for the present case, it will
greatly facilitate modifying the program in later sections. For example, although the pro-
gram in Fig. 25.7 is specifically designed to implement Euler’s method, the Euler module
is the only part that is method-specific. Thus, all that is required to apply this algorithm to
the other one-step methods is to modify this routine.
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(a) Main or “Driver” Program

Assign values for
y � initial value dependent variable
xi � initial value independent variable
xf � final value independent variable
dx � calculation step size
xout � output interval

x � xi
m � 0
xpm � x
ypm � y
DO
xend � x � xout
IF (xend � xf) THEN xend � xf
h � dx
CALL Integrator (x, y, h, xend)
m � m � 1
xpm � x
ypm � y
IF (x � xf) EXIT

END DO
DISPLAY RESULTS
END

(b) Routine to Take One Output Step

SUB Integrator (x, y, h, xend)
DO
IF (xend � x 	 h) THEN h � xend � x
CALL Euler (x, y, h, ynew)
y � ynew
IF (x � xend) EXIT

END DO
END SUB

(c) Euler’s Method for a Single ODE

SUB Euler (x, y, h, ynew)
CALL Derivs(x, y, dydx)
ynew � y � dydx * h
x � x � h

END SUB

(d) Routine to Determine Derivative

SUB Derivs (x, y, dydx)
dydx � ...

END SUB

FIGURE 25.7
Pseudocode for an “improved” modular version of Euler’s method.
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EXAMPLE 25.4 Solving ODEs with the Computer

Problem Statement. A computer program can be developed from the pseudocode in
Fig. 25.7. We can use this software to solve another problem associated with the falling
parachutist. You recall from Part One that our mathematical model for the velocity was
based on Newton’s second law in the form

dv

dt
= g − c

m
v (E25.4.1)

This differential equation was solved both analytically (Example 1.1) and numerically
using Euler’s method (Example 1.2). These solutions were for the case where g = 9.8,
c = 12.5, m = 68.1, and v = 0 at t = 0.

The objective of the present example is to repeat these numerical computations em-
ploying a more complicated model for the velocity based on a more complete mathemati-
cal description of the drag force caused by wind resistance. This model is given by

dv

dt
= g − c

m

[
v + a

(
v

vmax

)b
]

(E25.4.2)

where g, m, and c are the same as for Eq. (E25.4.1), and a, b, and vmax are empirical
constants, which for this case are equal to 8.3, 2.2, and 46, respectively. Note that this
model is more capable of accurately fitting empirical measurements of drag forces ver-
sus velocity than is the simple linear model of Example 1.1. However, this increased flex-
ibility is gained at the expense of evaluating three coefficients rather than one. Further-
more, the resulting mathematical model is more difficult to solve analytically. In this
case, Euler’s method provides a convenient alternative to obtain an approximate numerical
solution.
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FIGURE 25.8
Graphical results for the solution of the nonlinear ODE [Eq. (E25.4.2)]. Notice that the plot also
shows the solution for the linear model [Eq. (E25.4.1)] for comparative purposes.
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Solution. The results for both the linear and nonlinear model are displayed in Fig. 25.8
with an integration step size of 0.1 s. The plot in Fig. 25.8 also shows an overlay of the so-
lution of the linear model for comparison purposes.

The results of the two simulations indicate how increasing the complexity of the for-
mulation of the drag force affects the velocity of the parachutist. In this case, the terminal
velocity is lowered because of resistance caused by the higher-order terms in Eq. (E25.4.2).

Alternative models could be tested in a similar fashion. The combination of a computer-
generated solution makes this an easy and efficient task. This convenience should allow you
to devote more of your time to considering creative alternatives and holistic aspects of the
problem rather than to tedious manual computations.

25.1.3 Higher-Order Taylor Series Methods

One way to reduce the error of Euler’s method would be to include higher-order terms of
the Taylor series expansion in the solution. For example, including the second-order term
from Eq. (25.6) yields

yi+1 = yi + f(xi , yi )h + f ′(xi , yi )

2!
h2 (25.11)

with a local truncation error of

Ea = f ′′(xi , yi )

6
h3

Although the incorporation of higher-order terms is simple enough to implement for
polynomials, their inclusion is not so trivial when the ODE is more complicated. In partic-
ular, ODEs that are a function of both the dependent and independent variable require
chain-rule differentiation. For example, the first derivative of f(x, y) is

f ′(xi , yi ) = ∂ f(x, y)

∂x
+ ∂ f(x, y)

∂y

dy

dx

The second derivative is

f ′′(xi , yi ) = ∂[∂ f/∂x + (∂ f/∂y)(dy/dx)]

∂x
+ ∂[∂ f/∂x + (∂ f/∂y)(dy/dx)]

∂y

dy

dx

Higher-order derivatives become increasingly more complicated.
Consequently, as described in the following sections, alternative one-step methods

have been developed. These schemes are comparable in performance to the higher-order
Taylor-series approaches but require only the calculation of first derivatives.

25.2 IMPROVEMENTS OF EULER’S METHOD

A fundamental source of error in Euler’s method is that the derivative at the beginning of
the interval is assumed to apply across the entire interval. Two simple modifications are
available to help circumvent this shortcoming. As will be demonstrated in Sec. 25.3, both
modifications actually belong to a larger class of solution techniques called Runge-Kutta
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methods. However, because they have a very straightforward graphical interpretation, we
will present them prior to their formal derivation as Runge-Kutta methods.

25.2.1 Heun’s Method

One method to improve the estimate of the slope involves the determination of two deriv-
atives for the interval—one at the initial point and another at the end point. The two
derivatives are then averaged to obtain an improved estimate of the slope for the entire in-
terval. This approach, called Heun’s method, is depicted graphically in Fig. 25.9.

Recall that in Euler’s method, the slope at the beginning of an interval

y′
i = f(xi , yi ) (25.12)

is used to extrapolate linearly to yi+1:

y0
i+1 = yi + f(xi , yi )h (25.13)

For the standard Euler method we would stop at this point. However, in Heun’s method the
y0

i+1 calculated in Eq. (25.13) is not the final answer, but an intermediate prediction. This
is why we have distinguished it with a superscript 0. Equation (25.13) is called a predictor
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FIGURE 25.9
Graphical depiction of Heun’s method. (a) Predictor and (b) corrector.
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equation. It provides an estimate of yi+1 that allows the calculation of an estimated slope at
the end of the interval:

y′
i+1 = f

(
xi+1, y0

i+1

)
(25.14)

Thus, the two slopes [Eqs. (25.12) and (25.14)] can be combined to obtain an average slope
for the interval:

ȳ′ = y′
i + y′

i+1

2
= f(xi , yi ) + f

(
xi+1, y0

i+1

)
2

This average slope is then used to extrapolate linearly from yi to yi+l using Euler’s method:

yi+1 = yi + f(xi , yi ) + f
(
xi+1, y0

i+1

)
2

h

which is called a corrector equation.
The Heun method is a predictor-corrector approach. All the multistep methods to be

discussed subsequently in Chap. 26 are of this type. The Heun method is the only one-step
predictor-corrector method described in this book. As derived above, it can be expressed
concisely as

Predictor (Fig. 25.9a): y0
i+1 = yi + f(xi , yi )h (25.15)

Corrector (Fig. 25.9b): yi+1 = yi + f(xi , yi ) + f
(
xi+1, y0

i+1

)
2

h (25.16)

Note that because Eq. (25.16) has yi+l on both sides of the equal sign, it can be applied
in an iterative fashion. That is, an old estimate can be used repeatedly to provide an im-
proved estimate of yi+l. The process is depicted in Fig. 25.10. It should be understood that
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FIGURE 25.10
Graphical representation of iterating the corrector of Heun’s method to obtain 
an improved estimate.
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this iterative process does not necessarily converge on the true answer but will converge on
an estimate with a finite truncation error, as demonstrated in the following example.

As with similar iterative methods discussed in previous sections of the book, a termi-
nation criterion for convergence of the corrector is provided by [recall Eq. (3.5)]

|εa| =
∣∣∣∣∣ y j

i+1 − y j−1
i+1

y j
i+1

∣∣∣∣∣ 100% (25.17)

where y j−1
i+1 and y j

i+1 are the result from the prior and the present iteration of the corrector,
respectively.

EXAMPLE 25.5 Heun’s Method

Problem Statement. Use Heun’s method to integrate y′ = 4e0.8x − 0.5y from x = 0 to
x = 4 with a step size of 1. The initial condition at x = 0 is y = 2.

Solution. Before solving the problem numerically, we can use calculus to determine the
following analytical solution:

y = 4

1.3
(e0.8x − e−0.5x) + 2e−0.5x (E25.5.1)

This formula can be used to generate the true solution values in Table 25.2.
First, the slope at (x0, y0) is calculated as

y′
0 = 4e0 − 0.5(2) = 3

This result is quite different from the actual average slope for the interval from 0 to 1.0,
which is equal to 4.1946, as calculated from the differential equation using Eq. (PT6.4).

The numerical solution is obtained by using the predictor [Eq. (25.15)] to obtain an es-
timate of y at 1.0:

y0
1 = 2 + 3(1) = 5
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TABLE 25.2 Comparison of true and approximate values of the integral of y′ =
4e0.8x − 0.5y, with the initial condition that y = 2 at x = 0. The approximate
values were computed using the Heun method with a step size of 1. Two
cases, corresponding to different numbers of corrector iterations, are shown,
along with the absolute percent relative error.

Iterations of Heun’s Method

1 15

x y true yHeun |�t| (%) yHeun |�t| (%)

0 2.0000000 2.0000000 0.00 2.0000000 0.00
1 6.1946314 6.7010819 8.18 6.3608655 2.68
2 14.8439219 16.3197819 9.94 15.3022367 3.09
3 33.6771718 37.1992489 10.46 34.7432761 3.17
4 75.3389626 83.3377674 10.62 77.7350962 3.18
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Note that this is the result that would be obtained by the standard Euler method. The true
value in Table 25.2 shows that it corresponds to a percent relative error of 19.3 percent.

Now, to improve the estimate for yi+1, we use the value y0
1 to predict the slope at the

end of the interval

y′
1 = f

(
x1, y0

1

) = 4e0.8(1) − 0.5(5) = 6.402164

which can be combined with the initial slope to yield an average slope over the interval
from x = 0 to 1

y′ = 3 + 6.402164

2
= 4.701082

which is closer to the true average slope of 4.1946. This result can then be substituted into
the corrector [Eq. (25.16)] to give the prediction at x = 1

y1 = 2 + 4.701082(1) = 6.701082

which represents a percent relative error of −8.18 percent. Thus, the Heun method without
iteration of the corrector reduces the absolute value of the error by a factor of 2.4 as com-
pared with Euler’s method.

Now this estimate can be used to refine or correct the prediction of y1 by substituting
the new result back into the right-hand side of Eq. (25.16):

y1 = 2 +
[
3 + 4e0.8(1) − 0.5(6.701082)

]
2

1 = 6.275811

which represents an absolute percent relative error of 1.31 percent. This result, in turn, can
be substituted back into Eq. (25.16) to further correct:

y1 = 2 +
[
3 + 4e0.8(1) − 0.5(6.275811)

]
2

1 = 6.382129

which represents an |εt | of 3.03%. Notice how the errors sometimes grow as the iterations
proceed. Such increases can occur, especially for large step sizes, and they prevent us from
drawing the general conclusion that an additional iteration will always improve the result.
However, for a sufficiently small step size, the iterations should eventually converge on a
single value. For our case, 6.360865, which represents a relative error of 2.68 percent, is
attained after 15 iterations. Table 25.2 shows results for the remainder of the computation
using the method with 1 and 15 iterations per step.

In the previous example, the derivative is a function of both the dependent variable y
and the independent variable x. For cases such as polynomials, where the ODE is solely a
function of the independent variable, the predictor step [Eq. (25.16)] is not required and the
corrector is applied only once for each iteration. For such cases, the technique is expressed
concisely as

yi+1 = yi + f(xi ) + f(xi+1)

2
h (25.18)
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Notice the similarity between the right-hand side of Eq. (25.18) and the trapezoidal rule
[Eq. (21.3)]. The connection between the two methods can be formally demonstrated by
starting with the ordinary differential equation

dy

dx
= f(x)

This equation can be solved for y by integration:∫ yi+1

yi

dy =
∫ xi+1

xi

f(x) dx (25.19)

which yields

yi+1 − yi =
∫ xi+1

xi

f(x) dx (25.20)

or

yi+1 = yi +
∫ xi+1

xi

f(x) dx (25.21)

Now, recall from Chap. 21 that the trapezoidal rule [Eq. (21.3)] is defined as∫ xi+1

xi

f(x) dx ∼= f(xi ) + f(xi+1)

2
h (25.22)

where h = xi+1 − xi . Substituting Eq. (25.22) into Eq. (25.21) yields

yi+1 = yi + f(xi ) + f(xi+1)

2
h (25.23)

which is equivalent to Eq. (25.18).
Because Eq. (25.23) is a direct expression of the trapezoidal rule, the local truncation

error is given by [recall Eq. (21.6)]

Et = − f ′′(ξ)

12
h3 (25.24)

where ξ is between xi and xi+l. Thus, the method is second order because the second deriva-
tive of the ODE is zero when the true solution is a quadratic. In addition, the local and global
errors are O(h3) and O(h2), respectively. Therefore, decreasing the step size decreases the
error at a faster rate than for Euler’s method. Figure 25.11, which shows the result of using
Heun’s method to solve the polynomial from Example 25.1 demonstrates this behavior.

25.2.2 The Midpoint (or Improved Polygon) Method

Figure 25.12 illustrates another simple modification of Euler’s method. Called the mid-
point method (or the improved polygon or the modified Euler), this technique uses Euler’s
method to predict a value of y at the midpoint of the interval (Fig. 25.12a):

yi+1/2 = yi + f(xi , yi )
h

2
(25.25)
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FIGURE 25.11
Comparison of the true solution
with a numerical solution using
Euler’s and Heun’s methods for
the integral of y� � �2x3 �
12x2 � 20x � 8.5.

y

5

x

True solution

Euler’s method

Heun’s method

3

FIGURE 25.12
Graphical depiction of the
midpoint method. 
(a) Eq. (25.25) and
(b) Eq. (25.27).

y

xxi + 1xi

y Slope = f (xi + 1/2, yi + 1/2)

xxi + 1/2xi

(b)

(a)

Slope = f (xi + 1/2, yi + 1/2)
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Then, this predicted value is used to calculate a slope at the midpoint:

y′
i+1/2 = f(xi+1/2, yi+1/2) (25.26)

which is assumed to represent a valid approximation of the average slope for the entire in-
terval. This slope is then used to extrapolate linearly from xi to xi+l (Fig. 25.12b):

yi+1 = yi + f(xi+1/2, yi+1/2)h (25.27)

Observe that because yi+l is not on both sides, the corrector [Eq. (25.27)] cannot be applied
iteratively to improve the solution.

As in the previous section, this approach can also be linked to Newton-Cotes integra-
tion formulas. Recall from Table 21.4, that the simplest Newton-Cotes open integration
formula, which is called the midpoint method, can be represented as∫ b

a
f(x) dx ∼= (b − a) f(x1)

where x1 is the midpoint of the interval (a, b). Using the nomenclature for the present case,
it can be expressed as∫ xi+1

xi

f(x) dx ∼= h f(xi+1/2)

Substitution of this formula into Eq. (25.21) yields Eq. (25.27). Thus, just as the Heun
method can be called the trapezoidal rule, the midpoint method gets its name from the
underlying integration formula upon which it is based.

The midpoint method is superior to Euler’s method because it utilizes a slope estimate
at the midpoint of the prediction interval. Recall from our discussion of numerical differ-
entiation in Sec. 4.1.3 that centered finite divided differences are better approximations of
derivatives than either forward or backward versions. In the same sense, a centered ap-
proximation such as Eq. (25.26) has a local truncation error of O(h2) in comparison with
the forward approximation of Euler’s method, which has an error of O(h). Consequently,
the local and global errors of the midpoint method are O(h3) and O(h2), respectively.

25.2.3 Computer Algorithms for Heun and Midpoint Methods

Both the Heun method with a single corrector and the midpoint method can be easily pro-
grammed using the general structure depicted in Fig. 25.7. As in Fig. 25.13a and b, simple
routines can be written to take the place of the Euler routine in Fig. 25.7.

However, when the iterative version of the Heun method is to be implemented, the
modifications are a bit more involved (although they are still localized within a single mod-
ule). We have developed pseudocode for this purpose in Fig. 25.13c. This algorithm can be
combined with Fig. 25.7 to develop software for the iterative Heun method.

25.2.4 Summary

By tinkering with Euler’s method, we have derived two new second-order techniques.
Even though these versions require more computational effort to determine the slope,
the accompanying reduction in error will allow us to conclude in a subsequent section
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(Sec. 25.3.4) that the improved accuracy is usually worth the effort. Although there are cer-
tain cases where easily programmable techniques such as Euler’s method can be applied to
advantage, the Heun and midpoint methods are generally superior and should be imple-
mented if they are consistent with the problem objectives.

As noted at the beginning of this section, the Heun (without iterations), the midpoint
method, and in fact, the Euler technique itself are versions of a broader class of one-step
approaches called Runge-Kutta methods. We now turn to a formal derivation of these
techniques.

25.3 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without re-
quiring the calculation of higher derivatives. Many variations exist but all can be cast in the
generalized form of Eq. (25.1):

yi+1 = yi + φ(xi , yi , h)h (25.28)

where φ(xi, yi, h) is called an increment function, which can be interpreted as a representa-
tive slope over the interval. The increment function can be written in general form as

φ = a1k1 + a2k2 + · · · + ankn (25.29)

25.3 RUNGE-KUTTA METHODS 727

(a) Simple Heun without Corrector

SUB Heun (x, y, h, ynew)
CALL Derivs (x, y, dy1dx)
ye � y � dy1dx � h
CALL Derivs(x � h, ye, dy2dx)
Slope � (dy1dx � dy2dx)�2
ynew � y � Slope � h
x � x � h

END SUB

(b) Midpoint Method

SUB Midpoint (x, y, h, ynew)
CALL Derivs(x, y, dydx)
ym � y � dydx � h�2
CALL Derivs (x � h�2, ym, dymdx)
ynew � y � dymdx � h
x � x � h

END SUB

(c) Heun with Corrector

SUB HeunIter (x, y, h, ynew)
es � 0.01
maxit � 20
CALL Derivs(x, y, dy1dx)
ye � y � dy1dx � h
iter � 0
DO
yeold � ye
CALL Derivs(x � h, ye, dy2dx)
slope � (dy1dx � dy2dx)�2
ye � y � slope � h
iter � iter � 1

ea � � � 100%
IF (ea 
 es OR iter � maxit) EXIT

END DO
ynew � ye
x � x � h

END SUB

ye � yeold
��

ye

FIGURE 25.13
Pseudocode to implement the (a) simple Heun, (b) midpoint, and (c) iterative Heun methods.
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where the a’s are constants and the k’s are

k1 = f(xi , yi ) (25.29a)

k2 = f(xi + p1h, yi + q11k1h) (25.29b)

k3 = f(xi + p2h, yi + q21k1h + q22k2h) (25.29c)

.

.

.

kn = f(xi + pn−1h, yi + qn−1,1k1h + qn−1,2k2h + · · · + qn−1,n−1kn−1h) (25.29d)

where the p’s and q’s are constants. Notice that the k’s are recurrence relationships. That is,
k1 appears in the equation for k2, which appears in the equation for k3, and so forth. Because
each k is a functional evaluation, this recurrence makes RK methods efficient for computer
calculations.

Various types of Runge-Kutta methods can be devised by employing different num-
bers of terms in the increment function as specified by n. Note that the first-order RK
method with n = 1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s,
and q’s are evaluated by setting Eq. (25.28) equal to terms in a Taylor series expansion
(Box 25.1). Thus, at least for the lower-order versions, the number of terms, n, usually rep-
resents the order of the approach. For example, in the next section, second-order RK meth-
ods use an increment function with two terms (n = 2). These second-order methods will be
exact if the solution to the differential equation is quadratic. In addition, because terms with
h3 and higher are dropped during the derivation, the local truncation error is O(h3) and
the global error is O(h2). In subsequent sections, the third- and fourth-order RK methods
(n = 3 and 4, respectively) are developed. For these cases, the global truncation errors are
O(h3) and O(h4), respectively.

25.3.1 Second-Order Runge-Kutta Methods

The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (25.30)

where

k1 = f(xi , yi ) (25.30a)

k2 = f(xi + p1h, yi + q11k1h) (25.30b)

As described in Box 25.1, values for al, a2, p1, and q11 are evaluated by setting Eq. (25.30)
equal to a Taylor series expansion to the second-order term. By doing this, we derive three
equations to evaluate the four unknown constants. The three equations are

a1 + a2 = 1 (25.31)

a2 p1 = 1

2
(25.32)

a2q11 = 1

2
(25.33)
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Because we have three equations with four unknowns, we must assume a value of one
of the unknowns to determine the other three. Suppose that we specify a value for a2. Then
Eqs. (25.31) through (25.33) can be solved simultaneously for

a1 = 1 − a2 (25.34)

p1 = q11 = 1

2a2
(25.35)

25.3 RUNGE-KUTTA METHODS 729

Box 25.1 Derivation of the Second-Order Runge-Kutta Methods

The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (B25.1.1)

where

k1 = f(xi, yi ) (B25.1.2)

and

k2 = f(xi + p1h, yi + q11 k1h) (B25.1.3)

To use Eq. (B25.1.1) we have to determine values for the con-
stants a1, a2, p1, and q11. To do this, we recall that the second-order
Taylor series for yi+1 in terms of yi and f (xi, yi) is written as
[Eq. (25.11)]

yi+1 = yi + f(xi, yi )h + f ′(xi, yi )

2!
h2 (B25.1.4)

where f ′(xi, yi) must be determined by chain-rule differentiation
(Sec. 25.1.3):

f ′(xi, yi ) = ∂ f(x, y)

∂x
+ ∂ f(x, y)

∂y

dy

dx
(B25.1.5)

Substituting Eq. (B25.1.5) into (B25.1.4) gives

yi+1 = yi + f(xi, yi )h +
(

∂ f

∂x
+ ∂ f

∂y

dy

dx

)
h2

2!
(B25.1.6)

The basic strategy underlying Runge-Kutta methods is to use alge-
braic manipulations to solve for values of a1, a2, p1, and q11 that
make Eqs. (B25.1.1) and (B25.1.6) equivalent.

To do this, we first use a Taylor series to expand Eq. (25.1.3).
The Taylor series for a two-variable function is defined as [recall
Eq. (4.26)]

g(x + r, y + s) = g(x, y) + r
∂g

∂x
+ s

∂g

∂y
+ · · ·

Applying this method to expand Eq. (B25.1.3) gives

f(xi + p1h, yi + q11 k1h) = f(xi, yi ) + p1h
∂ f

∂x

+ q11 k1h
∂ f

∂y
+ O(h2)

This result can be substituted along with Eq. (B25.1.2) into
Eq. (B25.1.1) to yield

yi+1 = yi + a1h f(xi, yi ) + a2h f(xi, yi ) + a2 p1h2 ∂ f

∂x

+ a2q11 h2 f(xi, yi )
∂ f

∂y
+ O(h3)

or, by collecting terms,

yi+1 = yi + [a1 f(xi , yi ) + a2 f(xi , yi )]h

+
[

a2 p1
∂ f

∂x
+ a2q11 f(xi , yi )

∂ f

∂y

]
h2 + O(h3)

(B25.1.7)

Now, comparing like terms in Eqs. (B25.1.6) and (B25.1.7), we de-
termine that for the two equations to be equivalent, the following
must hold:

a1 + a2 = 1

a2 p1 = 1

2

a2q11 = 1

2

These three simultaneous equations contain the four unknown con-
stants. Because there is one more unknown than the number of
equations, there is no unique set of constants that satisfy the equa-
tions. However, by assuming a value for one of the constants, we
can determine the other three. Consequently, there is a family of
second-order methods rather than a single version.
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Because we can choose an infinite number of values for a2, there are an infinite num-
ber of second-order RK methods. Every version would yield exactly the same results if the
solution to the ODE were quadratic, linear, or a constant. However, they yield different re-
sults when (as is typically the case) the solution is more complicated. We present three of
the most commonly used and preferred versions:

Heun Method with a Single Corrector (a2 = 1/2). If a2 is assumed to be 1/2,
Eqs. (25.34) and (25.35) can be solved for a1 = 1/2 and pl = q11 = 1. These parameters,
when substituted into Eq. (25.30), yield

yi+1 = yi +
(

1

2
k1 + 1

2
k2

)
h (25.36)

where

k1 = f(xi , yi ) (25.36a)

k2 = f(xi + h, yi + k1h) (25.36b)

Note that k1 is the slope at the beginning of the interval and k2 is the slope at the end of the
interval. Consequently, this second-order Runge-Kutta method is actually Heun’s tech-
nique without iteration.

The Midpoint Method (a2 = 1). If a2 is assumed to be 1, then a1 = 0, p1 = q11 = 1/2,
and Eq. (25.30) becomes

yi+1 = yi + k2h (25.37)

where

k1 = f(xi , yi ) (25.37a)

k2 = f

(
xi + 1

2
h, yi + 1

2
k1h

)
(25.37b)

This is the midpoint method.

Ralston’s Method (a2 = 2/3). Ralston (1962) and Ralston and Rabinowitz (1978)
determined that choosing a2 = 2/3 provides a minimum bound on the truncation error for
the second-order RK algorithms. For this version, a1 = 1/3 and p1 = q11 = 3/4 and yields

yi+1 = yi +
(

1

3
k1 + 2

3
k2

)
h (25.38)

where

k1 = f(xi , yi ) (25.38a)

k2 = f

(
xi + 3

4
h, yi + 3

4
k1h

)
(25.38b)
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EXAMPLE 25.6 Comparison of Various Second-Order RK Schemes

Problem Statement. Use the midpoint method [Eq. (25.37)] and Ralston’s method
[Eq. (25.38)] to numerically integrate Eq. (PT7.13)

f(x, y) = −2x3 + 12x2 − 20x + 8.5

from x = 0 to x = 4 using a step size of 0.5. The initial condition at x = 0 is y = 1. Com-
pare the results with the values obtained using another second-order RK algorithm, that is,
the Heun method without corrector iteration (Table 25.3).

Solution. The first step in the midpoint method is to use Eq. (25.37a) to compute

k1 = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

However, because the ODE is a function of x only, this result has no bearing on the second
step—the use of Eq. (25.37b) to compute

k2 = −2(0.25)3 + 12(0.25)2 − 20(0.25) + 8.5 = 4.21875

Notice that this estimate of the slope is much closer to the average value for the interval
(4.4375) than the slope at the beginning of the interval (8.5) that would have been used for
Euler’s approach. The slope at the midpoint can then be substituted into Eq. (25.37) to
predict

y(0.5) = 1 + 4.21875(0.5) = 3.109375 εt = 3.4%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 25.3.
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FIGURE 25.14
Comparison of the true solution with numerical solutions using three second-order RK methods
and Euler’s method.
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For Ralston’s method, k1 for the first interval also equals 8.5 and [Eq. (25.38b)]

k2 = −2(0.375)3 + 12(0.375)2 − 20(0.375) + 8.5 = 2.58203125

The average slope is computed by

φ = 1

3
(8.5) + 2

3
(2.58203125) = 4.5546875

which can be used to predict

y(0.5) = 1 + 4.5546875(0.5) = 3.27734375 εt = −1.82%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 25.3.
Notice how all the second-order RK methods are superior to Euler’s method.

25.3.2 Third-Order Runge-Kutta Methods

For n = 3, a derivation similar to the one for the second-order method can be performed.
The result of this derivation is six equations with eight unknowns. Therefore, values for
two of the unknowns must be specified a priori in order to determine the remaining parame-
ters. One common version that results is

yi+1 = yi + 1

6
(k1 + 4k2 + k3)h (25.39)

where

k1 = f(xi , yi ) (25.39a)

732 RUNGE-KUTTA METHODS

TABLE 25.3 Comparison of true and approximate values of the integral of
y ′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at x = 0.
The approximate values were computed using three versions of second-order
RK methods with a step size of 0.5.

Second-Order
Heun Midpoint Ralston RK

x y true y |�t| (%) y |�t| (%) y |�t| (%)

0.0 1.00000 1.00000 0 1.00000 0 1.00000 0
0.5 3.21875 3.43750 6.8 3.109375 3.4 3.277344 1.8
1.0 3.00000 3.37500 12.5 2.81250 6.3 3.101563 3.4
1.5 2.21875 2.68750 21.1 1.984375 10.6 2.347656 5.8
2.0 2.00000 2.50000 25.0 1.75 12.5 2.140625 7.0
2.5 2.71875 3.18750 17.2 2.484375 8.6 2.855469 5.0
3.0 4.00000 4.37500 9.4 3.81250 4.7 4.117188 2.9
3.5 4.71875 4.93750 4.6 4.609375 2.3 4.800781 1.7
4.0 3.00000 3.00000 0 3 0 3.031250 1.0
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k2 = f

(
xi + 1

2
h, yi + 1

2
k1h

)
(25.39b)

k3 = f(xi + h, yi − k1h + 2k2h) (25.39c)

Note that if the derivative is a function of x only, this third-order method reduces to
Simpson’s 1/3 rule. Ralston (1962) and Ralston and Rabinowitz (1978) have developed an
alternative version that provides a minimum bound on the truncation error. In any case, the
third-order RK methods have local and global errors of O(h4) and O(h3), respectively, and
yield exact results when the solution is a cubic. When dealing with polynomials, Eq. (25.39)
will also be exact when the differential equation is cubic and the solution is quartic. This is
because Simpson’s 1/3 rule provides exact integral estimates for cubics (recall Box 21.3).

25.3.3 Fourth-Order Runge-Kutta Methods

The most popular RK methods are fourth order. As with the second-order approaches, there
are an infinite number of versions. The following is the most commonly used form, and we
therefore call it the classical fourth-order RK method:

yi+1 = yi + 1

6
(k1 + 2k2 + 2k3 + k4)h (25.40)

where

k1 = f(xi , yi ) (25.40a)

k2 = f

(
xi + 1

2
h, yi + 1

2
k1h

)
(25.40b)
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FIGURE 25.15
Graphical depiction of the slope estimates comprising the fourth-order RK method.
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k3 = f

(
xi + 1

2
h, yi + 1

2
k2h

)
(25.40c)

k4 = f(xi + h, yi + k3h) (25.40d)

Notice that for ODEs that are a function of x alone, the classical fourth-order RK
method is similar to Simpson’s 1/3 rule. In addition, the fourth-order RK method is simi-
lar to the Heun approach in that multiple estimates of the slope are developed in order to
come up with an improved average slope for the interval. As depicted in Fig. 25.15, each
of the k’s represents a slope. Equation (25.40) then represents a weighted average of these
to arrive at the improved slope.

EXAMPLE 25.7 Classical Fourth-Order RK Method

Problem Statement.

(a) Use the classical fourth-order RK method [Eq. (25.40)] to integrate

f(x, y) = −2x3 + 12x2 − 20x + 8.5

using a step size of h = 0.5 and an initial condition of y = 1 at x = 0.
(b) Similarly, integrate

f(x, y) = 4e0.8x − 0.5y

using h = 0.5 with y(0) = 2 from x = 0 to 0.5.

Solution.

(a) Equations (25.40a) through (25.40d ) are used to compute k1 = 8.5, k2 = 4.21875, k3 =
4.21875 and k4 = 1.25, which are substituted into Eq. (25.40) to yield

y(0.5) = 1 +
{

1

6
[8.5 + 2(4.21875) + 2(4.21875) + 1.25]

}
0.5

= 3.21875

which is exact. Thus, because the true solution is a quartic [Eq. (PT7.16)], the fourth-
order method gives an exact result.

(b) For this case, the slope at the beginning of the interval is computed as

k1 = f(0, 2) = 4e0.8(0) − 0.5(2) = 3

This value is used to compute a value of y and a slope at the midpoint,

y(0.25) = 2 + 3(0.25) = 2.75

k2 = f(0.25, 2.75) = 4e0.8(0.25) − 0.5(2.75) = 3.510611

This slope in turn is used to compute another value of y and another slope at the
midpoint,

y(0.25) = 2 + 3.510611(0.25) = 2.877653

k3 = f(0.25, 2.877653) = 4e0.8(0.25) − 0.5(2.877653) = 3.446785

Next, this slope is used to compute a value of y and a slope at the end of the interval,

y(0.5) = 2 + 3.071785(0.5) = 3.723392

k4 = f(0.5, 3.723392) = 4e0.8(0.5) − 0.5(3.723392) = 4.105603

734 RUNGE-KUTTA METHODS
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Finally, the four slope estimates are combined to yield an average slope. This average
slope is then used to make the final prediction at the end of the interval.

φ = 1

6
[3 + 2(3.510611) + 2(3.446785) + 4.105603] = 3.503399

y(0.5) = 2 + 3.503399(0.5) = 3.751699

which compares favorably with the true solution of 3.751521.

25.3.4 Higher-Order Runge-Kutta Methods

Where more accurate results are required, Butcher’s (1964) fifth-order RK method is
recommended:

yi+1 = yi + 1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6)h (25.41)

where

k1 = f(xi , yi ) (25.41a)

k2 = f

(
xi + 1

4
h, yi + 1

4
k1h

)
(25.41b)

k3 = f

(
xi + 1

4
h, yi + 1

8
k1h + 1

8
k2h

)
(25.41c)

k4 = f

(
xi + 1

2
h, yi − 1

2
k2h + k3h

)
(25.41d)

k5 = f

(
xi + 3

4
h, yi + 3

16
k1h + 9

16
k4h

)
(25.41e)

k6 = f

(
xi + h, yi − 3

7
k1h + 2

7
k2h + 12

7
k3h − 12

7
k4h + 8

7
k5h

)
(25.41f )

Note the similarity between Butcher’s method and Boole’s Rule in Table 21.2. Higher-
order RK formulas such as Butcher’s method are available, but in general, beyond fourth-
order methods the gain in accuracy is offset by the added computational effort and
complexity.

EXAMPLE 25.8 Comparison of Runge-Kutta Methods

Problem Statement. Use first- through fifth-order RK methods to solve

f(x, y) = 4e0.8x − 0.5y

with y(0) = 2 from x = 0 to x = 4 with various step sizes. Compare the accuracy of the var-
ious methods for the result at x = 4 based on the exact answer of y(4) = 75.33896.

Solution. The computation is performed using Euler’s, the noniterative Heun, the third-
order RK [Eq. (25.39)], the classical fourth-order RK, and Butcher’s fifth-order RK
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methods. The results are presented in Fig. 25.16, where we have plotted the absolute value
of the percent relative error versus the computational effort. This latter quantity is equiva-
lent to the number of function evaluations required to attain the result, as in

Effort = n f
b − a

h
(E25.8.1)

where nf = the number of function evaluations involved in the particular RK computation.
For orders ≤ 4, nf is equal to the order of the method. However, note that Butcher’s fifth-
order technique requires six function evaluations [Eq. (25.41a) through (25.41f )]. The
quantity (b − a)/h is the total integration interval divided by the step size—that is, it is
the number of applications of the RK technique required to obtain the result. Thus, because
the function evaluations are usually the primary time-consuming steps, Eq. (E25.8.1) pro-
vides a rough measure of the run time required to attain the answer.

Inspection of Fig. 25.16 leads to a number of conclusions: first, that the higher-order
methods attain better accuracy for the same computational effort and, second, that the gain
in accuracy for the additional effort tends to diminish after a point. (Notice that the curves
drop rapidly at first and then tend to level off.)

Example 25.8 and Fig. 25.16 might lead one to conclude that higher-order RK tech-
niques are always the preferred methods. However, other factors such as programming
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FIGURE 25.16
Comparison of percent relative error versus computational effort for first- through fifth-order
RK methods.
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25.4 SYSTEMS OF EQUATIONS 737

costs and the accuracy requirements of the problem also must be considered when choos-
ing a solution technique. Such trade-offs will be explored in detail in the engineering
applications in Chap. 28 and in the epilogue for Part Seven.

25.3.5 Computer Algorithms for Runge-Kutta Methods

As with all the methods covered in this chapter, the RK techniques fit nicely into the gen-
eral algorithm embodied in Fig. 25.7. Figure 25.17 presents pseudocode to determine the
slope of the classic fourth-order RK method [Eq. (25.40)]. Subroutines to compute slopes
for all the other versions can be easily programmed in a similar fashion.

25.4 SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-
multaneous ordinary differential equations rather than a single equation. Such systems may
be represented generally as

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

.

.

.

dyn

dx
= fn(x, y1, y2, . . . , yn) (25.42)

The solution of such a system requires that n initial conditions be known at the starting
value of x.

FIGURE 25.17
Pseudocode to determine a single step of the fourth-order RK method.

SUB RK4 (x, y, h, ynew)
CALL Derivs(x, y, k1)
ym � y � k1 � h�2
CALL Derivs(x � h�2, ym, k2)
ym � y � k2 � h�2
CALL Derivs(x � h�2, ym, k3)
ye � y � k3 � h
CALL Derivs(x � h, ye, k4)
slope � (k1 � 2(k2 � k3) � k4)�6
ynew � y � slope � h
x � x � h

END SUB
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25.4.1 Euler’s Method

All the methods discussed in this chapter for single equations can be extended to the sys-
tem shown above. Engineering applications can involve thousands of simultaneous equa-
tions. In each case, the procedure for solving a system of equations simply involves apply-
ing the one-step technique for every equation at each step before proceeding to the next
step. This is best illustrated by the following example for the simple Euler’s method.

EXAMPLE 25.9 Solving Systems of ODEs Using Euler’s Method

Problem Statement. Solve the following set of differential equations using Euler’s
method, assuming that at x = 0, y1 = 4, and y2 = 6. Integrate to x = 2 with a step size
of 0.5.

dy1

dx
= −0.5y1

dy2

dx
= 4 − 0.3y2 − 0.1y1

Solution. Euler’s method is implemented for each variable as in Eq. (25.2):

y1(0.5) = 4 + [−0.5(4)]0.5 = 3

y2(0.5) = 6 + [4 − 0.3(6) − 0.1(4)]0.5 = 6.9

Note that y1(0) = 4 is used in the second equation rather than the y1(0.5) = 3 computed
with the first equation. Proceeding in a like manner gives

x y1 y2

0 4 6
0.5 3 6.9
1.0 2.25 7.715
1.5 1.6875 8.44525
2.0 1.265625 9.094087

25.4.2 Runge-Kutta Methods

Note that any of the higher-order RK methods in this chapter can be applied to systems of
equations. However, care must be taken in determining the slopes. Figure 25.15 is helpful
in visualizing the proper way to do this for the fourth-order method. That is, we first de-
velop slopes for all variables at the initial value. These slopes (a set of k1’s) are then used
to make predictions of the dependent variable at the midpoint of the interval. These mid-
point values are in turn used to compute a set of slopes at the midpoint (the k2’s). These new
slopes are then taken back to the starting point to make another set of midpoint predictions
that lead to new slope predictions at the midpoint (the k3’s). These are then employed to
make predictions at the end of the interval that are used to develop slopes at the end of the
interval (the k4’s). Finally, the k’s are combined into a set of increment functions [as in
Eq. (25.40)] and brought back to the beginning to make the final prediction. The following
example illustrates the approach.

738 RUNGE-KUTTA METHODS
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EXAMPLE 25.10 Solving Systems of ODEs Using the Fourth-Order RK Method

Problem Statement. Use the fourth-order RK method to solve the ODEs from Exam-
ple 25.9.

Solution. First, we must solve for all the slopes at the beginning of the interval:

k1,1 = f1(0, 4, 6) = −0.5(4) = −2

k1,2 = f2(0, 4, 6) = 4 − 0.3(6) − 0.1(4) = 1.8

where ki, j is the ith value of k for the jth dependent variable. Next, we must calculate the
first values of y1 and y2 at the midpoint:

y1 + k1,1
h

2
= 4 + (−2)

0.5

2
= 3.5

y2 + k1,2
h

2
= 6 + (1.8)

0.5

2
= 6.45

which can be used to compute the first set of midpoint slopes,

k2,1 = f1(0.25, 3.5, 6.45) = −1.75

k2,2 = f2(0.25, 3.5, 6.45) = 1.715

These are used to determine the second set of midpoint predictions,

y1 + k2,1
h

2
= 4 + (−1.75)

0.5

2
= 3.5625

y2 + k2,2
h

2
= 6 + (1.715)

0.5

2
= 6.42875

which can be used to compute the second set of midpoint slopes,

k3,1 = f1(0.25, 3.5625, 6.42875) = −1.78125

k3,2 = f2(0.25, 3.5625, 6.42875) = 1.715125

These are used to determine the predictions at the end of the interval

y1 + k3,1h = 4 + (−1.78125)(0.5) = 3.109375

y2 + k3,2h = 6 + (1.715125)(0.5) = 6.857563

which can be used to compute the endpoint slopes,

k4,1 = f1(0.5, 3.109375, 6.857563) = −1.554688

k4,2 = f2(0.5, 3.109375, 6.857563) = 1.631794

The values of k can then be used to compute [Eq. (25.40)]:

y1(0.5) = 4 + 1

6
[−2 + 2(−1.75 − 1.78125) − 1.554688]0.5 = 3.115234

y2(0.5) = 6 + 1

6
[1.8 + 2(1.715 + 1.715125) + 1.631794]0.5 = 6.857670
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Proceeding in a like manner for the remaining steps yields

x y1 y2

0 4 6
0.5 3.115234 6.857670
1.0 2.426171 7.632106
1.5 1.889523 8.326886
2.0 1.471577 8.946865

25.4.3 Computer Algorithm for Solving Systems of ODEs

The computer code for solving a single ODE with Euler’s method (Fig. 25.7) can be easily
extended to systems of equations. The modifications include:

1. Inputting the number of equations, n.
2. Inputting the initial values for each of the n dependent variables.
3. Modifying the algorithm so that it computes slopes for each of the dependent variables.
4. Including additional equations to compute derivative values for each of the ODEs.
5. Including loops to compute a new value for each dependent variable.

Such an algorithm is outlined in Fig. 25.18 for the fourth-order RK method. Notice
how similar it is in structure and organization to Fig. 25.7. Most of the differences relate to
the fact that

1. There are n equations.
2. The added detail of the fourth-order RK method.

EXAMPLE 25.11 Solving Systems of ODEs with the Computer

Problem Statement. A computer program to implement the fourth-order RK method for
systems can be easily developed based on Fig. 25.18. Such software makes it convenient to
compare different models of a physical system. For example, a linear model for a swinging
pendulum is given by [recall Eq. (PT7.11)]

dy1

dx
= y2

dy2

dx
= −16.1y1

where y1 and y2 = angular displacement and velocity. A nonlinear model of the same sys-
tem is [recall Eq. (PT7.9)]

dy3

dx
= y4

dy4

dx
= −16.1 sin(y3)

where y3 and y4 = angular displacement and velocity for the nonlinear case. Solve these
systems for two cases: (a) a small initial displacement (y1 = y3 = 0.1 radians; y2 = y4 = 0)
and (b) a large displacement (y1 = y3 = π/4 = 0.785398 radians; y2 = y4 = 0).

740 RUNGE-KUTTA METHODS
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25.4 SYSTEMS OF EQUATIONS 741

FIGURE 25.18
Pseudocode for the fourth-order RK method for systems.

(a) Main or “Driver” Program

Assign values for
n � number of equations
yi � initial values of n dependent

variables
xi � initial value independent 

variable
xf � final value independent variable
dx � calculation step size
xout � output interval

x � xi
m � 0
xpm � x
DOFOR i � 1, n
ypi,m � yii
yi � yii

END DO
DO
xend � x � xout
IF (xend � xf) THEN xend � xf
h � dx
CALL Integrator (x, y, n, h, xend)
m � m � 1
xpm � x
DOFOR i � 1, n
ypi,m � yi

END DO
IF (x � xf) EXIT

END DO
DISPLAY RESULTS
END

(b) Routine to Take One Output Step

SUB Integrator (x, y, n, h, xend)
DO
IF (xend � x 	 h) THEN h � xend � x
CALL RK4 (x, y, n, h)
IF (x � xend) EXIT

END DO
END SUB

(c) Fourth-Order RK Method for a System
of ODEs

SUB RK4 (x, y, n, h)
CALL Derivs (x, y, k1)
DOFOR i � 1, n
ymi � yi � k1i * h / 2

END DO
CALL Derivs (x � h / 2, ym, k2)
DOFOR i � 1, n
ymi � yi � k2i * h / 2

END DO
CALL Derivs (x � h / 2, ym, k3)
DOFOR i � 1, n
yei � yi � k3i * h

END DO
CALL Derivs (x � h, ye, k4)
DOFOR i � 1, n
slopei � (k1i � 2*(k2i�k3i)�k4i)/6
yi � yi � slopei * h

END DO
x � x � h

END SUB

(d) Routine to Determine Derivatives

SUB Derivs (x, y, dy)
dy1 � ...
dy2 � ...

END SUB
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Solution.

(a) The calculated results for the linear and nonlinear models are almost identical
(Fig. 25.19a). This is as expected because when the initial displacement is small,
sin (θ) ∼= θ .

(b) When the initial displacement is π/4 = 0.785398, the solutions are much different and
the difference is magnified as time becomes larger and larger (Fig. 25.19b). This is
expected because the assumption that sin (θ) = θ is poor when theta is large.

25.5 ADAPTIVE RUNGE-KUTTA METHODS

To this point, we have presented methods for solving ODEs that employ a constant step
size. For a significant number of problems, this can represent a serious limitation. For
example, suppose that we are integrating an ODE with a solution of the type depicted in
Fig. 25.20. For most of the range, the solution changes gradually. Such behavior suggests
that a fairly large step size could be employed to obtain adequate results. However, for a lo-
calized region from x = 1.75 to x = 2.25, the solution undergoes an abrupt change. The
practical consequence of dealing with such functions is that a very small step size would be
required to accurately capture the impulsive behavior. If a constant step-size algorithm
were employed, the smaller step size required for the region of abrupt change would have
to be applied to the entire computation. As a consequence, a much smaller step size than
necessary—and, therefore, many more calculations—would be wasted on the regions of
gradual change.

742 RUNGE-KUTTA METHODS

FIGURE 25.19
Solutions obtained with a computer program for the fourth-order RK method. The plots represent 
solutions for both linear and nonlinear pendulums with (a) small and (b) large initial 
displacements.
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Algorithms that automatically adjust the step size can avoid such overkill and hence be
of great advantage. Because they “adapt” to the solution’s trajectory, they are said to have
adaptive step-size control. Implementation of such approaches requires that an estimate of
the local truncation error be obtained at each step. This error estimate can then serve as a
basis for either lengthening or decreasing the step size.

Before proceeding, we should mention that aside from solving ODEs, the methods de-
scribed in this chapter can also be used to evaluate definite integrals. As mentioned previ-
ously in the introduction to Part Six, the evaluation of the integral

I =
∫ b

a
f(x) dx

is equivalent to solving the differential equation

dy

dx
= f(x)

for y(b) given the initial condition y(a) = 0. Thus, the following techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally
smooth but exhibit regions of abrupt change.

There are two primary approaches to incorporate adaptive step-size control into one-
step methods. In the first, the error is estimated as the difference between two predic-
tions using the same-order RK method but with different step sizes. In the second, the local
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FIGURE 25.20
An example of a solution of an ODE that exhibits an abrupt change. Automatic step-size
adjustment has great advantages for such cases.
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truncation error is estimated as the difference between two predictions using different-
order RK methods.

25.5.1 Adaptive RK or Step-Halving Method

Step halving (also called adaptive RK) involves taking each step twice, once as a full step
and independently as two half steps. The difference in the two results represents an esti-
mate of the local truncation error. If y1 designates the single-step prediction and y2 desig-
nates the prediction using the two half steps, the error � can be represented as

� = y2 − y1 (25.43)

In addition to providing a criterion for step-size control, Eq. (25.43) can also be used to cor-
rect the y2 prediction. For the fourth-order RK version, the correction is

y2 ← y2 + �

15
(25.44)

This estimate is fifth-order accurate.

EXAMPLE 25.12 Adaptive Fourth-Order RK Method

Problem Statement. Use the adaptive fourth-order RK method to integrate y ′ = 4e0.8x −
0.5y from x = 0 to 2 using h = 2 and an initial condition of y(0) = 2. This is the same dif-
ferential equation that was solved previously in Example 25.5. Recall that the true solu-
tions is y(2) = 14.84392.

Solution. The single prediction with a step of h is computed as

y(2) = 2 + 1

6
[3 + 2(6.40216 + 4.70108) + 14.11105]2 = 15.10584

The two half-step predictions are

y(1) = 2 + 1

6
[3 + 2(4.21730 + 3.91297) + 5.945681]1 = 6.20104

and

y(2) = 6.20104 + 1

6
[5.80164 + 2(8.72954 + 7.99756) + 12.71283]1 = 14.86249

Therefore, the approximate error is

Ea = 14.86249 − 15.10584

15
= −0.01622

which compares favorably with the true error of

Et = 14.84392 − 14.86249 = −0.01857

The error estimate can also be used to correct the prediction

y(2) = 14.86249 − 0.01622 = 14.84627

which has an Et = −0.00235.
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25.5.2 Runge-Kutta Fehlberg

Aside from step halving as a strategy to adjust step size, an alternative approach for
obtaining an error estimate involves computing two RK predictions of different order.
The results can then be subtracted to obtain an estimate of the local truncation error. One
shortcoming of this approach is that it greatly increases the computational overhead. For
example, a fourth- and fifth-order prediction amount to a total of 10 function evaluations
per step. The Runge-Kutta Fehlberg or embedded RK method cleverly circumvents this
problem by using a fifth-order RK method that employs the function evaluations from the
accompanying fourth-order RK method. Thus, the approach yields the error estimate on the
basis of only six function evaluations!

For the present case, we use the following fourth-order estimate

yi+1 = yi +
(

37

378
k1 + 250

621
k3 + 125

594
k4 + 512

1771
k6

)
h (25.45)

along with the fifth-order formula:

yi+1 = yi +
(

2825

27,648
k1 + 18,575

48,384
k3 + 13,525

55,296
k4 + 277

14,336
k5 + 1

4
k6

)
h (25.46)

where

k1 = f(xi , yi )

k2 = f

(
xi + 1

5
h, yi + 1

5
k1h

)

k3 = f

(
xi + 3

10
h, yi + 3

40
k1h + 9

40
k2h

)

k4 = f

(
xi + 3

5
h, yi + 3

10
k1h − 9

10
k2h + 6

5
k3h

)

k5 = f

(
xi + h, yi − 11

54
k1h + 5

2
k2h − 70

27
k3h + 35

27
k4h

)

k6 = f

(
xi + 7

8
h, yi + 1631

55,296
k1h + 175

512
k2h + 575

13,824
k3h + 44,275

110,592
k4h

+ 253

4096
k5h

)

Thus, the ODE can be solved with Eq. (25.46) and the error estimated as the difference of
the fifth- and fourth-order estimates. It should be noted that the particular coefficients used
above were developed by Cash and Karp (1990). Therefore, it is sometimes called the
Cash-Karp RK method.

EXAMPLE 25.13 Runge-Kutta Fehlberg Method

Problem Statement. Use the Cash-Karp version of the Runge-Kutta Fehlberg approach
to perform the same calculation as in Example 25.12 from x = 0 to 2 using h = 2.
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Solution. The calculation of the k’s can be summarized in the following table:

x y f(x, y)

k1 0 2 3
k2 0.4 3.2 3.908511
k3 0.6 4.20883 4.359883
k4 1.2 7.228398 6.832587
k5 2 15.42765 12.09831
k6 1.75 12.17686 10.13237

These can then be used to compute the fourth-order prediction

y1 = 2 +
(

37

378
3 + 250

621
4.359883 + 125

594
6.832587 + 512

1771
10.13237

)
2 = 14.83192

along with a fifth-order formula:

y1 = 2 +
(

2825

27,648
3 + 18,575

48,384
4.359883 + 13,525

55,296
6.832587

+ 277

14,336
12.09831 + 1

4
10.13237

)
2 = 14.83677

The error estimate is obtained by subtracting these two equations to give

Ea = 14.83677 − 14.83192 = 0.004842

25.5.3 Step-Size Control

Now that we have developed ways to estimate the local truncation error, it can be used to
adjust the step size. In general, the strategy is to increase the step size if the error is too
small and decrease it if the error is too large. Press et al. (1992) have suggested the follow-
ing criterion to accomplish this:

hnew = hpresent

∣∣∣∣ �new

�present

∣∣∣∣
α

(25.47)

where hpresent and hnew = the present and the new step sizes, respectively, �present = the
computed present accuracy, �new = the desired accuracy, and α = a constant power that is
equal to 0.2 when the step size is increased (that is, when �present ≤ �new) and 0.25 when
the step size is decreased (�present > �new).

The key parameter in Eq. (25.47) is obviously �new because it is your vehicle for spec-
ifying the desired accuracy. One way to do this would be to relate �new to a relative error
level. Although this works well when only positive values occur, it can cause problems for
solutions that pass through zero. For example, you might be simulating an oscillating func-
tion that repeatedly passes through zero but is bounded by maximum absolute values. For
such a case, you might want these maximum values to figure in the desired accuracy.
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A more general way to handle such cases is to determine �new as

�new = εyscale

where ε = an overall tolerance level. Your choice of yscale will then determine how the error
is scaled. For example, if yscale = y, the accuracy will be couched in terms of fractional rel-
ative errors. If you are dealing with a case where you desire constant errors relative to a
prescribed maximum bound, set yscale equal to that bound. A trick suggested by Press et al.
(1992) to obtain the constant relative errors except very near zero crossings is

yscale = |y| +
∣∣∣∣h dy

dx

∣∣∣∣
This is the version we will use in our algorithm.

25.5.4 Computer Algorithm

Figures 25.21 and 25.22 outline pseudocode to implement the Cash-Karp version of the
Runge-Kutta Fehlberg algorithm. This algorithm is patterned after a more detailed imple-
mentation by Press et al. (1992) for systems of ODEs.

Figure 25.21 implements a single step of the Cash-Karp routine (that is Eqs. 25.45 and
25.46). Figure 25.22 outlines a general driver program along with a subroutine that actu-
ally adapts the step size.
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FIGURE 25.21
Pseudocode for a single step of the Cash-Karp RK method.

SUBROUTINE RKkc (y,dy,x,h,yout,yerr)
PARAMETER (a2�0.2,a3�0.3,a4�0.6,a5�1.,a6�0.875,
b21�0.2,b31�3.�40.,b32�9.�40.,b41�0.3,b42��0.9,
b43�1.2,b51��11.�54.,b52�2.5,b53��70.�27.,
b54�35.�27.,b61�1631.�55296.,b62�175.�512.,
b63�575.�13824.,b64�44275.�110592.,b65�253.�4096.,
c1�37.�378.,c3�250.�621.,c4�125.�594.,
c6�512.�1771.,dc1�c1�2825.�27648.,
dc3�c3�18575.�48384.,dc4�c4�13525.�55296.,
dc5��277.�14336.,dc6�c6�0.25)

ytemp�y�b21*h*dy
CALL Derivs (x�a2*h,ytemp,k2)
ytemp�y�h*(b31*dy�b32*k2)
CALL Derivs(x�a3*h,ytemp,k3)
ytemp�y�h*(b41*dy�b42*k2�b43*k3)
CALL Derivs(x�a4*h,ytemp,k4)
ytemp�y�h*(b51*dy�b52*k2�b53*k3�b54*k4)
CALL Derivs(x�a5*h,ytemp,k5)
ytemp�y�h*(b61*dy�b62*k2�b63*k3�b64*k4�b65*k5)
CALL Derivs(x�a6*h,ytemp,k6)
yout�y�h*(c1*dy�c3*k3�c4*k4�c6*k6)
yerr�h*(dc1*dy�dc3*k3�dc4*k4�dc5*k5�dc6*k6)
END RKkc
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EXAMPLE 25.14 Computer Application of an Adaptive Fourth-Order RK Scheme

Problem Statement. The adaptive RK method is well-suited for the following ordinary
differential equation

dy

dx
+ 0.6y = 10e−(x−2)2/[2(0.075)2] (E25.14.1)

Notice for the initial condition, y(0) = 0.5, the general solution is

y = 0.5e−0.6x (E25.14.2)

which is a smooth curve that gradually approaches zero as x increases. In contrast, the par-
ticular solution undergoes an abrupt transition in the vicinity of x = 2 due to the nature of
the forcing function (Fig. 25.23a). Use a standard fourth-order RK scheme to solve
Eq. (E25.14.1) from x = 0 to 4. Then employ the adaptive scheme described in this section
to perform the same computation.

Solution. First, the classical fourth-order scheme is used to compute the solid curve in
Fig. 25.23b. For this computation, a step size of 0.1 is used so that 4/(0.1) = 40 applica-
tions of the technique are made. Then, the calculation is repeated with a step size of 0.05
for a total of 80 applications. The major discrepancy between the two results occurs in the
region from 1.8 to 2.0. The magnitude of the discrepancy is about 0.1 to 0.2 percent.

748 RUNGE-KUTTA METHODS

FIGURE 25.22
Pseudocode for a (a) driver program and an (b) adaptive step routine to solve a single ODE.

(a) Driver Program

INPUT xi, xf, yi
maxstep�100
hi�.5; tiny � 1.� 10�30

eps�0.00005
print *, xi,yi
x�xi
y�yi
h�hi
istep�0
DO
IF (istep � maxstep AND x 
 xf) EXIT
istep�istep�1
CALL Derivs(x,y,dy)
yscal�ABS(y)�ABS(h*dy)�tiny
IF (x�h�xf) THEN h�xf�x
CALL Adapt (x,y,dy,h,yscal,eps,hnxt)
PRINT x,y
h�hnxt

END DO
END

(b) Adaptive Step Routine

SUB Adapt (x,y,dy,htry,yscal,eps,hnxt)
PARAMETER (safety�0.9,econ�1.89e�4)
h�htry
DO
CALL RKkc(y,dy,x,h,ytemp,yerr)
emax�abs(yerr/yscal/eps)
IF emax 
 1 EXIT
htemp�safety*h*emax�0.25

h�max(abs(htemp),0.25*abs(h))
xnew�x�h
IF xnew � x THEN pause

END DO
IF emax � econ THEN
hnxt�safety*emax�.2*h

ELSE
hnxt�4.*h

END IF
x�x�h
y�ytemp
END Adapt
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Next, the algorithm in Figs. 25.21 and 25.22 is developed into a computer program and
used to solve the same problem. An initial step size of 0.5 and an ε = 0.00005 were chosen.
The results were superimposed on Fig. 25.23b. Notice how large steps are taken in the
regions of gradual change. Then, in the vicinity of x = 2, the steps are decreased to ac-
commodate the abrupt nature of the forcing function.

The utility of an adaptive integration scheme obviously depends on the nature of the
functions being modeled. It is particularly advantageous for those solutions with long
smooth stretches and short regions of abrupt change. In addition, it has utility in those sit-
uations where the correct step size is not known a priori. For these cases, an adaptive rou-
tine will “feel” its way through the solution while keeping the results within the desired tol-
erance. Thus, it will tiptoe through the regions of abrupt change and step out briskly when
the variations become more gradual.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 749

FIGURE 25.23
(a) A bell-shaped forcing function that induces an abrupt change in the solution of an ODE 
[Eq. (E25.14.1)]. (b) The solution. The points indicate the predictions of an adaptive
step-size routine.

0

1

2

0 2 4 x

(b)

0

5

10

0 2 4 x

(a)

cha01064_ch25.qxd  3/25/09  11:27 AM  Page 749



25.1 Solve the following initial value problem over the interval from
t = 0 to 2 where y(0) = 1. Display all your results on the same graph.

dy

dt
= yt3 − 1.5y

(a) Analytically.
(b) Euler’s method with h = 0.5 and 0.25.
(c) Midpoint method with h = 0.5.
(d) Fourth-order RK method with h = 0.5.
25.2 Solve the following problem over the interval from x = 0 to 1
using a step size of 0.25 where y(0) = 1. Display all your results on
the same graph.

dy

dx
= (1 + 2x)

√
y

(a) Analytically.
(b) Euler’s method.
(c) Heun’s method without the corrector.
(d) Ralston’s method.
(e) Fourth-order RK method.
25.3 Use the (a) Euler and (b) Heun (without iteration) methods to
solve

d2 y

dt2
− t + y = 0

where y(0) = 2 and y�(0) = 0. Solve from x = 0 to 4 using h = 0.1.
Compare the methods by plotting the solutions.
25.4 Solve the following problem with the fourth-order RK method:

d2 y

dx2
+ 0.5

dy

dx
+ 7y = 0

where y(0) = 4 and y�(0) = 0. Solve from x = 0 to 5 with h = 0.5.
Plot your results.
25.5 Solve from t = 0 to 3 with h = 0.1 using (a) Heun (without
corrector) and (b) Ralston’s 2nd-order RK method:

dy

dt
= y sin3(t) y(0) = 1

25.6 Solve the following problem numerically from t = 0 to 3:

dy

dt
= −y + t2 y(0) = 1

Use the third-order RK method with a step size of 0.5.
25.7 Use (a) Euler’s and (b) the fourth-order RK method to solve

dy

dx
= −2y + 4e−x

dz

dx
= − yz2

3

over the range x = 0 to 1 using a step size of 0.2 with y(0) = 2 and
z(0) = 4.
25.8 Compute the first step of Example 25.14 using the adaptive
fourth-order RK method with h = 0.5. Verify whether step-size
adjustment is in order.
25.9 If ε = 0.001, determine whether step size adjustment is
required for Example 25.12.
25.10 Use the RK-Fehlberg approach to perform the same calcula-
tion as in Example 25.12 from x = 0 to 1 with h = 1.
25.11 Write a computer program based on Fig. 25.7. Among other
things, place documentation statements throughout the program to
identify what each section is intended to accomplish.
25.12 Test the program you developed in Prob. 25.11 by duplicat-
ing the computations from Examples 25.1 and 25.4.
25.13 Develop a user-friendly program for the Heun method with
an iterative corrector. Test the program by duplicating the results in
Table 25.2.
25.14 Develop a user-friendly computer program for the classical
fourth-order RK method. Test the program by duplicating Exam-
ple 25.7.
25.15 Develop a user-friendly computer program for systems of
equations using the fourth-order RK method. Use this program to
duplicate the computation in Example 25.10.
25.16 The motion of a damped spring-mass system (Fig. P25.16)
is described by the following ordinary differential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

where x = displacement from equilibrium position (m), t = time
(s), m = 20-kg mass, and c = the damping coefficient (N · s/m).
The damping coefficient c takes on three values of 5 (under-
damped), 40 (critically damped), and 200 (overdamped). The
spring constant k = 20 N/m. The initial velocity is zero, and the ini-
tial displacement x = 1 m. Solve this equation using a numerical
method over the time period 0 ≤ t ≤ 15 s. Plot the displacement
versus time for each of the three values of the damping coefficient
on the same curve.
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25.17 If water is drained from a vertical cylindrical tank by open-
ing a valve at the base, the water will flow fast when the tank is full
and slow down as it continues to drain. As it turns out, the rate at
which the water level drops is:

dy

dt
= −k

√
y

where k is a constant depending on the shape of the hole and the
cross-sectional area of the tank and drain hole. The depth of the
water y is measured in meters and the time t in minutes. If k = 0.06,
determine how long it takes the tank to drain if the fluid level is ini-
tially 3 m. Solve by applying Euler’s equation and writing a com-
puter program or using Excel. Use a step of 0.5 minutes.
25.18 The following is an initial value, second-order differential
equation:

d2x

dt2
+ (5x)

dx

dt
+ (x + 7) sin(ωt) = 0

where

dx

dt
(0) = 1.5 and x(0) = 6

Note that ω = 1. Decompose the equation into two first-order dif-
ferential equations. After the decomposition, solve the system from
t = 0 to 15 and plot the results.
25.19 Assuming that drag is proportional to the square of velocity,
we can model the velocity of a falling object like a parachutist with
the following differential equation:

dv

dt
= g − cd

m
v2

where v is velocity (m/s), t = time (s), g is the acceleration due to
gravity (9.81 m/s2), cd = a second-order drag coefficient (kg/m),
and m = mass (kg). Solve for the velocity and distance fallen by a
90-kg object with a drag coefficient of 0.225 kg/m. If the initial
height is 1 km, determine when it hits the ground. Obtain your so-
lution with (a) Euler’s method and (b) the fourth-order RK method. 
25.20 A spherical tank has a circular orifice in its bottom through
which the liquid flows out (Fig. P25.20). The flow rate through the
hole can be estimated as

Qout = CA
√

2gH

where Qout = outflow (m3/s), C = an empirically-derived coeffi-
cient, A = the area of the orifice (m2), g = the gravitational constant
(= 9.81 m/s2), and H = the depth of liquid in the tank. Use one of
the numerical methods described in this chapter to determine how
long it will take for the water to flow out of a 3-m diameter tank
with an initial height of 2.75 m. Note that the orifice has a diameter
of 3 cm and C = 0.55.

25.21 The logistic model is used to simulate population as in

dp

dt
= kgm (1 − p/pmax)p

where p = population, kgm = the maximum growth rate under un-
limited conditions, and pmax = the carrying capacity. Simulate the
world’s population from 1950 to 2000 using one of the numerical
methods described in this chapter. Employ the following initial
conditions and parameter values for your simulation: p0 (in 1950) =
2555 million people, kgm = 0.026/yr, and pmax = 12,000 million
people. Have the function generate output corresponding to the
dates for the following measured population data. Develop a plot of
your simulation along with the data.

t 1950 1960 1970 1980 1990 2000

p 2555 3040 3708 4454 5276 6079

25.22 Suppose that a projectile is launched upward from the
earth’s surface. Assume that the only force acting on the object is
the downward force of gravity. Under these conditions, a force bal-
ance can be used to derive,

dv

dt
= −g(0)

R2

(R + x)2

where v = upward velocity (m/s), t = time (s), x = altitude (m)
measured upwards from the earth’s surface, g(0) = the gravita-
tional acceleration at the earth’s surface (∼= 9.81 m/s2), and R = the
earth’s radius (∼= 6.37 × 106 m). Recognizing that dx/dt = v, use
Euler’s method to determine the maximum height that would be
obtained if v(t = 0) = 1400 m/s.
25.23 The following function exhibits both flat and steep regions
over a relatively short x region:

f (x) = 1

(x − 0.3)2 + 0.01
+ 1

(x − 0.9)2 + 0.04
− 6

Determine the value of the definite integral of this function be-
tween x = 0 and 1 using an adaptive RK method.

PROBLEMS 751

Figure P25.20
A spherical tank.
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26C H A P T E R 26

752

Stiffness and Multistep Methods

This chapter covers two areas. First, we describe stiff ODEs. These are both individual and
systems of ODEs that have both fast and slow components to their solution. We introduce
the idea of an implicit solution technique as one commonly used remedy for this problem.
Then we discuss multistep methods. These algorithms retain information of previous steps
to more effectively capture the trajectory of the solution. They also yield the truncation
error estimates that can be used to implement adaptive step-size control.

26.1 STIFFNESS

Stiffness is a special problem that can arise in the solution of ordinary differential equa-
tions. A stiff system is one involving rapidly changing components together with slowly
changing ones. In many cases, the rapidly varying components are ephemeral transients
that die away quickly, after which the solution becomes dominated by the slowly varying
components. Although the transient phenomena exist for only a short part of the integration
interval, they can dictate the time step for the entire solution.

Both individual and systems of ODEs can be stiff. An example of a single stiff
ODE is

dy

dt
= −1000y + 3000 − 2000e−t (26.1)

If y(0) = 0, the analytical solution can be developed as

y = 3 − 0.998e−1000t − 2.002e−t (26.2)

As in Fig. 26.1, the solution is initially dominated by the fast exponential term
(e−1000t). After a short period (t < 0.005), this transient dies out and the solution becomes
dictated by the slow exponential (e−t).

Insight into the step size required for stability of such a solution can be gained by ex-
amining the homogeneous part of Eq. (26.1),

dy

dt
= −ay (26.3)
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If y(0) = y0, calculus can be used to determine the solution as

y = y0e−at

Thus, the solution starts at y0 and asymptotically approaches zero.
Euler’s method can be used to solve the same problem numerically:

yi+1 = yi + dyi

dt
h

Substituting Eq. (26.3) gives

yi+1 = yi − ayi h

or

yi+1 = yi (1 − ah) (26.4)

The stability of this formula clearly depends on the step size h. That is, |1 − ah| must be
less than 1. Thus, if h > 2/a, |yi | → ∞ as i → ∞.

For the fast transient part of Eq. (26.2), this criterion can be used to show that the step
size to maintain stability must be < 2/1000 = 0.002. In addition, it should be noted that,
whereas this criterion maintains stability (that is, a bounded solution), an even smaller step
size would be required to obtain an accurate solution. Thus, although the transient occurs for
only a small fraction of the integration interval, it controls the maximum allowable step size.

Superficially, you might suppose that the adaptive step-size routines described at the
end of the last chapter might offer a solution for this dilemma. You might think that they
would use small steps during the rapid transients and large steps otherwise. However, this
is not the case, because the stability requirement will still necessitate using very small steps
throughout the entire solution.

26.1 STIFFNESS 753

FIGURE 26.1
Plot of a stiff solution of a single ODE. Although the solution appears to start at 1, there is
actually a fast transient from y � 0 to 1 that occurs in less than 0.005 time unit. This transient is
perceptible only when the response is viewed on the finer timescale in the inset.
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Rather than using explicit approaches, implicit methods offer an alternative remedy.
Such representations are called implicit because the unknown appears on both sides of the
equation. An implicit form of Euler’s method can be developed by evaluating the deriva-
tive at the future time,

yi+1 = yi + dyi+1

dt
h

This is called the backward, or implicit, Euler’s method. Substituting Eq. (26.3) yields

yi+1 = yi − ayi+1h

which can be solved for

yi+1 = yi

1 + ah
(26.5)

For this case, regardless of the size of the step, |yi | → 0 as i → ∞. Hence, the approach is
called unconditionally stable.

EXAMPLE 26.1 Explicit and Implicit Euler

Problem Statement. Use both the explicit and implicit Euler methods to solve

dy

dt
= −1000y + 3000 − 2000e−t

where y(0) = 0. (a) Use the explicit Euler with step sizes of 0.0005 and 0.0015 to solve for
y between t = 0 and 0.006. (b) Use the implicit Euler with a step size of 0.05 to solve for y
between 0 and 0.4.

Solution.

(a) For this problem, the explicit Euler’s method is

yi+1 = yi + (−1000yi + 3000 − 2000e−ti )h

The result for h = 0.0005 is displayed in Fig. 26.2a along with the analytical solution.
Although it exhibits some truncation error, the result captures the general shape of the
analytical solution. In contrast, when the step size is increased to a value just below
the stability limit (h = 0.0015), the solution manifests oscillations. Using h > 0.002
would result in a totally unstable solution, that is, it would go infinite as the solution
progressed.

(b) The implicit Euler’s method is

yi+1 = yi + (−1000yi+1 + 3000 − 2000e−ti+1)h

Now because the ODE is linear, we can rearrange this equation so that yi+1 is isolated
on the left-hand side,

yi+1 = yi + 3000h − 2000he−ti+1

1 + 1000h

The result for h = 0.05 is displayed in Fig. 26.2b along with the analytical solution.
Notice that even though we have used a much bigger step size than the one that
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induced instability for the explicit Euler, the numerical solution tracks nicely on the
analytical result.

Systems of ODEs can also be stiff. An example is

dy1

dt
= −5y1 + 3y2 (26.6a)

dy2

dt
= 100y1 − 301y2 (26.6b)

For the initial conditions y1(0) = 52.29 and y2(0) = 83.82, the exact solution is

y1 = 52.96e−3.9899t − 0.67e−302.0101t (26.7a)

y2 = 17.83e−3.9899t + 65.99e−302.0101t (26.7b)

Note that the exponents are negative and differ by about 2 orders of magnitude. As with the
single equation, it is the large exponents that respond rapidly and are at the heart of the sys-
tem’s stiffness.

26.1 STIFFNESS 755

FIGURE 26.2
Solution of a “stiff” ODE with (a) the explicit and (b) implicit Euler methods.
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An implicit Euler’s method for systems can be formulated for the present example as

y1,i+1 = y1,i + (−5y1,i+1 + 3y2,i+1)h (26.8a)

y2,i+1 = y2,i + (100y1,i+1 − 301y2,i+1)h (26.8b)

Collecting terms gives

(1 + 5h)y1,i+1 − 3hy2,i+1 = y1,i (26.9a)

−100hy1,i+1 + (1 + 301h)y2,i+1 = y2,i (26.9b)

Thus, we can see that the problem consists of solving a set of simultaneous equations for
each time step.

For nonlinear ODEs, the solution becomes even more difficult since it involves solv-
ing a system of nonlinear simultaneous equations (recall Sec. 6.5). Thus, although stabil-
ity is gained through implicit approaches, a price is paid in the form of added solution
complexity.

The implicit Euler method is unconditionally stable and only first-order accurate. It is
also possible to develop in a similar manner a second-order accurate implicit trapezoidal
rule integration scheme for stiff systems. It is usually desirable to have higher-order meth-
ods. The Adams-Moulton formulas described later in this chapter can also be used to devise
higher-order implicit methods. However, the stability limits of such approaches are very
stringent when applied to stiff systems. Gear (1971) developed a special series of implicit
schemes that have much larger stability limits based on backward difference formulas.
Extensive efforts have been made to develop software to efficiently implement Gear’s
methods. As a result, this is probably the most widely used method to solve stiff systems.
In addition, Rosenbrock and others (see Press et al., 1992) have proposed implicit Runge-
Kutta algorithms where the k terms appear implicitly. These methods have good stabil-
ity characteristics and are quite suitable for solving systems of stiff ordinary differential
equations.

26.2 MULTISTEP METHODS

The one-step methods described in the previous sections utilize information at a single
point xi to predict a value of the dependent variable yi+1 at a future point xi+1 (Fig. 26.3a).
Alternative approaches, called multistep methods (Fig. 26.3b), are based on the insight that,
once the computation has begun, valuable information from previous points is at our com-
mand. The curvature of the lines connecting these previous values provides information
regarding the trajectory of the solution. The multistep methods explored in this chapter
exploit this information to solve ODEs. Before describing the higher-order versions, we
will present a simple second-order method that serves to demonstrate the general charac-
teristics of multistep approaches.

26.2.1 The Non-Self-Starting Heun Method

Recall that the Heun approach uses Euler’s method as a predictor [Eq. (25.15)]:

y0
i+1 = yi + f(xi , yi )h (26.10)
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and the trapezoidal rule as a corrector [Eq. (25.16)]:

yi+1 = yi + f(xi, yi ) + f
(
xi+1, y0

i+1

)
2

h (26.11)

Thus, the predictor and the corrector have local truncation errors of O(h2) and O(h3), re-
spectively. This suggests that the predictor is the weak link in the method because it has the
greatest error. This weakness is significant because the efficiency of the iterative corrector
step depends on the accuracy of the initial prediction. Consequently, one way to improve
Heun’s method is to develop a predictor that has a local error of O(h3). This can be accom-
plished by using Euler’s method and the slope at yi, and extra information from a previous
point yi−1, as in

y0
i+1 = yi−1 + f(xi, yi )2h (26.12)

Notice that Eq. (26.12) attains O(h3) at the expense of employing a larger step size, 2h. In ad-
dition, note that Eq. (26.12) is not self-starting because it involves a previous value of the de-
pendent variable yi−1. Such a value would not be available in a typical initial-value problem.
Because of this fact, Eqs. (26.11) and (26.12) are called the non-self-starting Heun method.

As depicted in Fig. 26.4, the derivative estimate in Eq. (26.12) is now located at the
midpoint rather than at the beginning of the interval over which the prediction is made. As
demonstrated subsequently, this centering improves the error of the predictor to O(h3).
However, before proceeding to a formal derivation of the non-self-starting Heun, we will
summarize the method and express it using a slightly modified nomenclature:

Predictor: y0
i+1 = ym

i−1 + f
(
xi, ym

i

)
2h (26.13)

Corrector: y j
i+1 = ym

i + f
(
xi, ym

i

) + f
(
xi+1, y j−1

i+1

)
2

h

(for j = 1, 2, . . . , m)

(26.14)
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FIGURE 26.3
Graphical depiction of the
fundamental difference between
(a) one-step and (b) multistep
methods for solving ODEs.
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where the superscripts have been added to denote that the corrector is applied iteratively
from j = 1 to m to obtain refined solutions. Note that ym

i and ym
i−1 are the final results of the

corrector iterations at the previous time steps. The iterations are terminated at any time step
on the basis of the stopping criterion

|εa| =
∣∣∣∣∣ y j

i+1 − y j−1
i+1

y j
i+1

∣∣∣∣∣ 100% (26.15)

When εa is less than a prespecified error tolerance εs , the iterations are terminated. At this
point, j = m. The use of Eqs. (26.13) through (26.15) to solve an ODE is demonstrated in
the following example.

EXAMPLE 26.2 Non-Self-Starting Heun Method

Problem Statement. Use the non-self-starting Heun method to perform the same com-
putations as were performed previously in Example 25.5 using Heun’s method. That is,
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FIGURE 26.4
A graphical depiction of the non-self-starting Heun method. (a) The midpoint method that is
used as a predictor. (b) The trapezoidal rule that is employed as a corrector.
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integrate y′ = 4e0.8x − 0.5y from x = 0 to x = 4 using a step size of 1.0. As with Example
25.5, the initial condition at x = 0 is y = 2. However, because we are now dealing with
a multistep method, we require the additional information that y is equal to −0.3929953 at
x = −1.

Solution. The predictor [Eq. (26.13)] is used to extrapolate linearly from x = −1 to x = 1.

y0
1 = −0.3929953 + [

4e0.8(0) − 0.5(2)
]

2 = 5.607005

The corrector [Eq. (26.14)] is then used to compute the value:

y1
1 = 2 + 4e0.8(0) − 0.5(2) + 4e0.8(1) − 0.5(5.607005)

2
1 = 6.549331

which represents a percent relative error of −5.73 percent (true value = 6.194631). This
error is somewhat smaller than the value of −8.18 percent incurred in the self-starting Heun.

Now, Eq. (26.14) can be applied iteratively to improve the solution:

y2
1 = 2 + 3 + 4e0.8(1) − 0.5(6.549331)

2
1 = 6.313749

which represents an εt of −1.92%. An approximate estimate of the error can also be deter-
mined using Eq. (26.15):

|εa| =
∣∣∣∣6.313749 − 6.549331

6.313749

∣∣∣∣ 100% = 3.7%

Equation (26.14) can be applied iteratively until εa falls below a prespecified value of εs .
As was the case with the Heun method (recall Example 25.5), the iterations converge on a
value of 6.360865 (εt = −2.68%). However, because the initial predictor value is more
accurate, the multistep method converges at a somewhat faster rate.

For the second step, the predictor is

y0
2 = 2 + [

4e0.8(1) − 0.5(6.360865)
]

2 = 13.44346 εt = 9.43%

which is superior to the prediction of 12.08260 (εt = 18%) that was computed with the
original Heun method. The first corrector yields 15.76693 (εt = 6.8%), and subsequent it-
erations converge on the same result as was obtained with the self-starting Heun method:
15.30224 (εt = −3.1%). As with the previous step, the rate of convergence of the correc-
tor is somewhat improved because of the better initial prediction.

Derivation and Error Analysis of Predictor-Corrector Formulas. We have just em-
ployed graphical concepts to derive the non-self-starting Heun. We will now show how the
same equations can be derived mathematically. This derivation is particularly interesting
because it ties together ideas from curve fitting, numerical integration, and ODEs. The ex-
ercise is also useful because it provides a simple procedure for developing higher-order
multistep methods and estimating their errors.

The derivation is based on solving the general ODE

dy

dx
= f(x, y)
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This equation can be solved by multiplying both sides by dx and integrating between lim-
its at i and i + 1:∫ yi+1

yi

dy =
∫ xi+1

xi

f(x, y) dx

The left side can be integrated and evaluated using the fundamental theorem [recall
Eq. (25.21)]:

yi+1 = yi +
∫ xi+1

xi

f(x, y) dx (26.16)

Equation (26.16) represents a solution to the ODE if the integral can be evaluated.
That is, it provides a means to compute a new value of the dependent variable yi+1 on the
basis of a prior value yi and the differential equation.

Numerical integration formulas such as those developed in Chap. 21 provide one way
to make this evaluation. For example, the trapezoidal rule [Eq. (21.3)] can be used to eval-
uate the integral, as in∫ xi+1

xi

f(x,y) dx = f(xi , yi ) + f(xi+1, yi+1)

2
h (26.17)

where h = xi+1 − xi is the step size. Substituting Eq. (26.17) into Eq. (26.16) yields

yi+1 = yi + f(xi , yi ) + f(xi+1, yi+1)

2
h

which is the corrector equation for the Heun method. Because this equation is based on the
trapezoidal rule, the truncation error can be taken directly from Table 21.2,

Ec = − 1

12
h3 y(3)(ξc) = − 1

12
h3 f ′′(ξc) (26.18)

where the subscript c designates that this is the error of the corrector.
A similar approach can be used to derive the predictor. For this case, the integration

limits are from i − 1 to i + 1:∫ yi+1

yi−1

dy =
∫ xi+1

xi−1

f(x,y) dx

which can be integrated and rearranged to yield

yi+1 = yi−1 +
∫ xi+1

xi−1

f(x,y) dx (26.19)

Now, rather than using a closed formula from Table 21.2, the first Newton-Cotes open in-
tegration formula (see Table 21.4) can be used to evaluate the integral, as in∫ xi+1

xi−1

f(x,y) dx = 2h f(xi,yi ) (26.20)

which is called the midpoint method. Substituting Eq. (26.20) into Eq. (26.19) yields

yi+1 = yi−1 + 2h f(xi,yi )
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which is the predictor for the non-self-starting Heun. As with the corrector, the local trun-
cation error can be taken directly from Table 21.4:

Ep = 1

3
h3 y(3)(ξp) = 1

3
h3 f ′′(ξp) (26.21)

where the subscript p designates that this is the error of the predictor.
Thus, the predictor and the corrector for the non-self-starting Heun method have trun-

cation errors of the same order. Aside from upgrading the accuracy of the predictor, this
fact has additional benefits related to error analysis, as elaborated in the next section.

Error Estimates. If the predictor and the corrector of a multistep method are of the same
order, the local truncation error may be estimated during the course of a computation.
This is a tremendous advantage because it establishes a criterion for adjustment of the
step size.

The local truncation error for the predictor is estimated by Eq. (26.21). This error esti-
mate can be combined with the estimate of yi+l from the predictor step to yield [recall our
basic definition of Eq. (3.1)]

True value = y0
i+1 + 1

3
h3 y(3)(ξp) (26.22)

Using a similar approach, the error estimate for the corrector [Eq. (26.18)] can be com-
bined with the corrector result yi+l to give

True value = ym
i+1 − 1

12
h3 y(3)(ξc) (26.23)

Equation (26.22) can be subtracted from Eq. (26.23) to yield

0 = ym
i+1 − y0

i+1 − 5

12
h3 y(3)(ξ) (26.24)

where ξ is now between xi−l and xi+l. Now, dividing Eq. (26.24) by 5 and rearranging the
result gives

y0
i+1 − ym

i+1

5
= − 1

12
h3 y(3)(ξ) (26.25)

Notice that the right-hand sides of Eqs. (26.18) and (26.25) are identical, with the excep-
tion of the argument of the third derivative. If the third derivative does not vary apprecia-
bly over the interval in question, we can assume that the right-hand sides are equal, and
therefore, the left-hand sides should also be equivalent, as in

Ec = − y0
i+1 − ym

i+1

5
(26.26)

Thus, we have arrived at a relationship that can be used to estimate the per-step truncation
error on the basis of two quantities—the predictor (y0

i+1) and the corrector (ym
i+1)—that are

routine by-products of the computation.
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EXAMPLE 26.3 Estimate of Per-Step Truncation Error

Problem Statement. Use Eq. (26.26) to estimate the per-step truncation error of 
Example 26.2. Note that the true values at x = 1 and 2 are 6.194631 and 14.84392, 
respectively.

Solution. At xi+l = 1, the predictor gives 5.607005 and the corrector yields 6.360865.
These values can be substituted into Eq. (26.26) to give

Ec = −6.360865 − 5.607005

5
= −0.1507722

which compares well with the exact error,

Et = 6.194631 − 6.360865 = −0.1662341

At xi+l = 2, the predictor gives 13.44346 and the corrector yields 15.30224, which can
be used to compute

Ec = −15.30224 − 13.44346

5
= −0.3717550

which also compares favorably with the exact error, Et = 14.84392 − 15.30224 =
−0.4583148.

The ease with which the error can be estimated using Eq. (26.26) provides a rational
basis for step-size adjustment during the course of a computation. For example, if
Eq. (26.26) indicates that the error is greater than an acceptable level, the step size could be
decreased.

Modifiers. Before discussing computer algorithms, we must note two other ways in
which the non-self-starting Heun method can be made more accurate and efficient. First,
you should realize that besides providing a criterion for step-size adjustment, Eq. (26.26)
represents a numerical estimate of the discrepancy between the final corrected value at
each step yi+1 and the true value. Thus, it can be added directly to yi+1 to refine the estimate
further:

ym
i+1← ym

i+1 − ym
i+1 − y0

i+1

5
(26.27)

Equation (26.27) is called a corrector modifier. (The symbol ← is read “is replaced by.”)
The left-hand side is the modified value of ym

i+1.
A second improvement, one that relates more to program efficiency, is a predictor

modifier, which is designed to adjust the predictor result so that it is closer to the final con-
vergent value of the corrector. This is advantageous because, as noted previously at the be-
ginning of this section, the number of iterations of the corrector is highly dependent on the
accuracy of the initial prediction. Consequently, if the prediction is modified properly, we
might reduce the number of iterations required to converge on the ultimate value of the
corrector.

762 STIFFNESS AND MULTISTEP METHODS

cha01064_ch26.qxd  3/25/09  11:43 AM  Page 762



Such a modifier can be derived simply by assuming that the third derivative is
relatively constant from step to step. Therefore, using the result of the previous step at i,
Eq. (26.25) can be solved for

h3 y(3)(ξ) = −12

5

(
y0

i − ym
i

)
(26.28)

which, assuming that y(3)(ξ) ∼= y(3)(ξp), can be substituted into Eq. (26.21) to give

Ep = 4

5

(
ym

i − y0
i

)
(26.29)

which can then be used to modify the predictor result:

y0
i+1← y0

i+1 + 4

5

(
ym

i − y0
i

)
(26.30)

EXAMPLE 26.4 Effect of Modifiers on Predictor-Corrector Results

Problem Statement. Recompute Example 26.3 using both modifiers.

Solution. As in Example 26.3, the initial predictor result is 5.607005. Because the pre-
dictor modifier [Eq. (26.30)] requires values from a previous iteration, it cannot be em-
ployed to improve this initial result. However, Eq. (26.27) can be used to modify the
corrected value of 6.360865 (εt = −2.684%), as in

ym
1 = 6.360865 − 6.360865 − 5.607005

5
= 6.210093

which represents an εt = −0.25%. Thus, the error is reduced over an order of magnitude.
For the next iteration, the predictor [Eq. (26.13)] is used to compute

y0
2 = 2 + [

4e0.8(0) − 0.5(6.210093)
]

2 = 13.59423 εt = 8.42%

which is about half the error of the predictor for the second iteration of Example 26.3,
which was εt = 18.6%. This improvement occurs because we are using a superior estimate
of y (6.210093 as opposed to 6.360865) in the predictor. In other words, the propagated
and global errors are reduced by the inclusion of the corrector modifier.

Now because we have information from the prior iteration, Eq. (26.30) can be em-
ployed to modify the predictor, as in

y0
2 = 13.59423 + 4

5
(6.360865 − 5.607005) = 14.19732 εt = −4.36%

which, again, halves the error.
This modification has no effect on the final outcome of the subsequent corrector step.

Regardless of whether the unmodified or modified predictors are used, the corrector will
ultimately converge on the same answer. However, because the rate or efficiency of con-
vergence depends on the accuracy of the initial prediction, the modification can reduce the
number of iterations required for convergence.
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Implementing the corrector yields a result of 15.21178 (εt = −2.48%), which repre-
sents an improvement over Example 26.3 because of the reduction of global error. Finally,
this result can be modified using Eq. (26.27):

ym
2 = 15.21178 − 15.21178 − 13.59423

5
= 14.88827 εt = −0.30%

Again, the error has been reduced an order of magnitude.

As in the previous example, the addition of the modifiers increases both the efficiency
and accuracy of multistep methods. In particular, the corrector modifier effectively in-
creases the order of the technique. Thus, the non-self-starting Heun with modifiers is third
order rather than second order as is the case for the unmodified version. However, it should
be noted that there are situations where the corrector modifier will affect the stability of the
corrector iteration process. As a consequence, the modifier is not included in the algorithm
for the non-self-starting Heun delineated in Fig. 26.5. Nevertheless, the corrector modifier
can still have utility for step-size control, as discussed next.
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Predictor:
y0

i+1 = ym
i−1 + f (xi, ym

i )2h

(Save result as y0
i+1,u = y0

i+1 where the subscript u designates that the variable is unmodified.)

Predictor Modifier:

y0
i+1 ← y0

i+1,u + �
4
5

� (ym
i,u − y0

i,u)

Corrector:

y j
i+1 = ym

i + h (for j = 1 to maximum iterations m)

Error Check:

|εa| = � �100%

(If |εa| > error criterion, set j = j +1 and repeat corrector; if εa ≤ error criterion, save result as
ym

i+1,u = ym
i+1.)

Corrector Error Estimate:

Ec = −�
1
5

� (ym
i+1,u − y0

i+1,u)

(If computation is to continue, set i = i + 1 and return to predictor.)

y j
i+1 − y j−1

i+1��
y j

i+1

f (xi, ym
i ) + f (xi+1, y

j−1
i+1)

���
2

FIGURE 26.5
The sequence of formulas used to implement the non-self-starting Heun method. Note that the
corrector error estimates can be used to modify the corrector. However, because this can affect
the corrector’s stability, the modifier is not included in this algorithm. The corrector error estimate
is included because of its utility for step-size adjustment.
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26.2.2 Step-Size Control and Computer Programs

Constant Step Size. It is relatively simple to develop a constant step-size version of the
non-self-starting Heun method. About the only complication is that a one-step method is
required to generate the extra point to start the computation.

Additionally, because a constant step size is employed, a value for h must be chosen
prior to the computation. In general, experience indicates that an optimal step size should
be small enough to ensure convergence within two iterations of the corrector (Hull and
Creemer, 1963). In addition, it must be small enough to yield a sufficiently small trunca-
tion error. At the same time, the step size should be as large as possible to minimize run-
time cost and round-off error. As with other methods for ODEs, the only practical way to
assess the magnitude of the global error is to compare the results for the same problem but
with a halved step size.

Variable Step Size. Two criteria are typically used to decide whether a change in step
size is warranted. First, if Eq. (26.26) is greater than some prespecified error criterion, the
step size is decreased. Second, the step size is chosen so that the convergence criterion of
the corrector is satisfied in two iterations. This criterion is intended to account for the trade-
off between the rate of convergence and the total number of steps in the calculation. For
smaller values of h, convergence will be more rapid but more steps are required. For larger
h, convergence is slower but fewer steps result. Experience (Hull and Creemer, 1963) sug-
gests that the total steps will be minimized if h is chosen so that the corrector converges
within two iterations. Therefore, if over two iterations are required, the step size is de-
creased, and if less than two iterations are required, the step size is increased.

Although the above strategy specifies when step size modifications are in order, it does
not indicate how they should be changed. This is a critical question because multistep
methods by definition require several points to compute a new point. Once the step size is
changed, a new set of points must be determined. One approach is to restart the computa-
tion and use the one-step method to generate a new set of starting points.

A more efficient strategy that makes use of existing information is to increase and
decrease by doubling and halving the step size. As depicted in Fig. 26.6b, if a sufficient
number of previous values have been generated, increasing the step size by doubling is a
relatively straightforward task (Fig. 26.6c). All that is necessary is to keep track of sub-
scripts so that old values of x and y become the appropriate new values. Halving the step
size is somewhat more complicated because some of the new values will be unavailable
(Fig. 26.6a). However, interpolating polynomials of the type developed in Chap. 18 can be
used to determine these intermediate values.

In any event, the decision to incorporate step-size control represents a trade-off between
initial investment in program complexity versus the long-term return because of increased ef-
ficiency. Obviously, the magnitude and importance of the problem itself will have a strong
bearing on this trade-off. Fortunately, several software packages and libraries have multistep
routines that you can use to obtain solutions without having to program them from scratch.
We will mention some of these when we review packages and libraries at the end of Chap. 27.

26.2.3 Integration Formulas

The non-self-starting Heun method is characteristic of most multistep methods. It em-
ploys an open integration formula (the midpoint method) to make an initial estimate. This
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predictor step requires a previous data point. Then, a closed integration formula (the trape-
zoidal rule) is applied iteratively to improve the solution.

It should be obvious that a strategy for improving multistep methods would be to use
higher-order integration formulas as predictors and correctors. For example, the higher-
order Newton-Cotes formulas developed in Chap. 21 could be used for this purpose.

Before describing these higher-order methods, we will review the most common inte-
gration formulas upon which they are based. As mentioned above, the first of these are the
Newton-Cotes formulas. However, there is a second class called the Adams formulas that
we will also review and that are often preferred. As depicted in Fig. 26.7, the fundamental
difference between the Newton-Cotes and Adams formulas relates to the manner in which
the integral is applied to obtain the solution. As depicted in Fig. 26.7a, the Newton-Cotes
formulas estimate the integral over an interval spanning several points. This integral is then
used to project from the beginning of the interval to the end. In contrast, the Adams for-
mulas (Fig. 26.7b) use a set of points from an interval to estimate the integral solely for the
last segment in the interval. This integral is then used to project across this last segment.
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FIGURE 26.6
A plot indicating how a halving-doubling strategy allows the use of (b) previously calculated
values for a third-order multistep method. (a) Halving; (c) doubling.
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Newton-Cotes Formulas. Some of the most common formulas for solving ordinary dif-
ferential equations are based on fitting an nth-degree interpolating polynomial to n + 1
known values of y and then using this equation to compute the integral. As discussed pre-
viously in Chap. 21, the Newton-Cotes integration formulas are based on such an ap-
proach. These formulas are of two types: open and closed forms.

Open Formulas. For n equally spaced data points, the open formulas can be expressed in
the form of a solution of an ODE, as was done previously for Eq. (26.19). The general
equation for this purpose is

yi+1 = yi−n +
∫ xi+1

xi−n

fn(x) dx (26.31)
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FIGURE 26.7
Illustration of the fundamental difference between the Newton-Cotes and Adams integration for-
mulas. (a) The Newton-Cotes formulas use a series of points to obtain an integral estimate over a
number of segments. The estimate is then used to project across the entire range. (b) The Adams
formulas use a series of points to obtain an integral estimate for a single segment. The estimate is
then used to project across the segment.
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where fn(x) is an nth-order interpolating polynomial. The evaluation of the integral em-
ploys the nth-order Newton-Cotes open integration formula (Table 21.4). For example, if
n = 1,

yi+1 = yi−1 + 2h fi (26.32)

where fi is an abbreviation for f(xi, yi)—that is, the differential equation evaluated at xi

and yi. Equation (26.32) is referred to as the midpoint method and was used previously as
the predictor in the non-self-starting Heun method. For n = 2,

yi+1 = yi−2 + 3h

2
( fi + fi−1)

and for n = 3,

yi+1 = yi−3 + 4h

3
(2 fi − fi−1 + 2 fi−2) (26.33)

Equation (26.33) is depicted graphically in Fig. 26.8a.

Closed Formulas. The closed form can be expressed generally as

yi+1 = yi−n+1 +
∫ xi+1

xi−n+1

fn(x) dx (26.34)

where the integral is approximated by an nth-order Newton-Cotes closed integration for-
mula (Table 21.2). For example, for n = 1,

yi+1 = yi + h

2
( fi + fi+1)

which is equivalent to the trapezoidal rule. For n = 2,

yi+1 = yi−1 + h

3
( fi−1 + 4 fi + fi+1) (26.35)

which is equivalent to Simpson’s 1/3 rule. Equation (26.35) is depicted in Fig. 26.8b.

Adams Formulas. The other types of integration formulas that can be used to solve
ODEs are the Adams formulas. Many popular computer algorithms for multistep solution
of ODEs are based on these methods.

Open Formulas (Adams-Bashforth). The Adams formulas can be derived in a variety of
ways. One technique is to write a forward Taylor series expansion around xi:

yi+1 = yi + fi h + f ′
i

2
h2 + f ′′

i

6
h3 + · · ·

which can also be written as

yi+1 = yi + h

(
fi + h

2
f ′
i + h2

3!
f ′′
i + · · ·

)
(26.36)
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Recall from Sec. 4.1.3 that a backward difference can be used to approximate the
derivative:

f ′
i = fi − fi−1

h
+ f ′′

i

2
h + O(h2)

which can be substituted into Eq. (26.36),

yi+1 = yi + h

{
fi + h

2

[
fi − fi−1

h
+ f ′′

i

2
h + O(h2)

]
+ h2

6
f ′′
i + · · ·

}

or, collecting terms,

yi+1 = yi + h

(
3

2
fi − 1

2
fi−1

)
+ 5

12
h3 f ′′

i + O(h4) (26.37)
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FIGURE 26.8
Graphical depiction of open and closed Newton-Cotes integration formulas. (a) The third open
formula [Eq. (26.33)] and (b) Simpson’s 1/3 rule [Eq. (26.35)].
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This formula is called the second-order open Adams formula. Open Adams formulas are
also referred to as Adams-Bashforth formulas. Consequently, Eq. (26.37) is sometimes
called the second Adams-Bashforth formula.

Higher-order Adams-Bashforth formulas can be developed by substituting higher-
difference approximations into Eq. (26.36). The nth-order open Adams formula can be rep-
resented generally as

yi+1 = yi + h
n−1∑
k=0

βk fi−k + O(hn+1) (26.38)

The coefficients βk are compiled in Table 26.1. The fourth-order version is depicted in
Fig. 26.9a. Notice that the first-order version is Euler’s method.

Closed Formulas (Adams-Moulton). A backward Taylor series around xi+l can be
written as

yi = yi+1 − fi+1h + f ′
i+1

2
h2 − f ′′

i+1

3!
h3 + · · ·

Solving for yi+l yields

yi+1 = yi + h

(
fi+1 − h

2
f ′
i+1 + h2

6
f ′′
i+1 + · · ·

)
(26.39)

A difference can be used to approximate the first derivative:

f ′
i+1 = fi+1 − fi

h
+ f ′′

i+1

2
h + O(h2)
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TABLE 26.1 Coefficients and truncation error for Adams-Bashforth predictors.

Local Truncation
Order ββ0 ββ1 ββ2 ββ3 ββ4 ββ5 Error

1 1 �
1
2

�h2f ′(ξ)

2 3/2 −1/2 �
1
5
2
�h3f ′′(ξ)

3 23/12 −16/12 5/12 �
2
9
4
�h4f (3)(ξ)

4 55/24 −59/24 37/24 −9/24 �
2
7

5
2

1
0

�h5f (4)(ξ)

5 1901/720 −2774/720 2616/720 −1274/720 251/720 �
1
4
4
7
4
5
0

�h6f (5)(ξ)

6 4277/720 −7923/720 9982/720 −7298/720 2877/720 −475/720 �
1
6

9
0

,
,
0
4

8
8

7
0

�h7f (6)(ξ)
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which can be substituted into Eq. (26.39), and collecting terms gives

yi+1 = yi + h

(
1

2
fi+1 + 1

2
fi

)
− 1

12
h3 f ′′

i+1 − O(h4)

This formula is called the second-order closed Adams formula or the second Adams-
Moulton formula. Also, notice that it is the trapezoidal rule.

The nth-order closed Adams formula can be written generally as

yi+1 = yi + h
n−1∑
k=0

βk fi+1−k + O(hn+1)

The coefficients βk are listed in Table 26.2. The fourth-order method is depicted in
Fig. 26.9b.
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FIGURE 26.9
Graphical depiction of open and closed Adams integration formulas. (a) The fourth Adams-
Bashforth open formula and (b) the fourth Adams-Moulton closed formula.
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TABLE 26.2 Coefficients and truncation error for Adams-Moulton correctors.

Local Truncation
Order ββ0 ββ1 ββ2 ββ3 ββ4 ββ5 Error

2 1/2 1/2 −�
1
1
2
�h3f ′′(ξ)

3 5/12 8/12 −1/12 −�
2
1
4
�h4f (3)(ξ)

4 9/24 19/24 −5/24 1/24 −�
7
1
2
9
0

�h5f (4)(ξ)

5 251/720 646/720 −264/720 106/720 −19/720 −�
1

2
4

7
40
�h6f (5)(ξ)

6 475/1440 1427/1440 −798/1440 482/1440 −173/1440 27/1440 −�
60

8
,
6
4
3
80

�h7f (6)(ξ)

Box 26.1 Derivation of General Relationships for Modifiers

The relationship between the true value, the approximation, and the
error of a predictor can be represented generally as

True value = y0
i+1 + ηp

δp
hn+1 y(n+1)(ξp) (B26.1.1)

where ηp and δp = the numerator and denominator, respectively, of
the constant of the truncation error for either an open Newton-
Cotes (Table 21.4) or an Adams-Bashforth (Table 26.1) predictor,
and n is the order.

A similar relationship can be developed for the corrector:

True value = ym
i+1 − ηc

δc
hn+1 y(n+1)(ξc) (B26.1.2)

where ηc and δc = the numerator and denominator, respectively, of
the constant of the truncation error for either a closed Newton-
Cotes (Table 21.2) or an Adams-Moulton (Table 26.2) corrector. As
was done in the derivation of Eq. (26.24), Eq. (B26.1.1) can be sub-
tracted from Eq. (B26.1.2) to yield

0 = ym
i+1 − y0

i+1 − ηc + ηpδc/δp

δc
hn+1 y(n+1)(ξ) (B26.1.3)

Now, dividing the equation by ηc + ηpδc/δp, multiplying the last
term by δp/δp, and rearranging provides an estimate of the local

truncation error of the corrector:

Ec
∼= − ηcδp

ηcδp + ηpδc

(
ym

i+1 − y0
i+1

)
(B26.1.4)

For the predictor modifier, Eq. (B26.1.3) can be solved at the
previous step for

hn y(n+1)(ξ) = − δcδp

ηcδp + ηpδc

(
y0

i − ym
i

)
which can be substituted into the error term of Eq. (B26.1.1) to
yield

Ep = ηpδc

ηcδp + ηpδc

(
ym

i − y0
i

)
(B26.1.5)

Equations (B26.1.4) and (B26.1.5) are general versions of modi-
fiers that can be used to improve multistep algorithms. For exam-
ple, Milne’s method has ηp = 14, δp = 45, ηc = 1, δc = 90. Sub-
stituting these values into Eqs. (B26.1.4) and (B26.1.5) yields
Eqs. (26.43) and (26.42), respectively. Similar modifiers can be
developed for other pairs of open and closed formulas that have
local truncation errors of the same order.

26.2.4 Higher-Order Multistep Methods

Now that we have formally developed the Newton-Cotes and Adams integration formulas,
we can use them to derive higher-order multistep methods. As was the case with the non-
self-starting Heun method, the integration formulas are applied in tandem as predictor-
corrector methods. In addition, if the open and closed formulas have local truncation errors
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of the same order, modifiers of the type listed in Fig. 26.5 can be incorporated to improve
accuracy and allow step-size control. Box 26.1 provides general equations for these modi-
fiers. In the following section, we present two of the most common higher-order multistep
approaches: Milne’s method and the fourth-order Adams method.

Milne’s Method. Milne’s method is the most common multistep method based on
Newton-Cotes integration formulas. It uses the three-point Newton-Cotes open formula as
a predictor:

y0
i+1 = ym

i−3 + 4h

3

(
2 f m

i − f m
i−1 + 2 f m

i−2

)
(26.40)

and the three-point Newton-Cotes closed formula (Simpson’s 1/3 rule) as a corrector:

y j
i+1 = ym

i−1 + h

3

(
f m
i−1 + 4 f m

i + f j−1
i+1

)
(26.41)

where j is an index representing the number of iterations of the modifier. The predictor and
corrector modifiers for Milne’s method can be developed from the formulas in Box 26.1
and the error coefficients in Tables 21.2 and 21.4:

Ep = 28

29

(
ym

i − y0
i

)
(26.42)

Ec
∼= − 1

29

(
ym

i+1 − y0
i+1

)
(26.43)

EXAMPLE 26.5 Milne’s Method

Problem Statement. Use Milne’s method to integrate y′ = 4e0.8x − 0.5y from x = 0 to
x = 4 using a step size of 1. The initial condition at x = 0 is y = 2. Because we are dealing
with a multistep method, previous points are required. In an actual application, a one-step
method such as a fourth-order RK would be used to compute the required points. For
the present example, we will use the analytical solution [recall Eq. (E25.5.1) from Exam-
ple 25.5] to compute exact values at xi−3 = −3, xi−2 = −2, and xi−1 = −1 of yi−3 =
−4.547302, yi−2 = −2.306160, and yi−1 = −0.3929953, respectively.

Solution. The predictor [Eq. (26.40)] is used to calculate a value at x = 1:

y0
1 = −4.54730 + 4(1)

3
[2(3) − 1.99381 + 2(1.96067)] = 6.02272 εt = 2.8%

The corrector [Eq. (26.41)] is then employed to compute

y1
1 = −0.3929953 + 1

3
[1.99381 + 4(3) + 5.890802] = 6.235210 εt = −0.66%

This result can be substituted back into Eq. (26.41) to iteratively correct the estimate. This
process converges on a final corrected value of 6.204855 (εt = −0.17%).

This value is more accurate than the comparable estimate of 6.360865 (εt = −2.68%)
obtained previously with the non-self-starting Heun method (Examples 26.2 through 26.4).
The results for the remaining steps are y(2) = 14.86031 (εt = −0.11%), y(3) = 33.72426
(εt = −0.14%), and y(4) = 75.43295 (εt = −0.12%).
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As in the previous example, Milne’s method usually yields results of high accuracy.
However, there are certain cases where it performs poorly (see Ralston and Rabinowitz,
1978). Before elaborating on these cases, we will describe another higher-order multistep
approach—the fourth-order Adams method.

Fourth-Order Adams Method. A popular multistep method based on the Adams integra-
tion formulas uses the fourth-order Adams-Bashforth formula (Table 26.1) as the predictor:

y0
i+1 = ym

i + h

(
55

24
f m
i − 59

24
f m
i−1 + 37

24
f m
i−2 − 9

24
f m
i−3

)
(26.44)

and the fourth-order Adams-Moulton formula (Table 26.2) as the corrector:

y j
i+1 = ym

i + h

(
9

24
f j−1
i+1 + 19

24
f m
i − 5

24
f m
i−1 + 1

24
f m
i−2

)
(26.45)

The predictor and the corrector modifiers for the fourth-order Adams method can
be developed from the formulas in Box 26.1 and the error coefficients in Tables 26.1 and
26.2 as

Ep = 251

270

(
ym

i − y0
i

)
(26.46)

Ec = − 19

270

(
ym

i+1 − y0
i+1

)
(26.47)

EXAMPLE 26.6 Fourth-Order Adams Method

Problem Statement. Use the fourth-order Adams method to solve the same problem as
in Example 26.5.

Solution. The predictor [Eq. (26.44)] is used to compute a value at x = 1.

y0
1 = 2 + 1

(
55

24
3 − 59

24
1.993814 + 37

24
1.960667 − 9

24
2.6365228

)
= 6.007539

εt = 3.1%

which is comparable to but somewhat less accurate than the result using the Milne method.
The corrector [Eq. (26.45)] is then employed to calculate

y1
1 = 2 + 1

(
9

24
5.898394 + 19

24
3 − 5

24
1.993814 + 1

24
1.960666

)
= 6.253214

εt = −0.96%

which again is comparable to but less accurate than the result using Milne’s method. This
result can be substituted back into Eq. (26.45) to iteratively correct the estimate. The
process converges on a final corrected value of 6.214424 (εt = 0.32%), which is an accu-
rate result but again somewhat inferior to that obtained with the Milne method.
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Stability of Multistep Methods. The superior accuracy of the Milne method exhibited in
Examples 26.5 and 26.6 would be anticipated on the basis of the error terms for the predic-
tors [Eqs. (26.42) and (26.46)] and the correctors [Eqs. (26.43) and (26.47)]. The coeffi-
cients for the Milne method, 14/45 and 1/90, are smaller than for the fourth-order Adams,
251/720 and 19/720. Additionally, the Milne method employs fewer function evaluations
to attain these higher accuracies. At face value, these results might lead to the conclusion
that the Milne method is superior and, therefore, preferable to the fourth-order Adams. Al-
though this conclusion holds for many cases, there are instances where the Milne method
performs unacceptably. Such behavior is exhibited in the following example.

EXAMPLE 26.7 Stability of Milne’s and Fourth-Order Adams Methods

Problem Statement. Employ Milne’s and the fourth-order Adams methods to solve

dy

dx
= −y

with the initial condition that y = 1 at x = 0. Solve this equation from x = 0 to x = 10
using a step size of h = 0.5. Note that the analytical solution is y = e−x.

Solution. The results, as summarized in Fig. 26.10, indicate problems with Milne’s
method. Shortly after the onset of the computation, the errors begin to grow and oscillate
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FIGURE 26.10
Graphical depiction of the instability of Milne’s method.
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26.1 Given

dy

dt
= −100,000y + 99,999e−t

(a) Estimate the step-size required to maintain stability using the
explicit Euler method.

(b) If y(0) = 0, use the implicit Euler to obtain a solution from t =
0 to 2 using a step size of 0.1.

26.2 Given

dy

dt
= 30(sin t − y) + 3 cos t

If y(0) = 1, use the implicit Euler to obtain a solution from t = 0
to 4 using a step size of 0.4.
26.3 Given

dx1

dt
= 999x1 + 1999x2

dx2

dt
= −1000x1 − 2000x2

If x1(0) = x2(0) = 1, obtain a solution from t = 0 to 0.2 using a step
size of 0.05 with the (a) explicit and (b) implicit Euler methods.

776 STIFFNESS AND MULTISTEP METHODS

in sign. By x = 10, the relative error has inflated to 2831 percent and the predicted value
itself has started to oscillate in sign.

In contrast, the results for the Adams method would be much more acceptable. Al-
though the error also grows, it would do so at a slow rate. Additionally, the discrepancies
would not exhibit the wild swings in sign exhibited by the Milne method.

The unacceptable behavior manifested in the previous example by the Milne method
is referred to as instability. Although it does not always occur, its possibility leads to the
conclusion that Milne’s approach should be avoided. Thus, the fourth-order Adams method
is normally preferred.

The instability of Milne’s method is due to the corrector. Consequently, attempts have
been made to rectify the shortcoming by developing stable correctors. One commonly used
alternative that employs this approach is Hamming’s method, which uses the Milne predic-
tor and a stable corrector:

y j
i+1 = 9ym

i − ym
i−2 + 3h

(
y j−1

i+1 + 2 f m
i − f m

i−1

)
8

which has a local truncation error:

Ec = 1

40
h5 y(4)(ξc)

Hamming’s method also includes modifiers of the form

Ep = 9

121

(
ym

i − y0
i

)

Ec = −112

121

(
ym

i+1 − y0
i+1

)
The reader can obtain additional information on this and other multistep methods else-
where (Hamming, 1973; Lapidus and Seinfield, 1971).

PROBLEMS
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26.4 Solve the following initial-value problem over the interval
from t = 2 to 3:

dy

dt
= −0.5y + e−t

Use the non-self-starting Heun method with a step size of 0.5
and initial conditions of y(l.5) = 5.222138 and y(2.0) = 4.143883.
Iterate the corrector to εs = 0.1%. Compute the true percent relative
errors εt for your results based on the analytical solution.
26.5 Repeat Prob. 26.4, but use the fourth-order Adams method.
[Note: y(0.5) = 8.132548 and y(1.0) = 6.542609.] Iterate the cor-
rector to εs = 0.01%.
26.6 Solve the following initial-value problem from t = 4 to 5:

dy

dt
= −2y

t

Use a step size of 0.5 and initial values of y(2.5) = 0.48, y(3) =
0.333333, y(3.5) = 0.244898, and y(4) = 0.1875. Obtain your so-
lutions using the following techniques: (a) the non-self-starting
Heun method (εs = 1%), and (b) the fourth-order Adams method
(εs = 0.01%). [Note: The exact answers obtained analytically are
y(4.5) = 0.148148 and y(5) = 0.12.] Compute the true percent
relative errors εt for your results.
26.7 Solve the following initial-value problem from x = 0 to
x = 0.75:

dy

dx
= yx2 − y

Use the non-self-starting Heun method with a step size of 0.25. If
y(0) = 1, employ the fourth-order RK method with a step size of
0.25 to predict the starting value at y(0.25).
26.8 Solve the following initial-value problem from t = 1.5 to
t = 2.5

dy

dt
= −2y

1 + t

Use the fourth-order Adams method. Employ a step size of 0.5
and the fourth-order RK method to predict the start-up values if
y(0) = 2.
26.9 Develop a program for the implicit Euler method for a single
linear ODE. Test it by duplicating Prob. 26.1b.
26.10 Develop a program for the implicit Euler method for a pair
of linear ODEs. Test it by solving Eq. (26.6).
26.11 Develop a user-friendly program for the non-self-starting
Heun method with a predictor modifier. Employ a fourth-order RK
method to compute starter values. Test the program by duplicating
Example 26.4.
26.12 Use the program developed in Prob. 26.11 to solve Prob. 26.7.
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Figure P26.13

�

m

l

26.13 Consider the thin rod of length l moving in the x-y plane as
shown in Fig. P26.13. The rod is fixed with a pin on one end and a
mass at the other. Note that g = 9.81 m/s2 and l = 0.5 m. This sys-
tem can be solved using

θ̈ − g

l
θ = 0

Let θ(0) = 0 and θ̇ (0) = 0.25 rad/s. Solve using any method stud-
ied in this chapter. Plot the angle versus time and the angular ve-
locity versus time. (Hint: Decompose the second-order ODE.)
26.14 Given the first-order ODE

dx

dt
= −700x − 1000e−t

x(t = 0) = 4

Solve this stiff differential equation using a numerical method over
the time period 0 ≤ t ≤ 5. Also solve analytically and plot the ana-
lytic and numerical solution for both the fast transient and slow
transition phase of the timescale.
26.15 The following second-order ODE is considered to be stiff

d2 y

dx2
= −1001

dy

dx
− 1000y

Solve this differential equation (a) analytically and (b) numerically
for x = 0 to 5. For (b) use an implicit approach with h = 0.5. Note
that the initial conditions are y(0) = 1 and y�(0) = 0. Display both
results graphically.
26.16 Solve the following differential equation from t = 0 to 1

dy

dt
= −10y

with the initial condition y(0) = 1. Use the following techniques to
obtain your solutions: (a) analytically, (b) the explicit Euler
method, and (c) the implicit Euler method. For (b) and (c) use h =
0.1 and 0.2. Plot your results.
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27C H A P T E R 27

778

Boundary-Value and
Eigenvalue Problems

Recall from our discussion at the beginning of Part Seven that an ordinary differential
equation is accompanied by auxiliary conditions. These conditions are used to evaluate the
constants of integration that result during the solution of the equation. For an nth-order
equation, n conditions are required. If all the conditions are specified at the same value of
the independent variable, then we are dealing with an initial-value problem (Fig. 27.1a). To
this point, the material in Part Seven has been devoted to this type of problem.

y

y1

y2

t
y2, 0

y1, 0

(a)
0

Initial conditions

Boundary
condition

Boundary
conditiony

yL

x

y0

(b)
0 L

= f1(t, y1, y2)
dy1

dt

= f2(t, y1, y2)
dy2

dt

where at t = 0, y1 = y1, 0 and y2 = y2, 0

= f (x, y)
d2y

dx2

where at x = 0, y = y0
x = L, y = yL

FIGURE 27.1
Initial-value versus boundary-
value problems. (a) An initial-
value problem where all the
conditions are specified at the
same value of the independent
variable. (b) A boundary-value
problem where the conditions
are specified at different values
of the independent variable.
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In contrast, there is another application for which the conditions are not known at a
single point, but rather, are known at different values of the independent variable. Because
these values are often specified at the extreme points or boundaries of a system, they are
customarily referred to as boundary-value problems (Fig. 27.1b). A variety of significant
engineering applications fall within this class. In this chapter, we discuss two general
approaches for obtaining their solution: the shooting method and the finite-difference ap-
proach. Additionally, we present techniques to approach a special type of boundary-value
problem: the determination of eigenvalues. Of course, eigenvalues also have many appli-
cations beyond those involving boundary-value problems.

27.1 GENERAL METHODS FOR BOUNDARY-VALUE PROBLEMS

The conservation of heat can be used to develop a heat balance for a long, thin rod
(Fig. 27.2). If the rod is not insulated along its length and the system is at a steady state, the
equation that results is

d2T

dx2
+ h′(Ta − T ) = 0 (27.1)

where h′ is a heat transfer coefficient (m−2) that parameterizes the rate of heat dissipation
to the surrounding air and Ta is the temperature of the surrounding air (�C).

To obtain a solution for Eq. (27.1), there must be appropriate boundary conditions. A
simple case is where the temperatures at the ends of the bar are held at fixed values. These
can be expressed mathematically as

T (0) = T1

T (L) = T2

With these conditions. Eq. (27.1) can be solved analytically using calculus. For a 10-m rod
with Ta = 20, T1 = 40, T2 = 200, and h′ = 0.01, the solution is

T = 73.4523e0.1x − 53.4523e−0.1x + 20 (27.2)

In the following sections, the same problem will be solved using numerical approaches.
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FIGURE 27.2
A noninsulated uniform rod positioned between two bodies of constant but different temperature.
For this case T1 > T2 and T2 > Ta.

x = Lx = 0

T1 T2

Ta

Ta
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27.1.1 The Shooting Method

The shooting method is based on converting the boundary-value problem into an equiva-
lent initial-value problem. A trial-and-error approach is then implemented to solve the
initial-value version. The approach can be illustrated by an example.

EXAMPLE 27.1 The Shooting Method

Problem Statement. Use the shooting method to solve Eq. (27.1) for a 10-m rod with
h′ = 0.01 m−2, Ta = 20, and the boundary conditions

T (0) = 40 T (10) = 200

Solution. Using the same approach as was employed to transform Eq. (PT7.2) into
Eqs. (PT7.3) through (PT7.6), the second-order equation can be expressed as two first-
order ODEs:

dT

dx
= z (E27.1.1)

dz

dx
= h′(T − Ta) (E27.1.2)

To solve these equations, we require an initial value for z. For the shooting method, we
guess a value—say, z(0) = 10. The solution is then obtained by integrating Eq. (E27.1.1)
and (E27.1.2) simultaneously. For example, using a fourth-order RK method with a step
size of 2, we obtain a value at the end of the interval of T(10) = 168.3797 (Fig. 27.3a),
which differs from the boundary condition of T(10) = 200. Therefore, we make another
guess, z(0) = 20, and perform the computation again. This time, the result of T(10) =
285.8980 is obtained (Fig. 27.3b).

Now, because the original ODE is linear, the values

z(0) = 10 T (10) = 168.3797

and

z(0) = 20 T (10) = 285.8980

are linearly related. As such, they can be used to compute the value of z(0) that yields
T(10) = 200. A linear interpolation formula [recall Eq. (18.2)] can be employed for this
purpose:

z(0) = 10 + 20 − 10

285.8980 − 168.3797
(200 − 168.3797) = 12.6907

This value can then be used to determine the correct solution, as depicted in Fig. 27.3c.
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Nonlinear Two-Point Problems. For nonlinear boundary-value problems, linear interpo-
lation or extrapolation through two solution points will not necessarily result in an accurate
estimate of the required boundary condition to attain an exact solution. An alternative is to
perform three applications of the shooting method and use a quadratic interpolating poly-
nomial to estimate the proper boundary condition. However, it is unlikely that such an
approach would yield the exact answer, and additional iterations would be necessary to
obtain the solution.

Another approach for a nonlinear problem involves recasting it as a roots problem.
Recall that the general form of a root problem is to find the value of x that makes the
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FIGURE 27.3
The shooting method: (a) the first “shot,” (b) the second “shot,” and (c) the final exact “hit.”
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function f (x) = 0. Now, let us use Example 27.1 to understand how the shooting method
can be recast in this form.

First, recognize that the solution of the pair of differential equations is also a “function”
in the sense that we guess a condition at the left-hand end of the bar, z0, and the integration
yields a prediction of the temperature at the right-hand end, T10. Thus, we can think of the
integration as

T10 = f(z0)

That is, it represents a process whereby a guess of z0 yields a prediction of T10. Viewed in
this way, we can see that what we desire is the value of z0 that yields a specific value of T10.
If, as in the example, we desire T10 = 200, the problem can be posed as

200 = f(z0)

By bringing the goal of 200 over to the right-hand side of the equation, we generate a new
function, g(z0), that represents the difference between what we have, f (z0), and what we
want, 200.

g(z0) = f(z0) − 200

If we drive this new function to zero, we will obtain the solution. The next example illus-
trates the approach.

EXAMPLE 27.2 The Shooting Method for Nonlinear Problems

Problem Statement. Although it served our purposes for proving a simple boundary-
value problem, our model for the bar in Eq. (27.1) was not very realistic. For one thing,
such a bar would lose heat by mechanisms such as radiation that are nonlinear.

Suppose that the following nonlinear ODE is used to simulate the temperature of the
heated bar:

d2T

dx2
+ h′′(Ta − T )4 = 0

where h′′ = 5 × 10−8. Now, although it is still not a very good representation of heat trans-
fer, this equation is straightforward enough to allow us to illustrate how the shooting
method can be used to solve a two-point nonlinear boundary-value problem. The remain-
ing problem conditions are as specified in Example 27.1.

Solution. The second-order equation can be expressed as two first-order ODEs:

dT

dx
= z

dz

dx
= h′′(T − Ta)

4

Now, these equations can be integrated using any of the methods described in Chaps. 25
and 26. We used the constant step-size version of the fourth-order RK approach described
in Chap. 25. We implemented this approach as an Excel macro function written in Visual
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BASIC. The function integrated the equations based on an initial guess for z(0) and
returned the temperature at x = 10. The difference between this value and the goal of 200
was then placed in a spreadsheet cell. The Excel Solver was then invoked to adjust the
value of z(0) until the difference was driven to zero.

The result is shown in Fig. 27.4 along with the original linear case. As might be ex-
pected, the nonlinear case is curved more than the linear model. This is due to the power of
four term in the heat transfer relationship.

The shooting method can become arduous for higher-order equations where the ne-
cessity to assume two or more conditions makes the approach somewhat more difficult. For
these reasons, alternative methods are available, as described next.

27.1.2 Finite-Difference Methods

The most common alternatives to the shooting method are finite-difference approaches. In
these techniques, finite divided differences are substituted for the derivatives in the origi-
nal equation. Thus, a linear differential equation is transformed into a set of simultaneous
algebraic equations that can be solved using the methods from Part Three.

For the case of Fig. 27.2, the finite-divided-difference approximation for the second
derivative is (recall Fig. 23.3)

d2T

dx2
= Ti+1 − 2Ti + Ti−1

�x2

This approximation can be substituted into Eq. (27.1) to give

Ti+1 − 2Ti + Ti−1

�x2
− h′(Ti − Ta) = 0

27.1 GENERAL METHODS FOR BOUNDARY-VALUE PROBLEMS 783

FIGURE 27.4
The result of using the shooting method to solve a nonlinear problem.
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Collecting terms gives

−Ti−1 + (2 + h′�x2)Ti − Ti+1 = h′�x2Ta (27.3)

This equation applies for each of the interior nodes of the rod. The first and last interior
nodes, Ti−1 and Ti+1, respectively, are specified by the boundary conditions. Therefore, the
resulting set of linear algebraic equations will be tridiagonal. As such, it can be solved with
the efficient algorithms that are available for such systems (Sec. 11.1).

EXAMPLE 27.3 Finite-Difference Approximation of Boundary-Value Problems

Problem Statement. Use the finite-difference approach to solve the same problem as in
Example 27.1.

Solution. Employing the parameters in Example 27.1, we can write Eq. (27.3) for the rod
from Fig. 27.2. Using four interior nodes with a segment length of �x = 2 m results in the
following equations:⎡

⎢⎢⎣
2.04 −1 0 0
−1 2.04 −1 0
0 −1 2.04 −1
0 0 −1 2.04

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

T1

T2

T3

T4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

40.8
0.8
0.8

200.8

⎫⎪⎪⎬
⎪⎪⎭

which can be solved for

{T }T = � 65.9698 93.7785 124.5382 159.4795 �

Table 27.1 provides a comparison between the analytical solution [Eq. (27.2)] and the
numerical solutions obtained in Examples 27.1 and 27.3. Note that there are some discrep-
ancies among the approaches. For both numerical methods, these errors can be mitigated
by decreasing their respective step sizes. Although both techniques perform well for the
present case, the finite-difference approach is preferred because of the ease with which it
can be extended to more complex cases.

The fixed (or Dirichlet) boundary condition used in the previous example is but one of
several types that are commonly employed in engineering and science. A common alterna-
tive, called the Neumann boundary condition, is the case where the derivative is given.

784 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

TABLE 27.1 Comparison of the exact analytical solution with the shooting and finite-
difference methods.

x True Shooting Method Finite Difference

0 40 40 40
2 65.9518 65.9520 65.9698
4 93.7478 93.7481 93.7785
6 124.5036 124.5039 124.5382
8 159.4534 159.4538 159.4795

10 200 200 200
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We can use the heated rod model to demonstrate how derivative boundary condition
can be incorporated into the finite-difference approach,

0 = d2T

dx2
+ h′ (T∞ − T )

However, in contrast to our previous discussions, we will prescribe a derivative boundary
condition at one end of the rod,

dT

dx
(0) = T ′

a

T (L) = Tb

Thus, we have a derivative boundary condition at one end of the solution domain and a
fixed boundary condition at the other.

As was done in Example 27.3, the rod is divided into a series of nodes and a finite-
difference version of the differential equation (Eq. 27.3) is applied to each interior node.
However, because its temperature is not specified, the node at the left end must also be in-
cluded. Writing Eq. (27.3) for this node gives

−T−1 + (2 + h′�x2)T0 − T1 = h′�x2T∞ (27.3a)

Notice that an imaginary node (−1) lying to the left of the rod’s end is required for this
equation. Although this exterior point might seem to represent a difficulty, it actually
serves as the vehicle for incorporating the derivative boundary condition into the problem.
This is done by representing the first derivative in the x dimension at (0) by the centered
difference

dT

dx
= T1 − T−1

2�x

which can be solved for

T−1 = T1 − 2�x
dT

dx

Now we have a formula for T−1 that actually reflects the impact of the derivative. It can be
substituted into Eq. (27.3a) to give

(2 + h′�x2)T0 − 2T1 = h′�x2T∞ − 2�x
dT

dx
(27.3b)

Consequently, we have incorporated the derivative into the balance.
A common example of a derivative boundary condition is the situation where the end

of the rod is insulated. In this case, the derivative is set to zero. This conclusion follows di-
rectly from Fourier’s law, which states that the heat flux is directly proportional to the tem-
perature gradient. Thus, insulating a boundary means that the heat flux (and consequently
the gradient) must be zero. 

Aside from the shooting and finite-difference methods, there are other techniques avail-
able for solving boundary-value problems. Some of these will be described in Part Eight.
These include steady-state (Chap. 29) and transient (Chap. 30) solution of two-dimensional
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786 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

boundary-value problems using finite differences and steady-state solutions of the one-
dimensional problem with the finite-element approach (Chap. 31).

27.2 EIGENVALUE PROBLEMS

Eigenvalue, or characteristic-value, problems are a special class of boundary-value prob-
lems that are common in engineering problem contexts involving vibrations, elasticity, and
other oscillating systems. In addition, they are used in a wide variety of engineering con-
texts beyond boundary-value problems. Before describing numerical methods for solving
these problems, we will present some general background information. This includes dis-
cussion of both the mathematics and the engineering significance of eigenvalues.

27.2.1 Mathematical Background

Part Three dealt with methods for solving sets of linear algebraic equations of the general
form

[A]{X} = {B}
Such systems are called nonhomogeneous because of the presence of the vector {B} on the
right-hand side of the equality. If the equations comprising such a system are linearly in-
dependent (that is, have a nonzero determinant), they will have a unique solution. In other
words, there is one set of x values that will make the equations balance.

In contrast, a homogeneous linear algebraic system has the general form

[A]{X} = 0

Although nontrivial solutions (that is, solutions other than all x’s = 0) of such systems are
possible, they are generally not unique. Rather, the simultaneous equations establish rela-
tionships among the x’s that can be satisfied by various combinations of values.

Eigenvalue problems associated with engineering are typically of the general form

(a11 − λ)x1 + a12x2 + · · · + a1n xn = 0

a21x1 + (a22 − λ)x2 + · · ·+ a2n xn = 0
. . . .
. . . .
. . . .

an1x1 + an2x2 + · · · + (ann − λ)xn = 0

where λ is an unknown parameter called the eigenvalue, or characteristic value. A solution
{X} for such a system is referred to as an eigenvector. The above set of equations may also
be expressed concisely as[

[A] − λ[I ]
]{X} = 0 (27.4)

The solution of Eq. (27.4) hinges on determining λ. One way to accomplish this is
based on the fact that the determinant of the matrix [[A] − λ[I ]] must equal zero for non-
trivial solutions to be possible. Expanding the determinant yields a polynomial in λ. The
roots of this polynomial are the solutions for the eigenvalues. An example of this approach
will be provided in the next section.
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27.2.2 Physical Background

The mass-spring system in Fig. 27.5a is a simple context to illustrate how eigenvalues
occur in physical problem settings. It also will help to illustrate some of the mathematical
concepts introduced in the previous section.

To simplify the analysis, assume that each mass has no external or damping forces act-
ing on it. In addition, assume that each spring has the same natural length l and the same
spring constant k. Finally, assume that the displacement of each spring is measured relative
to its own local coordinate system with an origin at the spring’s equilibrium position
(Fig. 27.5a). Under these assumptions, Newton’s second law can be employed to develop
a force balance for each mass (recall Sec. 12.4),

m1
d2x1

dt2
= −kx1 + k(x2 − x1)

and

m2
d2x2

dt2
= −k(x2 − x1) − kx2

where xi is the displacement of mass i away from its equilibrium position (Fig. 27.5b).
These equations can be expressed as

m1
d2x1

dt2
− k(−2x1 + x2) = 0 (27.5a)

m2
d2x2

dt2
− k(x1 − 2x2) = 0 (27.5b)

From vibration theory, it is known that solutions to Eq. (27.5) can take the form

xi = Ai sin(ωt) (27.6)

FIGURE 27.5
Positioning the masses away from equilibrium creates forces in the springs that upon release
lead to oscillations of the masses. The positions of the masses can be referenced to local
coordinates with origins at their respective equilibrium positions.

x
(a)

0

0

0 x1 0 x2

x
(b)

m1 m2

m1 m2
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788 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

where Ai = the amplitude of the vibration of mass i and ω = the frequency of the vibration,
which is equal to

ω = 2π

Tp
(27.7)

where Tp is the period. From Eq. (27.6) it follows that

x ′′
i = −Aiω

2 sin (ωt) (27.8)

Equations (27.6) and (27.8) can be substituted into Eq. (27.5), which, after collection of
terms, can be expressed as(

2k

m1
− ω2

)
A1 − k

m1
A2 = 0 (27.9a)

− k

m2
A1 +

(
2k

m2
− ω2

)
A2 = 0 (27.9b)

Comparison of Eq. (27.9) with Eq. (27.4) indicates that at this point, the solution has been
reduced to an eigenvalue problem.

EXAMPLE 27.4 Eigenvalues and Eigenvectors for a Mass-Spring System

Problem Statement. Evaluate the eigenvalues and the eigenvectors of Eq. (27.9) for the
case where ml = m2 = 40 kg and k = 200 N/m.

Solution. Substituting the parameter values into Eq. (27.9) yields

(10 − ω2)A1 − 5A2 = 0

−5A1 + (10 − ω2)A2 = 0

The determinant of this system is [recall Eq. (9.3)]

(ω2)2 − 20ω2 + 75 = 0

which can be solved by the quadratic formula for ω2 = 15 and 5 s−2. Therefore, the fre-
quencies for the vibrations of the masses are ω = 3.873 s−1 and 2.236 s−1, respectively.
These values can be used to determine the periods for the vibrations with Eq. (27.7). For
the first mode, Tp = 1.62 s, and for the second, Tp = 2.81 s.

As stated in Sec. 27.2.1, a unique set of values cannot be obtained for the un-
knowns. However, their ratios can be specified by substituting the eigenvalues back into
the equations. For example, for the first mode (ω2 = 15 s−2), Al = −A2. For the second
mode (ω2 = 5 s−2), A1 = A2.

This example provides valuable information regarding the behavior of the system in
Fig. 27.5. Aside from its period, we know that if the system is vibrating in the first mode,
the amplitude of the second mass will be equal but of opposite sign to the amplitude of the
first. As in Fig. 27.6a, the masses vibrate apart and then together indefinitely.

In the second mode, the two masses have equal amplitudes at all times. Thus, as in
Fig. 27.6b, they vibrate back and forth in unison. It should be noted that the configuration
of the amplitudes provides guidance on how to set their initial values to attain pure motion
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in either of the two modes. Any other configuration will lead to superposition of the modes
(recall Chap. 19).

27.2.3 A Boundary-Value Problem

Now that you have been introduced to eigenvalues, we turn to the type of problem that is
the subject of the present chapter: boundary-value problems for ordinary differential equa-
tions. Figure 27.7 shows a physical system that can serve as a context for examining this
type of problem.

The curvature of a slender column subject to an axial load P can be modeled by

d2 y

dx2
= M

E I
(27.10)

where d2 y/dx2 specifies the curvature, M = the bending moment, E = the modulus of
elasticity, and I = the moment of inertia of the cross section about its neutral axis. Consid-
ering the free body in Fig. 27.7b, it is clear that the bending moment at x is M = −Py. Sub-
stituting this value into Eq. (27.10) gives

d2 y

dx2
+ p2 y = 0 (27.11)

FIGURE 27.6
The principal modes of vibration of two equal masses connected by three identical springs
between fixed walls.

TF =
1.625

t

TF =
2.815

(a) First mode (b) Second mode
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790 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

where

p2 = P

E I
(27.12)

For the system in Fig. 27.7, subject to the boundary conditions

y(0) = 0 (27.13a)

y(L) = 0 (27.13b)

the general solution for Eq. (27.11) is

y = A sin(px) + B cos(px) (27.14)

where A and B are arbitrary constants that are to be evaluated via the boundary conditions.
According to the first condition [Eq. (27.13a)],

0 = A sin(0) + B cos(0)

Therefore, we conclude that B = 0.
According to the second condition [Eq. (27.13b)],

0 = A sin (pL) + B cos (pL)

But, since B = 0, A sin (pL) = 0. Because A = 0 represents a trivial solution, we conclude
that sin (pL) = 0. For this equality to hold,

pL = nπ for n = 1, 2, 3, . . . π (27.15)

Thus, there are an infinite number of values that meet the boundary condition. Equation
(27.15) can be solved for

p = nπ

L
for n = 1, 2, 3, . . . (27.16)

which are the eigenvalues for the column.

(a)

(0, 0)

P

P�

(L, 0)

x

x

y

y

P�

M

(b)

P

FIGURE 27.7
(a) A slender rod. (b) A free-
body diagram of a rod.
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Figure 27.8, which shows the solution for the first four eigenvalues, can provide in-
sight into the physical significance of the results. Each eigenvalue corresponds to a way in
which the column buckles. Combining Eqs. (27.12) and (27.16) gives

P = n2π2 E I

L2
for n = 1, 2, 3, . . . (27.17)

These can be thought of as buckling loads because they represent the levels at which the
column moves into each succeeding buckling configuration. In a practical sense, it is usu-
ally the first value that is of interest because failure will usually occur when the column
first buckles. Thus, a critical load can be defined as

P = π2 E I

L2

which is formally known as Euler’s formula.

EXAMPLE 27.5 Eigenvalue Analysis of an Axially Loaded Column

Problem Statement. An axially loaded wooden column has the following characteris-
tics: E = 10 × 109 Pa, I = 1.25 × 10−5 m4, and L = 3 m. Determine the first eight eigen-
values and the corresponding buckling loads.

FIGURE 27.8
The first four eigenvalues for the slender rod from Fig. 27.7.

(a) n = 1

P = �2EI
L2

(b) n = 2

P = 4�2EI
L2 P = 9�2EI

L2 P = 16�2EI
L2

(c) n = 3 (d) n = 4
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Solution. Equations (27.16) and (27.17) can be used to compute

n p, m�2 P, kN

1 1.0472 137.078
2 2.0944 548.311
3 3.1416 1233.701
4 4.1888 2193.245
5 5.2360 3426.946
6 6.2832 4934.802
7 7.3304 6716.814
8 8.3776 8772.982

The critical buckling load is, therefore, 137.078 kN.

Although analytical solutions of the sort obtained above are useful, they are often dif-
ficult or impossible to obtain. This is usually true when dealing with complicated systems
or those with heterogeneous properties. In such cases, numerical methods of the sort de-
scribed next are the only practical alternative.

27.2.4 The Polynomial Method

Equation (27.11) can be solved numerically by substituting a central finite-divided-
difference approximation (Fig. 23.3) for the second derivative to give

yi+1 − 2yi + yi−1

h2
+ p2 yi = 0

which can be expressed as

yi−1 − (2 − h2 p2)yi + yi+1 = 0 (27.18)

Writing this equation for a series of nodes along the axis of the column yields a homoge-
neous system of equations. For example, if the column is divided into five segments (that
is, four interior nodes), the result is⎡

⎢⎢⎣
(2 − h2 p2) −1 0 0

−1 (2 − h2 p2) −1 0
0 −1 (2 − h2 p2) −1
0 0 −1 (2 − h2 p2)

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

y1

y2

y3

y4

⎫⎪⎪⎬
⎪⎪⎭ = 0 (27.19)

Expansion of the determinant of the system yields a polynomial, the roots of which are the
eigenvalues. This approach, called the polynomial method, is performed in the following
example.

EXAMPLE 27.6 The Polynomial Method

Problem Statement. Employ the polynomial method to determine the eigenvalues for
the axially loaded column from Example 27.5 using (a) one, (b) two, (c) three, and (d) four
interior nodes.
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Solution.

(a) Writing Eq. (27.18) for one interior node yields (h = 3/2)

−(2 − 2.25p2)y1 = 0

Thus, for this simple case, the eigenvalue is analyzed by setting the determinant equal
to zero

2 − 2.25p2 = 0

and solving for p = ±0.9428, which is about 10 percent less than the exact value of
1.0472 obtained in Example 27.4.

(b) For two interior nodes (h = 3/3), Eq. (27.18) is written as[
(2 − p2) −1

−1 (2 − p2)

]{
y1

y2

}
= 0

Expansion of the determinant gives

(2 − p2)2 − 1 = 0

which can be solved for p = ±1 and ±1.73205. Thus, the first eigenvalue is now about
4.5 percent low and a second eigenvalue is obtained that is about 17 percent low.

(c) For three interior points (h = 3/4), Eq. (27.18) yields⎡
⎣ 2 − 0.5625p2 −1 0

−1 2 − 0.5625p2 −1
0 −1 2 − 0.5625p2

⎤
⎦

⎧⎨
⎩

y1

y2

y3

⎫⎬
⎭ = 0 (E27.6.1)

The determinant can be set equal to zero and expanded to give

(2 − 0.5625p2)3 − 2(2 − 0.5625p2) = 0

For this equation to hold, 2 − 0.5625p2 = 0 and 2 − 0.5625p2 = √
2. Therefore, the

first three eigenvalues can be determined as

p = ±1.0205 |εt | = 2.5%

p = ±1.8856 |εt | = 10%

p = ±2.4637 |εt | = 22%

(d) For four interior points (h = 3/5), the result is Eq. (27.19) with 2 − 0.36p2 on the
diagonal. Setting the determinant equal to zero and expanding it gives

(2 − 0.36p2)4 − 3(2 − 0.36p2)2 + 1 = 0

which can be solved for the first four eigenvalues

p = ±1.0301 |εt | = 1.6%

p = ±1.9593 |εt | = 6.5%

p = ±2.6967 |εt | = 14%

p = ±3.1702 |εt | = 24%
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Table 27.2, which summarizes the results of this example, illustrates some fundamen-
tal aspects of the polynomial method. As the segmentation is made more refined, additional
eigenvalues are determined and the previously determined values become progressively
more accurate. Thus, the approach is best suited for cases where the lower eigenvalues are
required.

27.2.5 The Power Method

The power method is an iterative approach that can be employed to determine the largest
eigenvalue. With slight modification, it can also be employed to determine the smallest and
the intermediate values. It has the additional benefit that the corresponding eigenvector is
obtained as a by-product of the method.

Determination of the Largest Eigenvalue. To implement the power method, the system
being analyzed must be expressed in the form

[A]{X} = λ{X} (27.20)

As illustrated by the following example, Eq. (27.20) forms the basis for an iterative solu-
tion technique that eventually yields the highest eigenvalue and its associated eigenvector.

EXAMPLE 27.7 Power Method for Highest Eigenvalue

Problem Statement. Employ the power method to determine the highest eigenvalue for
part (c) of Example 27.6.

Solution. The system is first written in the form of Eq. (27.20),

3.556x1 − 1.778x2 = λx1

−1.778x1 + 3.556x2 − 1.778x3 = λx2

−1.778x2 + 3.556x3 = λx3

TABLE 27.2 The results of applying the polynomial method to an axially loaded column.
The numbers in parentheses represent the absolute value of the true percent
relative error.

Polynomial Method

Eigenvalue True h � 3/2 h � 3/3 h � 3/4 h � 3/5

1 1.0472 0.9428 1.0000 1.0205 1.0301
(10%) (4.5%) (2.5%) (1.6%)

2 2.0944 1.7321 1.8856 1.9593
(21%) (10%) (65%)

3 3.1416 2.4637 2.6967
(22%) (14%)

4 4.1888 3.1702
(24%)
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Then, assuming the x’s on the left-hand side of the equation are equal to 1,

3.556(1) − 1.778(1) = 1.778

−1.778(1) + 3.556(1) − 1.778(1) = 0

−1.778(1) + 3.556(1) = 1.778

Next, the right-hand side is normalized by 1.778 to make the largest element equal to⎧⎨
⎩

1.778
0

1.778

⎫⎬
⎭ = 1.778

⎧⎨
⎩

1
0
1

⎫⎬
⎭

Thus, the first estimate of the eigenvalue is 1.778. This iteration can be expressed concisely
in matrix form as⎡

⎣ 3.556 −1.778 0
−1.778 3.556 −1.778

0 −1.778 3.556

⎤
⎦

⎧⎨
⎩

1
1
1

⎫⎬
⎭ =

⎧⎨
⎩

1.778
0

1.778

⎫⎬
⎭ = 1.778

⎧⎨
⎩

1
0
1

⎫⎬
⎭

The next iteration consists of multiplying [A] by �1 0 1�T to give⎡
⎣ 3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556

⎤
⎦

⎧⎨
⎩

1
0
1

⎫⎬
⎭ =

⎧⎨
⎩

3.556
−3.556
3.556

⎫⎬
⎭ = 3.556

⎧⎨
⎩

1
−1
1

⎫⎬
⎭

Therefore, the eigenvalue estimate for the second iteration is 3.556, which can be em-
ployed to determine the error estimate

|εa| =
∣∣∣∣3.556 − 1.778

3.556

∣∣∣∣ 100% = 50%

The process can then be repeated.
Third iteration:⎡
⎣ 3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556

⎤
⎦

⎧⎨
⎩

1
−1
1

⎫⎬
⎭ =

⎧⎨
⎩

5.334
−7.112
5.334

⎫⎬
⎭ = −7.112

⎧⎨
⎩

−0.75
1

−0.75

⎫⎬
⎭

where |εa| = 150% (which is high because of the sign change).
Fourth iteration:⎡
⎢⎣ 3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556

⎤
⎥⎦

⎧⎪⎨
⎪⎩

−0.75
1

−0.75

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

−4.445
6.223

−4.445

⎫⎪⎬
⎪⎭ = 6.223

⎧⎪⎨
⎪⎩

−0.714
1

−0.714

⎫⎪⎬
⎪⎭

where |εa| = 214% (again inflated because of sign change).
Fifth iteration:⎡
⎣ 3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556

⎤
⎦

⎧⎨
⎩

−0.714
1

−0.714

⎫⎬
⎭ =

⎧⎨
⎩

−4.317
6.095

−4.317

⎫⎬
⎭ = 6.095

⎧⎨
⎩

−0.708
1

−0.708

⎫⎬
⎭
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Thus, the normalizing factor is converging on the value of 6.070 (= 2.46372) obtained
in part (c) of Example 27.6.

Note that there are some instances where the power method will converge to the second-
largest eigenvalue instead of to the largest. James, Smith, and Wolford (1985) provide an il-
lustration of such a case. Other special cases are discussed in Fadeev and Fadeeva (1963).

Determination of the Smallest Eigenvalue. There are often cases in engineering where
we are interested in determining the smallest eigenvalue. Such was the case for the rod in
Fig. 27.7, where the smallest eigenvalue could be used to identify a critical buckling load.
This can be done by applying the power method to the matrix inverse of [A]. For this case,
the power method will converge on the largest value of 1/λ—in other words, the smallest
value of λ.

EXAMPLE 27.8 Power Method for Lowest Eigenvalue

Problem Statement. Employ the power method to determine the lowest eigenvalue for
part (c) of Example 27.6.

Solution. After dividing Eq. E27.6.1 by h2 (� 0.5625), its matrix inverse can be evaluated as

[A]−1 =
⎡
⎣ 0.422 0.281 0.141

0.281 0.562 0.281
0.141 0.281 0.422

⎤
⎦

Using the same format as in Example 27.9, the power method can be applied to this matrix.
First iteration:⎡
⎣ 0.422 0.281 0.141

0.281 0.562 0.281
0.141 0.281 0.422

⎤
⎦

⎧⎨
⎩

1
1
1

⎫⎬
⎭ =

⎧⎨
⎩

0.884
1.124
0.884

⎫⎬
⎭ = 1.124

⎧⎨
⎩

0.751
1

0.751

⎫⎬
⎭

Second iteration:⎡
⎣ 0.422 0.281 0.141

0.281 0.562 0.281
0.141 0.281 0.422

⎤
⎦

⎧⎨
⎩

0.751
1

0.751

⎫⎬
⎭ =

⎧⎨
⎩

0.704
0.984
0.704

⎫⎬
⎭ = 0.984

⎧⎨
⎩

0.715
1

0.715

⎫⎬
⎭

where |εa| = 14.6%.
Third iteration:⎡
⎣ 0.422 0.281 0.141

0.281 0.562 0.281
0.141 0.281 0.422

⎤
⎦

⎧⎨
⎩

0.715
1

0.715

⎫⎬
⎭ =

⎧⎨
⎩

0.684
0.964
0.684

⎫⎬
⎭ = 0.964

⎧⎨
⎩

0.709
1

0.709

⎫⎬
⎭

where |εa| = 4%.
Thus, after only three iterations, the result is converging on the value of 0.9602, which is

the reciprocal of the smallest eigenvalue, 1.0205(= √
1/0.9602), obtained in Example 27.6c.
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Determination of Intermediate Eigenvalues. After finding the largest eigenvalue, it is
possible to determine the next highest by replacing the original matrix by one that includes
only the remaining eigenvalues. The process of removing the largest known eigenvalue is
called deflation. The technique outlined here, Hotelling’s method, is designed for symmet-
ric matrices. This is because it exploits the orthogonality of the eigenvectors of such matri-
ces, which can be expressed as

{X}T
i {X}j =

{
0 for i �= j
1 for i = j

(27.21)

where the components of the eigenvector {X} have been normalized so that {X}T {X} = 1,
that is, so that the sum of the squares of the components equals 1. This can be accomplished
by dividing each of the elements by the normalizing factor√√√√ n∑

k=1

x2
k

Now, a new matrix [A]2 can be computed as

[A]2 = [A]1 − λ1{X}1{X}T
1 (27.22)

where [A]1 = the original matrix and λ1 = the largest eigenvalue. If the power method is
applied to this matrix, the iteration process will converge to the second largest eigenvalue,
λ2. To show this, first postmultiply Eq. (27.22) by {X}1,

[A]2{X}1 = [A]1{X}1 − λ1{X}1{X}T
1 {X}1

Invoking the orthogonality principle converts this equation to

[A]2{X}1 = [A]1{X}1 − λ1{X}1

where the right-hand side is equal to zero according to Eq. (27.20). Thus, [A]2{X}1 = 0.
Consequently, λ = 0 and {X} = {X}1 is a solution to [A]2{X} = λ{X}. In other words, the
[A]2 has eigenvalues of 0, λ2, λ3, . . . , λn. The largest eigenvalue, λ1, has been replaced by
a 0 and, therefore, the power method will converge on the next biggest λ2.

The above process can be repeated by generating a new matrix [A]3, etc. Although
in theory this process could be continued to determine the remaining eigenvalues, it is
limited by the fact that errors in the eigenvectors are passed along at each step. Thus, it
is only of value in determining several of the highest eigenvalues. Although this is some-
what of a shortcoming, such information is precisely what is required in many engineer-
ing problems.

27.2.6 Other Methods

A wide variety of additional methods are available for solving eigenvalue problems. Most
are based on a two-step process. The first step involves transforming the original matrix to
a simpler form (for example, tridiagonal) that retains all the original eigenvalues. Then,
iterative methods are used to determine these eigenvalues.

Many of these approaches are designed for special types of matrices. In particular, a
variety of techniques are devoted to symmetric systems. For example, Jacobi’s method
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transforms a symmetric matrix to a diagonal matrix by eliminating off-diagonal terms in a
systematic fashion. Unfortunately, the method requires an infinite number of operations
because the removal of each nonzero element often creates a new nonzero value at a pre-
vious zero element. Although an infinite time is required to create all nonzero off-diagonal
elements, the matrix will eventually tend toward a diagonal form. Thus, the approach is
iterative in that it is repeated until the off-diagonal terms are “sufficiently” small.

Given’s method also involves transforming a symmetric matrix into a simpler form.
However, in contrast to the Jacobi method, the simpler form is tridiagonal. In addition, it
differs in that the zeros that are created in off-diagonal positions are retained. Conse-
quently, it is finite and, thus, more efficient than Jacobi’s method.

Householder’s method also transforms a symmetric matrix into a tridiagonal form. It
is a finite method and is more efficient than Given’s approach in that it reduces whole rows
and columns of off-diagonal elements to zero.

Once a tridiagonal system is obtained from Given’s or Householder’s method, the
remaining step involves finding the eigenvalues. A direct way to do this is to expand the de-
terminant. The result is a sequence of polynomials that can be evaluated iteratively for the
eigenvalues.

Aside from symmetric matrices, there are also techniques that are available when all
eigenvalues of a general matrix are required. These include the LR method of Rutishauser
and the QR method of Francis. Although the QR method is less efficient, it is usually the
preferred approach because it is more stable. As such, it is considered to be the best general-
purpose solution method.

Finally, it should be mentioned that the aforementioned techniques are often used in
tandem to capitalize on their respective strengths. For example, Given’s and Householder’s
methods can also be applied to nonsymmetric systems. The result will not be tridiagonal
but rather a special type called the Hessenberg form. One approach is to exploit the speed
of Householder’s approach by employing it to transform the matrix to this form and then
use the stable QR algorithm to find the eigenvalues. Additional information on these and
other issues related to eigenvalues can be found in Ralston and Rabinowitz (1978),
Wilkinson (1965), Fadeev and Fadeeva (1963), and Householder (1953, 1964). Computer
codes can be found in a number of sources including Press et al. (1992). Rice (1983) dis-
cusses available software packages.

27.3 ODES AND EIGENVALUES WITH SOFTWARE PACKAGES

Software packages have great capabilities for solving ODEs and determining eigenvalues.
This section outlines some of the ways in which they can be applied for this purpose.

27.3.1 Excel

Excel’s direct capabilities for solving eigenvalue problems and ODEs are limited. How-
ever, if some programming is done (for example, macros), they can be combined with
Excel’s visualization and optimization tools to implement some interesting applications.
Section 28.1 provides an example of how the Excel Solver can be used for parameter esti-
mation of an ODE.
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27.3.2 MATLAB

As might be expected, the standard MATLAB software package has excellent capabilities
for determining eigenvalues and eigenvectors. However, it also has built-in functions for
solving ODEs. The standard ODE solvers include two functions to implement the adaptive
step-size Runge-Kutta Fehlberg method (recall Sec. 25.5.2). These are ODE23, which uses
second- and third-order formulas to attain medium accuracy, and ODE45, which uses
fourth- and fifth-order formulas to attain higher accuracy. The following example illus-
trates how they can be used to solve a system of ODEs.

EXAMPLE 27.9 Using MATLAB for Eigenvalues and ODEs

Problem Statement. Explore how MATLAB can be used to solve the following set of
nonlinear ODEs from t = 0 to 20:

dx

dt
= 1.2x − 0.6xy

dy

dt
= −0.8y + 0.3xy

where x = 2 and y = 1 at t = 0. As we will see in the next chapter (Sec. 28.2), such equa-
tions are referred to as predator-prey equations.

Solution. Before obtaining a solution with MATLAB, you must use a text processor to
create an M-file containing the right-hand side of the ODEs. This M-file will then be ac-
cessed by the ODE solver [where x = y(1) and y = y(2)]:

function yp = predprey(t,y)
yp = [1.2*y(1)–0.6*y(1)*y(2);–0.8*y(2)+0.3*y(1)*y(2)];

We stored this M-file under the name: predprey.m.
Next, start up MATLAB, and enter the following commands to specify the integration

range and the initial conditions:

>> tspan = [0,20];
>> y0=[2,1];

The solver can then be invoked by

>> [t,y]=ode23('predprey',tspan,y0);

This command will then solve the differential equations in predprey.m over the range
defined by tspan using the initial conditions found in y0. The results can be displayed by
simply typing

>> plot(t,y)

which yields Fig. 27.9.
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In addition, it is also instructive to generate a state-space plot, that is, a plot of the de-
pendent variables versus each other by

>> plot(y(:,1),y(:,2))

which yields Fig. 27.10.

MATLAB also has a range of functions designed for stiff systems. These include
ODE15S and ODE23S. As in the following example, they succeed where the standard
functions fail.

FIGURE 27.9
Solution of predator-prey model with MATLAB.

FIGURE 27.10
State-space plot of predator-prey model with MATLAB.
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EXAMPLE 27.10 MATLAB for Stiff ODEs

Problem Statement. Van der Pol’s equation can be written as

dy1

dt
= y2

dy2

dt
= μ(1 − y2

1)y2 − y1

As the parameter μ gets large, the system becomes progressively stiffer. Given the ini-
tial conditions, y1(0) = y2(0) = 1, use MATLAB to solve the following two cases

(a) For μ = 1, use ODE45 to solve from t = 0 to 20.
(b) For μ = 1000, use ODE23S to solve from t = 0 to 3000.

Solution.

(a) An M-file can be created to hold the differential equations,

function yp = vanderpol(t,y)
yp=[y(2);1*(1–y(1)^2)*y(2)–y(1)];

Then, as in Example 27.9, ODE45 can be invoked and the results plotted (Fig. 27.11),

>> tspan=[0,20];
>> y0=[1,1];
>> [t,y]=ode45('vanderpol',tspan,y0);
>> plot(t,y(:,1))

(b) If a standard solver like ODE45 is used for the stiff case (μ = 1000), it will fail miserably
(try it, if you like). However, ODE23S does an efficient job. After revising the M-file to
reflect the new value of μ, the solution can be obtained and graphed (Fig. 27.12),

>> tspan=[0,3000];
>> y0=[1,1];

FIGURE 27.11
Nonstiff form of Van der Pol’s equation solved with MATLAB’s ODE45 function.
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>> [t,y]=ode23S('vanderpol',tspan,y0);
>> plot(t,y(:,1))

Notice how this solution has much sharper edges than for case (a). This is a visual
manifestation of the “stiffness” of the solution.

For eigenvalues, the capabilities are also very easy to apply. Recall that, in our discus-
sion of stiff systems in Chap. 26, we presented the stiff system defined by Eq. (26.6). Such
linear ODEs can be written as an eigenvalue problem of the form[

5 − λ −3
−100 301 − λ

]{
e1

e2

}
= {0}

where λ and {e} = the eigenvalue and eigenvector, respectively.
MATLAB can then be employed to evaluate both the eigenvalues (d) and eigenvectors

(v) with the following simple commands:

>> a=[5 –3;–100 301];
>> [v,d]=eig(a)

v =
–0.9477     0.0101
–0.3191    –0.9999

d =
3.9899            0

0     302.0101

Thus, we see that the eigenvalues are of quite different magnitudes, which is typical of a
stiff system.

FIGURE 27.12
Stiff form of Van der Pol’s equation solved with MATLAB’s ODE23S function.
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The eigenvalues can be interpreted by recognizing that the general solution for a sys-
tem of ODEs can be represented as the sum of exponentials. For example, the solution for
the present case would be of the form

y1 = c11e−3.9899t + c12e−302.0101t

y2 = c21e−3.9899t + c22e−302.0101t

where cij = the part of the initial condition for yi that is associated with the jth eigenvalue.
It should be noted that the c’s can be evaluated from the initial conditions and the eigen-
vectors. Any good book on differential equations, for example, Boyce and DiPrima (1992),
will provide an explanation of how this can be done.

Because, for the present case, all the eigenvalues are positive (and hence negative in
the exponential function), the solution consists of a series of decaying exponentials. The
one with the largest eigenvalue (in this case, 302.0101) would dictate the step size if an ex-
plicit solution technique were used.

27.3.3 Mathcad

Mathcad has a number of different functions that solve differential equations and deter-
mine eigenvalues and eigenvectors. The most basic technique employed by Mathcad to
solve systems of first-order differential equations is a fixed step-size fourth-order Runge
Kutta algorithm. This is provided by the rkfixed function. Although this is a good all-
purpose integrator, it is not always efficient. Therefore, Mathcad supplies Rkadapt, which
is a variable step sized version of rkfixed. It is well suited for functions that change rapidly
in some regions and slowly in others. Similarly, if you know your solution is a smooth
function, then you may find that the Mathcad Bulstoer function works well. This function
employs the Bulirsch-Stoer method and is often both efficient and highly accurate for
smooth functions.

Stiff differential equations are at the opposite end of the spectrum. Under these condi-
tions the rkfixed function may be very inefficient or unstable. Therefore, Mathcad pro-
vides two special methods specifically designed to handle stiff systems. These functions
are called Stiffb and Stiffr and are based on a modified Bulirsch-Stoer method for stiff sys-
tems and the Rosenbrock method.

As an example, let’s use Mathcad to solve the following nonlinear ODEs,

dy1

dt
= 1.2y1 − 0.6y1 y2

dy2

dt
= −0.8y2 + 0.3y1 y2

with the initial conditions, y1 = 2 and y2 = 1. This system, called Lotka-Volterra equa-
tions, are used by environmental engineers and ecologists to evaluate the interactions of
predators (y2) and prey (y1). 

As in Fig. 27.13, the definition symbol is first used to define the vector D(u, y) hold-
ing the right-hand sides of the ODEs for input to rkfixed. Note that y1 and y2 in the ODEs
are changed to y0 and y1 to comply with Mathcad requirements. In addition, we define the
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initial conditions (y0), the integration limit (tf) and the number of values we want to gener-
ate (npts). The solutions for rkfixed with 200 steps between t = 0 and tf are stored in the
ysol matrix. The solution is displayed graphically in the plot in Fig. 27.13.

Next, we can illustrate how Mathcad evaluates eigenvalues and eigenvectors. The
function eigenvals(M) returns the eigenvalues of the square matrix M. The function
eigenvecs(M) returns a matrix containing normalized eigenvectors corresponding to
the eigenvectors of M whereas eigenvec(M,e) returns the eigenvector corresponding 
to the eigenvalue e. We can illustrate these functions for the system given by [recall 
Eq. (26.6)]

dy1

dt
= −5y1 + 3y2

dy2

dt
= 100y1 − 301y2

The results are shown in Fig. 27.14. Because the eigenvalues (aa) are of different
magnitudes, the system is stiff. Note that bb holds the specific eigenvector associated with
the smaller eigenvalue. The result cc is a matrix containing both eigenvectors as its
columns.

FIGURE 27.13
Mathcad screen to solve a system of ODEs.

cha01064_ch27.qxd  3/25/09  12:50 PM  Page 804



27.1 A steady-state heat balance for a rod can be represented as

d2T

dx2
− 0.15T = 0

Obtain an analytical solution for a 10-m rod with T(0) = 240 and
T(10) = 150.
27.2 Use the shooting method to solve Prob. 27.1.
27.3 Use the finite-difference approach with �x = 1 to solve
Prob. 27.1.
27.4 Use the shooting method to solve

7
d2 y

dx2
− 2

dy

dx
− y + x = 0

with the boundary conditions y(0) = 5 and y(20) = 8.
27.5 Solve Prob. 27.4 with the finite-difference approach using
�x = 2.
27.6 Use the shooting method to solve

d2T

dx2
− 1 × 10−7(T + 273)4 + 4(150 − T ) = 0 (P27.6)

Obtain a solution for boundary conditions: T(0) = 200 and
T(0.5) = 100.
27.7 Differential equations like the one solved in Prob. 27.6 can
often be simplified by linearizing their nonlinear terms. For example,
a first-order Taylor series expansion can be used to linearize the
quartic term in Eq. (P27.6) as

1 × 10−7(T + 273)4 = 1 × 10−7(Tb + 273)4 + 4

× 10−7(Tb + 273)3(T − Tb)

where Tb is a base temperature about which the term is linearized.
Substitute this relationship into Eq. (P27.6), and then solve the re-
sulting linear equation with the finite-difference approach. Employ
Tb = 150 and �x = 0.01 to obtain your solution.
27.8 Repeat Example 27.4 but for three masses. Produce a plot like
Fig. 27.6 to identify the principle modes of vibration. Change all
the k’s to 240.
27.9 Repeat Example 27.6, but for five interior points (h = 3/6).

PROBLEMS 805

PROBLEMS

FIGURE 27.14
Mathcad screen to solve for the eigenvalues of a system of ODEs. 
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27.10 Use minors to expand the determinant of⎡
⎣ 2 − λ 8 10

8 4 − λ 5
10 5 7 − λ

⎤
⎦

27.11 Use the power method to determine the highest eigenvalue
and corresponding eigenvector for Prob. 27.10.
27.12 Use the power method to determine the lowest eigenvalue
and corresponding eigenvector for Prob. 27.10.
27.13 Develop a user-friendly computer program to implement the
shooting method for a linear second-order ODE. Test the program
by duplicating Example 27.1.
27.14 Use the program developed in Prob. 27.13 to solve Probs. 27.2
and 27.4.
27.15 Develop a user-friendly computer program to implement the
finite-difference approach for solving a linear second-order ODE.
Test it by duplicating Example 27.3.
27.16 Use the program developed in Prob. 27.15 to solve Probs. 27.3
and 27.5.
27.17 Develop a user-friendly program to solve for the largest eigen-
value with the power method. Test it by duplicating Example 27.7.
27.18 Develop a user-friendly program to solve for the smallest
eigenvalue with the power method. Test it by duplicating Exam-
ple 27.8.
27.19 Use the Excel Solver to directly solve (that is, without lin-
earization) Prob. 27.6 using the finite-difference approach. Employ
�x = 0.1 to obtain your solution.
27.20 Use MATLAB to integrate the following pair of ODEs from
t = 0 to 100:

dy1

dt
= 0.35y1 − 1.6y1 y2

dy2

dt
= 0.04y1 y2 − 0.15y2

where y1 = 1 and y2 = 0.05 at t = 0. Develop a state-space plot
(y1 versus y2) of your results.
27.21 The following differential equation was used in Sec. 8.4 to
analyze the vibrations of an automobile shock absorber:

1.25 × 106 d2x

dt2
+ 1 × 107 dx

dt
+ 1.5 × 109x = 0

Transform this equation into a pair of ODEs. (a) Use MATLAB to
solve these equations from t = 0 to 0.4 for the case where x = 0.5,
and dx/dt = 0 at t = 0. (b) Use MATLAB to determine the eigen-
values and eigenvectors for the system.
27.22 Use MATLAB or Mathcad to integrate

dx

dt
= −σ x + σ y

dy

dt
= r x − y − xz

dz

dt
= −bz + xy

where σ = 10, b = 2.666667, and r = 28. Employ initial conditions
of x = y = z = 5 and integrate from t = 0 to 20.
27.23 Use finite differences to solve the boundary-value ordinary
differential equation

d2u

dx2
+ 6

du

dx
− u = 2

with boundary conditions u(0) = 10 and u(2) = 1. Plot the results
of u versus x. Use �x = 0.1.
27.24 Solve the nondimensionalized ODE using finite difference
methods that describe the temperature distribution in a circular rod
with internal heat source S

d2T

dr2
+ 1

r

dT

dr
+ S = 0

over the range 0 ≤ r ≤ 1, with the boundary conditions

T (r = 1) = 1
dT

dr

∣∣∣∣
r=0

= 0

for S = 1, 10, and 20 K/m2. Plot the temperature versus radius.
27.25 Derive the set of differential equations for a three mass–four
spring system (Fig. P27.25) that describes their time motion. Write
the three differential equations in matrix form,

[Acceleration vector] + [k/m matrix][displacement vector x] = 0

Note each equation has been divided by the mass. Solve for the
eigenvalues and natural frequencies for the following values of
mass and spring constants: k1 = k4 = 15 N/m, k2 = k3 = 35 N/m,
and m1 = m2 = m3 = 1.5 kg.

Figure P27.25

k2 k3 k4k1

x1 x2 x3

m1 m2 m3

27.26 Consider the mass-spring system in Fig. P27.26. The fre-
quencies for the mass vibrations can be determined by solving for
the eigenvalues and by applying Mẍ + kx = 0, which yields

⎡
⎣ m1 0 0

0 m2 0
0 0 m3

⎤
⎦

⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭ +

⎡
⎣ 2k −k −k

−k 2k −k
−k −k 2k

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭
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Applying the guess x = x0eiωt as a solution, we get the following
matrix:⎡
⎣ 2k − m1ω

2 −k −k
−k 2k − m2ω

2 −k
−k −k 2k − m3ω

2

⎤
⎦

⎧⎨
⎩

x01

x02

x03

⎫⎬
⎭ eiωt =

⎧⎨
⎩

0
0
0

⎫⎬
⎭

Use MATLAB’s eig command to solve for the eigenvalues of the
k − mω2 matrix above. Then use these eigenvalues to solve for the
frequencies (ω). Let m1 = m2 = m3 = 1 kg, and k = 2 N/m.

(b) Using the fourth-order RK method with a constant step size of
0.03125.

(c) Using the MATLAB function ODE45.
(d) Using the MATLAB function ODE23s.
(e) Using the MATLAB function ODE23tb.
Present your results in graphical form.
27.28 A heated rod with a uniform heat source can be modeled
with the Poisson equation,

d2T

dx2
= − f(x)

Given a heat source f (x) = 25 and the boundary conditions,
T(x = 0) = 40 and T(x = 10) = 200, solve for the temperature dis-
tribution with (a) the shooting method and (b) the finite-difference
method (�x = 2).
27.29 Repeat Prob. 27.28, but for the following heat source: f (x) =
0.12x3 − 2.4x2 + 12x.
27.30 Suppose that the position of a falling object is governed by
the following differential equation,

d2x

dt2
+ c

m

dx

dt
− g = 0

where c = a first-order drag coefficient = 12.5 kg/s, m = mass =
70 kg, and g = gravitational acceleration = 9.81 m/s2. Use the
shooting method to solve this equation for position and velocity
given the boundary conditions, x(0) = 0 and x(12) = 500.
27.31 Repeat Example 27.3, but insulate the left end of the rod.
That is, change the boundary condition at the left end of the rod to
T′(0) = 0. 

Figure P27.26

k

k

k

x1 x2 x3

m1 m2 m3

27.27 The following nonlinear, parasitic ODE was suggested by
Hornbeck (1975):

dy1

dt
= 5(y1 − t2)

If the initial condition is y1(0) = 0.08, obtain a solution from t = 0
to 5:
(a) Analytically.
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Case Studies: Ordinary
Differential Equations

The purpose of this chapter is to solve some ordinary differential equations using the nu-
merical methods presented in Part Seven. The equations originate from practical engineer-
ing applications. Many of these applications result in nonlinear differential equations that
cannot be solved using analytic techniques. Therefore, numerical methods are usually re-
quired. Thus, the techniques for the numerical solution of ordinary differential equations
are fundamental capabilities that characterize good engineering practice. The problems in
this chapter illustrate some of the trade-offs associated with various methods developed in
Part Seven.

Section 28.1 derives from a chemical engineering problem context. It demonstrates
how the transient behavior of chemical reactors can be simulated. It also illustrates how op-
timization can be used to estimate parameters for ODEs.

Sections 28.2 and 28.3, which are taken from civil and electrical engineering, respec-
tively, deal with the solution of systems of equations. In both cases, high accuracy is de-
manded, and as a consequence, a fourth-order RK scheme is used. In addition, the electrical
engineering application also deals with determining eigenvalues.

Section 28.4 employs a variety of different approaches to investigate the behavior of a
swinging pendulum. This problem also utilizes two simultaneous equations. An important
aspect of this example is that it illustrates how numerical methods allow nonlinear effects
to be incorporated easily into an engineering analysis.

28.1 USING ODES TO ANALYZE THE TRANSIENT RESPONSE
OF A REACTOR (CHEMICAL/BIO ENGINEERING)

Background. In Sec. 12.1, we analyzed the steady state of a series of reactors. In addi-
tion to steady-state computations, we might also be interested in the transient response of a
completely mixed reactor. To do this, we have to develop a mathematical expression for the
accumulation term in Eq. (12.1).

Accumulation represents the change in mass in the reactor per change in time. For a
constant-volume system, it can be simply formulated as

Accumulation = V
dc

dt
(28.1)
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28.1 USING ODES TO ANALYZE THE TRANSIENT RESPONSE OF A REACTOR 809

where V = volume and c = concentration. Thus, a mathematical formulation for accumu-
lation is volume times the derivative of c with respect to t.

In this application we will incorporate the accumulation term into the general mass-
balance framework we developed in Sec. 12.1. We will then use it to simulate the dynamics
of a single reactor and a system of reactors. In the latter case, we will show how the system’s
eigenvalues can be determined and provide insight into its dynamics. Finally, we will illus-
trate how optimization can be used to estimate the parameters of mass-balance models.

Solution. Equations (28.1) and (12.1) can be used to represent the mass balance for a sin-
gle reactor such as the one shown in Fig. 28.1:

V
dc

dt
= Qcin − Qc (28.2)

Accumulation = inputs − outputs

Equation (28.2) can be used to determine transient or time-variable solutions for the
reactor. For example, if c = c0 at t = 0, calculus can be employed to analytically solve
Eq. (28.2) for

c = cin
(
1 − e−(Q/V )t

) + c0e−(Q/V )t

If cin = 50 mg/m3, Q = 5 m3/min, V = 100 m3, and c0 = 10 mg/m3, the equation is

c = 50(1 − e−0.05t) + 10e−0.05t

Figure 28.2 shows this exact, analytical solution.
Euler’s method provides an alternative approach for solving Eq. (28.2). Figure 28.2

includes two solutions with different step sizes. As the step size is decreased, the numeri-
cal solution converges on the analytical solution. Thus, for this case, the numerical method
can be used to check the analytical result.

Besides checking the results of an analytical solution, numerical solutions have added
value in those situations where analytical solutions are impossible or so difficult that they
are impractical. For example, aside from a single reactor, numerical methods have utility
when simulating the dynamics of systems of reactors. For example, ODEs can be written

Qc

Qcin

FIGURE 28.1
A single, completely mixed reactor with an inflow and an outflow.
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810 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

for the five coupled reactors in Fig. 12.3. The mass balance for the first reactor can be writ-
ten as

V1
dc1

dt
= Q01c01 + Q31c3 − Q12c1 − Q15c1

or, substituting parameters (note that Q01c01 = 50 mg/min, Q03c03 = 160 mg/min, V1 =
50 m3, V2 = 20 m3, V3 = 40 m3, V4 = 80 m3, and V5 = 100 m3),

dc1

dt
= −0.12c1 + 0.02c3 + 1

Similarly, balances can be developed for the other reactors as

dc2

dt
= 0.15c1 − 0.15c2

dc3

dt
= 0.025c2 − 0.225c3 + 4

dc4

dt
= 0.1c3 − 0.1375c4 + 0.025c5

dc5

dt
= 0.03c1 + 0.01c2 − 0.04c5

Suppose that at t = 0 all the concentrations in the reactors are at zero. Compute how
their concentrations will increase over the next hour.

The equations can be integrated with the fourth-order RK method for systems of equa-
tions and the results are depicted in Fig. 28.3. Notice that each of the reactors shows a
different transient response to the introduction of chemical. These responses can be pa-
rameterized by a 90 percent response time t90, which measures the time required for each
reactor to reach 90 percent of its ultimate steady-state level. The times range from about

FIGURE 28.2
Plot of analytical and numerical
solutions of Eq. (28.2). The
numerical solutions are
obtained with Euler’s method
using different step sizes.

c,
 m

g
/m

3

0 10 20

t, min

30 50

10

0

30

50

20

40

40

Euler, step size = 10
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t90

c–1

0
t

c1

10

t90

c–3

0
t

c3

10

t90

c–4

0
t

c4

10

t90

c–2

0
t

c2

10

t90

c–5

0
500 t

c5

10

FIGURE 28.3
Plots of transient or dynamic response of the network of reactors from Fig. 12.3. Note that all
the reactors eventually approach their steady-state concentrations previously computed in
Sec. 12.1. In addition, the time to steady state is parameterized by the 90 percent
response time t90.
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812 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

10 min for reactor 3 to about 70 min for reactor 5. The response times of reactors 4 and 5
are of particular concern because the two outflow streams for the system exit these tanks.
Thus, a chemical engineer designing the system might change the flows or volumes of the
reactors to speed up the response of these tanks while still maintaining the desired outputs.
Numerical methods of the sort described in this part of the book can prove useful in these
design calculations.

Further insight into the system’s response characteristics can be developed by comput-
ing its eigenvalues. First, the system of ODEs can be written as an eigenvalue problem as⎡

⎢⎢⎢⎢⎣
0.12 − λ 0 −0.02 0 0
−0.15 0.15 − λ 0 0 0

0 −0.025 0.225 − λ 0 0
0 0 −0.1 0.1375 − λ −0.025

−0.03 −0.01 0 0 0.04 − λ

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1

e2

e3

e4

e5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= {0}

where λ and {e} = the eigenvalue and the eigenvector, respectively.
A package like MATLAB software can be used to very conveniently generate the

eigenvalues and eigenvectors,

>> a=[0.12 0.0 –0.02 0.0 0.0;–.15 0.15 0.0 0.0 0.0;0.0 
–0.025 0.225 0.0 0.0; 0.0 0.0 –.1 0.1375 –0.025;–0.03 –0.01
0.0 0.0 0.04];

>> [e,l]=eig(a)
e =

0        0   –0.1228   –0.1059    0.2490
0        0    0.2983    0.5784    0.8444
0        0    0.5637    0.3041    0.1771

1.0000   0.2484   –0.7604   –0.7493    0.3675
0   0.9687    0.0041   –0.0190   –0.2419

l =
0.1375        0         0         0         0

0   0.0400         0         0         0
0        0    0.2118         0         0
0        0         0    0.1775         0
0        0         0         0    0.1058

The eigenvalues can be interpreted by recognizing that the general solution for a sys-
tem of ODEs can be represented as the sum of exponentials. For example, for reactor 1, the
general solution would be of the form

c1 = c11e−λ1t + c12e−λ2t + c13e−λ3t + c14e−λ4t + c15e−λ5t

where cij = the part of the initial condition for reactor i that is associated with the jth eigen-
value. Thus, because, for the present case, all the eigenvalues are positive (and hence neg-
ative in the exponential function), the solution consists of a series of decaying exponentials.
The one with the smallest eigenvalue (in our case, 0.04) will be the slowest. In some
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28.1 USING ODES TO ANALYZE THE TRANSIENT RESPONSE OF A REACTOR 813

cases, the engineer performing this analysis could be able to relate this eigenvalue back to
the system parameters. For example, the ratio of the outflow from reactor 5 to its volume
is (Q55 + Q54)/V5 = 4/100 = 0.04. Such information can then be used to modify the sys-
tem’s dynamic performance.

The final topic we would like to review within the present context is parameter esti-
mation. One area where this occurs frequently is in reaction kinetics, that is, the quantifi-
cation of chemical reaction rates.

A simple example is depicted in Fig. 28.4. A series of beakers are set up containing a
chemical compound that decays over time. At time intervals, the concentration in one of the
beakers is measured and recorded. Thus, the result is a table of times and concentrations.

One model that is commonly used to describe such data is

dc

dt
= −kcn (28.3)

where k = a reaction rate and n = the order of the reaction. Chemical engineers use
concentration-time data of the sort depicted in Fig. 28.4 to estimate k and n. One way to do
this is to guess values of the parameters and then solve Eq. (28.3) numerically. The pre-
dicted values of concentration can be compared with the measured concentrations and an
assessment of the fit made. If the fit is deemed inadequate (for example, by examining a
plot or a statistical measure like the sum of the squares of the residuals), the guesses are
adjusted and the procedure repeated until a decent fit is attained.

The following data can be fit in this fashion:

t, d 0 1 3 5 10 15 20

c, mg/L 12 10.7 9 7.1 4.6 2.5 1.8

c

t

t = 0 t = 2 t = 3t = 1

c0 c2 c3c1

Time
Concentration

0 
c0

1 
c1

2
c2

3
c3

FIGURE 28.4
A simple experiment to collect rate data for a chemical compound that decays with time
(reprinted from Chapra 1997).
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814 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

The solution to this problem is shown in Fig. 28.5. The Excel spreadsheet was used to per-
form the computation.

Initial guesses for the reaction rate and order are entered into cells B3 and B4, respec-
tively, and the time step for the numerical calculation is typed into cell B5. For this case, a
column of calculation times is entered into column A starting at 0 (cell A7) and ending at
20 (cell A27). The k1 through k4 coefficients of the fourth-order RK method are then cal-
culated in the block B7..E27. These are then used to determine the predicted concentrations
(the cp values) in column F. The measured values (cm) are entered in column G adjacent to
the corresponding predicted values. These are then used in conjunction with the predicted
values to compute the squared residual in column H. These values are then summed in
cell H29.

At this point, the Excel Solver can be used to determine the best parameter values.
Once you have accessed the Solver, you are prompted for a target or solution cell (H29),
queried whether you want to maximize or minimize the target cell (minimize), and
prompted for the cells that are to be varied (B3..B4). You then activate the algorithm

A B C D E F G H
1 Fitting of reaction rate
2 data with the integral/least-squares approach
3 k 0.091528
4 n 1.044425
5 dt 1
6 t k1 k2 k3 k4 cp cm (cp-cm)^2
7 0 −1.22653 −1.16114 −1.16462 −1.10248 12 12 0
8 1 −1.10261 −1.04409 −1.04719 −0.99157 10.83658 10.7 0.018653
9 2 −0.99169 −0.93929 −0.94206 −0.89225 9.790448
10 3 −0.89235 −0.84541 −0.84788 −0.80325 8.849344 9 0.022697
11 4 −0.80334 −0.76127 −0.76347 −0.72346 8.002317
12 5 −0.72354 −0.68582 −0.68779 −0.65191 7.239604 7.1 0.019489
13 6 −0.65198 −0.61814 −0.61989 −0.5877 6.552494
14 7 −0.58776 −0.55739 −0.55895 −0.53005 5.933207
15 8 −0.53011 −0.50283 −0.50424 −0.47828 5.374791
16 9 −0.47833 −0.45383 −0.45508 −0.43175 4.871037
17 10 −0.4318 −0.40978 −0.4109 −0.38993 4.416389 4.6 0.033713
18 11 −0.38997 −0.37016 −0.37117 −0.35231 4.005877
19 12 −0.35234 −0.33453 −0.33543 −0.31846 3.635053
20 13 −0.31849 −0.30246 −0.30326 −0.28798 3.299934
21 14 −0.28801 −0.27357 −0.2743 −0.26054 2.996949
22 15 −0.26056 −0.24756 −0.24821 −0.23581 2.7229 2.5 0.049684
23 16 −0.23583 −0.22411 −0.22469 −0.21352 2.474917
24 17 −0.21354 −0.20297 −0.20349 −0.19341 2.250426
25 18 −0.19343 −0.18389 −0.18436 −0.17527 2.047117
26 19 −0.17529 −0.16668 −0.16711 −0.1589 1.862914
27 20 −0.15891 −0.15115 −0.15153 −0.14412 1.695953 1.8 0.010826
28
29 SSR = 0.155062

FIGURE 28.5
The application of a spreadsheet and numerical methods to determine the order and rate
coefficient of reaction data. This application was performed with the Excel spreadsheet.
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28.2 PREDATOR-PREY MODELS AND CHAOS 815

[s(olve)], and the results are as in Fig. 28.5. As shown, the values in cells B3..B4 (k =
0.0915 and n = 1.044) minimize the sum of the squares of the residuals (SSR = 0.155)
between the predicted and measured data. A plot of the fit along with the data is shown in
Fig. 28.6.

28.2 PREDATOR-PREY MODELS AND CHAOS
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Environmental engineers deal with a variety of problems involving sys-
tems of nonlinear ordinary differential equations. In this section, we will focus on two of
these applications. The first relates to the so-called predator-prey models that are used to
study the cycling of nutrient and toxic pollutants in aquatic food chains and biological
treatment systems. The second are equations derived from fluid dynamics that are used to
simulate the atmosphere. Aside from their obvious application to weather prediction, such
equations have also been used to study air pollution and global climate change.

Predator-prey models were developed independently in the early part of the twentieth
century by the Italian mathematician Vito Volterra and the American biologist Alfred
J. Lotka. These equations are commonly called Lotka-Volterra equations. The simplest
example is the following pair of ODEs:

dx

dt
= ax − bxy (28.4)

dy

dt
= −cy + dxy (28.5)

where x and y = the number of prey and predators, respectively, a = the prey growth rate,
c = the predator death rate, and b and d = the rate characterizing the effect of the predator-
prey interaction on prey death and predator growth, respectively. The multiplicative terms
(that is, those involving xy) are what make such equations nonlinear.

10

c

5

0
t20100

FIGURE 28.6
Plot of fit generated with the integral/least-squares approach.
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816 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

An example of a simple model based on atmospheric fluid dynamics is the Lorenz
equations developed by the American meteorologist Edward Lorenz,

dx

dt
= −σ x + σ y (28.6)

dy

dt
= r x − y − xz (28.7)

dz

dt
= −bz + xy (28.8)

Lorenz developed these equations to relate the intensity of atmospheric fluid motion, x, to
temperature variations y and z in the horizontal and vertical directions, respectively. As
with the predator-prey model, we see that the nonlinearity is localized in simple multi-
plicative terms (xz and xy).

Use numerical methods to obtain solutions for these equations. Plot the results to
visualize how the dependent variables change temporally. In addition, plot the dependent
variables versus each other to see whether any interesting patterns emerge.

Solution. Use the following parameter values for the predator-prey simulation: a = 1.2,
b = 0.6, c = 0.8, and d = 0.3. Employ initial conditions of x = 2 and y = 1 and integrate
from t = 0 to 30. We will use the fourth-order RK method with double precision to obtain
solutions.

The results using a step size of 0.1 are shown in Fig. 28.7. Note that a cyclical pattern
emerges. Thus, because predator population is initially small, the prey grows exponen-
tially. At a certain point, the prey become so numerous, that the predator population begins
to grow. Eventually, the increased predators cause the prey to decline. This decrease, in
turn, leads to a decrease of the predators. Eventually, the process repeats. Notice that, as
expected, the predator peak lags the prey. Also, observe that the process has a fixed period,
that is, it repeats in a set time.

Now, if the parameters used to simulate Fig. 28.7 were changed, although the general
pattern would remain the same, the magnitudes of the peaks, lags, and period would
change. Thus, there are an infinite number of cycles that could occur.

A phase-plane representation is useful in discerning the underlying structure of the
model. Rather than plotting x and y versus t, we can plot x versus y. This plot illustrates

FIGURE 28.7
Time-domain representation
of numbers of prey and 
predators for the Lotka-Volterra
model.

8

4

0
t30200 10

x, prey
y, predator
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28.2 PREDATOR-PREY MODELS AND CHAOS 817

the way that the state variables (x and y) interact, and is referred to as a phase-plane
representation.

Figure 28.8 shows the phase-plane representation for the case we are studying. Thus,
the interaction between the predator and the prey defines a closed counterclockwise orbit.
Notice that there is a critical or rest point at the center of the orbit. The exact location of
this point can be determined by setting Eqs. (28.4) and (28.5) to steady state (dy/dt =
dx/dt = 0) and solving for (x, y) = (0, 0) and (c/d, a/b). The former is the trivial result that
if we start with neither predators nor prey, nothing will happen. The latter is the more in-
teresting outcome that if the initial conditions are set at x = c/d and y = a/b, the derivative
will be zero and the populations will remain constant.

Now, let us use the same approach to investigate the trajectories of the Lorenz equa-
tions with the following parameter values: σ = 10, b = 2.666667, and r = 28. Employ ini-
tial conditions of x = y = z = 5 and integrate from t = 0 to 20. Again, we will use the
fourth-order RK method with double precision to obtain solutions.

The results shown in Fig. 28.9 are quite different from the behavior of the Lotka-
Volterra equations. The variable x seems to be undergoing an almost random pattern of os-
cillations, bouncing around from negative values to positive values. However, even though

FIGURE 28.8
Phase-plane representation
for the Lotka-Volterra model. 4

y

2

0
x62

Critical
point

0 4

FIGURE 28.9
Time-domain representation of x
versus t for the Lorenz equa-
tions. The solid time series is for
the initial conditions (5, 5, 5).
The dotted line is where the ini-
tial condition for x is perturbed
slightly (5.001, 5, 5).

20

x

0

10

– 20

– 10

20 t155 10
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818 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

the patterns seem random, the frequency of the oscillation and the amplitudes seem fairly
consistent.

Another interesting feature can be illustrated by changing the initial condition for x
slightly (from 5 to 5.001). The results are superimposed as the dotted line in Fig. 28.9.
Although the solutions track on each other for a time, after about t = 12.5 they diverge
significantly. Thus, we can see that the Lorenz equations are quite sensitive to their initial
conditions. In his original study, this led Lorenz to the conclusion that long-range weather
forecasts might be impossible!

Finally, let us examine the phase-plane plots. Because we are dealing with three inde-
pendent variables, we are limited to projections. Figure 28.10 shows projections in the xy
and the xz planes. Notice how a structure is manifest when perceived from the phase-plane
perspective. The solution forms orbits around what appear to be critical points. These points

25
y

– 25

x20– 20

(a)

0

50
z

x20– 20

(b)

0

FIGURE 28.10
Phase-plane representation for the Lorenz equations. (a) xy projection and (b) xz projection.
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28.3 SIMULATING TRANSIENT CURRENT FOR AN ELECTRIC CIRCUIT 819

are called strange attractors in the jargon of mathematicians who study such nonlinear
systems.

Solutions such as the type we have explored for the Lorenz equations are referred to as
chaotic solutions. The study of chaos and nonlinear systems presently represents an exciting
area of analysis that has implications to mathematics as well as to science and engineering.

From a numerical perspective, the primary point is the sensitivity of such solutions to
initial conditions. Thus, different numerical algorithms, computer precision, and integra-
tion time steps can all have an impact on the resulting numerical solution.

28.3 SIMULATING TRANSIENT CURRENT FOR AN ELECTRIC
CIRCUIT (ELECTRICAL ENGINEERING)

Background. Electric circuits where the current is time-variable rather than constant are
common. A transient current is established in the right-hand loop of the circuit shown in
Fig. 28.11 when the switch is suddenly closed.

Equations that describe the transient behavior of the circuit in Fig. 28.11 are based on
Kirchhoff’s law, which states that the algebraic sum of the voltage drops around a closed
loop is zero (recall Sec. 8.3). Thus,

L
di

dt
+ Ri + q

C
− E(t) = 0 (28.9)

where L(di/dt) = voltage drop across the inductor, L = inductance (H), R = resistance
(�), q = charge on the capacitor (C), C = capacitance (F), E(t) = time-variable voltage
source (V), and

i = dq

dt
(28.10)

Equations (28.9) and (28.10) are a pair of first-order linear differential equations that can
be solved analytically. For example, if E(t) = E0 sin ωt and R = 0,

q(t) = −E0

L(p2 − ω2)

ω

p
sin pt + E0

L(p2 − ω2)
sin ωt (28.11)

Switch

Resistor

Capacitor
–

+
V0

E(t)

–

+
Battery Inductor

FIGURE 28.11
An electric circuit where the current varies with time.

cha01064_ch28.qxd  3/25/09  12:56 PM  Page 819



820 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

where p = 1/
√

LC . The values of q and dq/dt are zero for t = 0. Use a numerical ap-
proach to solve Eqs. (28.9) and (28.10) and compare the results with Eq. (28.11).

Solution. This problem involves a rather long integration range and demands the use of
a highly accurate scheme to solve the differential equation if good results are expected.
Let us assume that L = 1 H, E0 = 1 V, C = 0.25 C, and ω2 = 3.5 s2. This gives p = 2, and
Eq. (28.11) becomes

q(t) = −1.8708 sin (2t) + 2 sin (1.8708t)

for the analytical solution. This function is plotted in Fig. 28.12. The rapidly changing na-
ture of the function places a severe requirement on any numerical procedure to find q(t).
Furthermore, because the function exhibits a slowly varying periodic nature as well as a
rapidly varying component, long integration ranges are necessary to portray the solution.
Thus, we expect that a high-order method is preferred for this problem.

However, we can try both Euler and fourth-order RK methods and compare the results.
Using a step size of 0.1 s gives a value for q at t = 10 s of −6.638 with Euler’s method and
a value of −1.9897 with the fourth-order RK method. These results compare to an exact
solution of −1.996 C.

Figure 28.13 shows the results of Euler integration every 1.0 s compared to the exact
solution. Note that only every tenth output point is plotted. It is seen that the global error
increases as t increases. This divergent behavior intensifies as t approaches infinity.

In addition to directly simulating a network’s transient response, numerical methods
can also be used to determine its eigenvalues. For example, Fig. 28.14 shows an LC net-
work for which Kirchhoff’s voltage law can be employed to develop the following system

– 6.0
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0
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– 2.0

2.0

0 40

Time
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u
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20 8060 100

FIGURE 28.12
Computer screen showing the plot of the function represented by Eq. (28.11).
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of ODEs:

−L1
di1

dt
− 1

C1

∫ t

−∞
(i1 − i2) dt = 0

−L2
di2

dt
− 1

C2

∫ t

−∞
(i2 − i3) dt + 1

C1

∫ t

−∞
(i1 − i2) dt = 0

−L3
di3

dt
− 1

C3

∫ t

−∞
i3 dt + 1

C2

∫ t

−∞
(i2 − i3) dt = 0

Notice that we have represented the voltage drop across the capacitor as

VC = 1

C

∫ t

−∞
i dt

This is an alternative and equivalent expression to the relationship used in Eq. (28.9) and
introduced in Sec. 8.3.

0

2

4

Charge

– 6

– 4

– 2

t, s10

Euler’s method

FIGURE 28.13
Results of Euler integration versus exact solution. Note that only every tenth output point is
plotted.

L1 L2 L3

C1

i1

+

–

C2 C3

i2 i3

FIGURE 28.14
An LC network.
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822 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

The system of ODEs can be differentiated and rearranged to yield

L1
d2i1

dt2
+ 1

C1
(i1 − i2) = 0

L2
d2i2

dt2
+ 1

C2
(i2 − i3) − 1

C1
(i1 − i2) = 0

L3
d2i3

dt2
+ 1

C3
i3 − 1

C2
(i2 − i3) = 0

Comparison of this system with the one in Eq. (27.5) indicates an analogy between
a spring-mass system and an LC circuit. As was done with Eq. (27.5), the solution can be
assumed to be of the form

i j = Aj sin (ωt)

This solution along with its second derivative can be substituted into the simultaneous
ODEs. After simplification, the result is(

1

C1
− L1ω

2

)
A1 − 1

C2
A2 = 0

− 1

C1
A1 +

(
1

C1
+ 1

C2
− L2ω

2

)
A2 − 1

C2
A3 = 0

− 1

C2
A2 +

(
1

C2
+ 1

C3
− L3ω

2

)
A3 = 0

Thus, we have formulated an eigenvalue problem. Further simplification results for the
special case where the C’s and L’s are constant. For this situation, the system can be ex-
pressed in matrix form as⎡

⎣ 1 − λ −1 0
−1 2 − λ −1
0 −1 2 − λ

⎤
⎦

⎧⎨
⎩

A1

A2

A3

⎫⎬
⎭ = {0} (28.12)

where

λ = LCω2 (28.13)

Numerical methods can be employed to determine values for the eigenvalues and
eigenvectors. MATLAB is particularly convenient in this regard. The following MATLAB
session has been developed to do this:

>>a=[1 –1 0; –1 2 –1; 0 –1 2]

a =

1    –1     0
–1     2    –1
0    –1     2
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28.3 SIMULATING TRANSIENT CURRENT FOR AN ELECTRIC CIRCUIT 823

>>[v,d]=eig(a)

v =

0.7370     0.5910     0.3280
0.5910    –0.3280    –0.7370
0.3280    –0.7370     0.5910

d =

0.1981          0          0
0     1.5550          0
0          0     3.2470

The matrix v consists of the system’s three eigenvectors (arranged as columns), and d
is a matrix with the corresponding eigenvalues on the diagonal. Thus, the package com-
putes that the eigenvalues are λ = 0.1981, 1.555, and 3.247. These values in turn can be
substituted into Eq. (28.13) to solve for the natural circular frequencies of the system

ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.4450√
LC

1.2470√
LC

1.8019√
LC

Aside from providing the natural frequencies, the eigenvalues can be substituted into
Eq. (28.12) to gain further insight into the circuit’s physical behavior. For example, substi-
tuting λ = 0.1981 yields⎡

⎣ 0.8019 −1 0
−1 1.8019 −1
0 −1 1.8019

⎤
⎦

⎧⎨
⎩

i1

i2

i3

⎫⎬
⎭ = {0}

Although this system does not have a unique solution, it will be satisfied if the currents are
in fixed ratios, as in

0.8019i1 = i2 = 1.8019i3 (28.14)

Thus, as depicted in Fig. 28.15a, they oscillate in the same direction with different magni-
tudes. Observe that if we assume that i1 = 0.737, we can use Eq. (28.14) to compute the
other currents with the result

{i} =
{ 0.737

0.591
0.328

}

which is the first column of the v matrix calculated with MATLAB.
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824 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

In a similar fashion, the second eigenvalue of λ = 1.555 can be substituted and the
result evaluated to yield

−1.8018i1 = i2 = 2.247i3

As depicted in Fig. 28.15b, the first loop oscillates in the opposite direction from the sec-
ond and third. Finally, the third mode can be determined as

−0.445i1 = i2 = −0.8718i3

Consequently, as in Fig. 28.15c, the first and third loops oscillate in the opposite direction
from the second.

28.4 THE SWINGING PENDULUM (MECHANICAL/AEROSPACE
ENGINEERING)

Background. Mechanical engineers (as well as all other engineers) are frequently faced
with problems concerning the periodic motion of free bodies. The engineering approach to
such problems ultimately requires that the position and velocity of the body be known as a
function of time. These functions of time invariably are the solution of ordinary differen-
tial equations. The differential equations are usually based on Newton’s laws of motion.

As an example, consider the simple pendulum shown previously in Fig. PT7.1. The
particle of weight W is suspended on a weightless rod of length l. The only forces acting on
the particle are its weight and the tension R in the rod. The position of the particle at any
time is completely specified in terms of the angle θ and l.

The free-body diagram in Fig. 28.16 shows the forces on the particle and the acceler-
ation. It is convenient to apply Newton’s laws of motion in the x direction tangent to the
path of the particle:

�F = −W sin θ = W

g
a

where g = the gravitational constant (32.2 ft/s2) and a = the acceleration in the x direction.
The angular acceleration of the particle (α) becomes

α = a

l

�

W
y

a

x

R

FIGURE 28.16
A free-body diagram of the
swinging pendulum showing
the forces on the particle and
the acceleration.

(a) � = 0.4451 
LC

(b) � = 1.2470 
LC

(c) � = 1.8019 
LC

FIGURE 28.15
A visual representation of the natural modes of oscillation of the LC network of Fig. 28.14. Note
that the diameters of the circular arrows are proportional to the magnitudes of the currents for
each loop.
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28.4 THE SWINGING PENDULUM 825

Therefore, in polar coordinates (α = d2θ/dt2),

−W sin θ = Wl

g
α = Wl

g

d2θ

dt2

or

d2θ

dt2
+ g

l
sin θ = 0 (28.15)

This apparently simple equation is a second-order nonlinear differential equation. In gen-
eral, such equations are difficult or impossible to solve analytically. You have two choices
regarding further progress. First, the differential equation might be reduced to a form that
can be solved analytically (recall Sec. PT7.1.1), or second, a numerical approximation
technique can be used to solve the differential equation directly. We will examine both of
these alternatives in this example.

Solution. Proceeding with the first approach, we note that the series expansion for sin θ
is given by

sin θ = θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · · (28.16)

For small angular displacements, sin θ is approximately equal to θ when expressed in radi-
ans. Therefore, for small displacements, Eq. (28.15) becomes

d2θ

dt2
+ g

l
θ = 0 (28.17)

which is a second-order linear differential equation. This approximation is very important
because Eq. (28.17) is easy to solve analytically. The solution, based on the theory of dif-
ferential equations, is given by

θ(t) = θ0 cos

√
g

l
t (28.18)

where θ0 = the displacement at t = 0 and where it is assumed that the velocity (v = dθ/dt)
is zero at t = 0. The time required for the pendulum to complete one cycle of oscillation is
called the period and is given by

T = 2π

√
l

g
(28.19)

Figure 28.17 shows a plot of the displacement θ and velocity dθ/dt as a function of
time, as calculated from Eq. (28.18) with θ0 = π/4 and l = 2 ft. The period, as calculated
from Eq. (28.19), is 1.5659 s.

The above calculations essentially are a complete solution of the motion of the pendu-
lum. However, you must also consider the accuracy of the results because of the assumptions

cha01064_ch28.qxd  3/25/09  12:56 PM  Page 825



826 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

inherent in Eq. (28.17). To evaluate the accuracy, it is necessary to obtain a numerical
solution for Eq. (28.15), which is a more complete physical representation of the motion.
Any of the methods discussed in Chaps. 25 and 26 could be used for this purpose—for
example, the Euler and fourth-order RK methods. Equation (28.15) must be transformed
into two first-order equations to be compatible with the above methods. This is accom-
plished as follows. The velocity v is defined by

dθ

dt
= v (28.20)

and, therefore, Eq. (28.15) can be expressed as

dv

dt
= −g

l
sin θ (28.21)

Equations (28.20) and (28.21) are a coupled system of two ordinary differential equations.
The numerical solutions by the Euler method and the fourth-order RK method give the
results shown in Table 28.1, which compares the analytic solution for the linear equation
of motion [Eq. (28.18)] in column (a) with the numerical solutions in columns (b), (c),
and (d).

The Euler and fourth-order RK methods yield different results and both disagree with
the analytic solution, although the fourth-order RK method for the nonlinear case is closer
to the analytic solution than is the Euler method. To properly evaluate the difference be-
tween the linear and nonlinear models, it is important to determine the accuracy of the nu-
merical results. This is accomplished in three ways. First, the Euler numerical solution is
easily recognized as inadequate because it overshoots the initial condition at t = 0.8 s. This
clearly violates conservation of energy. Second, column (c) and (d ) in Table 28.1 show the
solution of the fourth-order RK method for step sizes of 0.05 and 0.01. Because these vary

FIGURE 28.17
Plot of displacement θ and
velocity dθ/dt as a function of
time t, as calculated from
Eq. (28.18). θ0 is π/4 and the
length is 2 ft.

�

– 0.8

0.8

0
t

– 2

2

0
t

d�
dt
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28.4 THE SWINGING PENDULUM 827

in the fourth decimal place, it is reasonable to assume that the solution with a step size
of 0.01 is also accurate with this degree of certainty. Third, for the 0.01-s step-size case,
θ obtains a local maximum value of 0.785385 at t = 1.63 s (not shown in Table 28.1). This
indicates that the pendulum returns to its original position with four-place accuracy with a
period of 1.63 s. These considerations allow you to safely assume that the difference
between columns (a) and (d) in Table 28.1 truly represents the difference between the
linear and nonlinear model.

Another way to characterize the difference between the linear and the nonlinear model
is on the basis of period. Table 28.2 shows the period of oscillation as calculated by the lin-
ear model and nonlinear model for three different initial displacements. It is seen that the
calculated periods agree closely when θ is small because θ is a good approximation for sin θ

in Eq. (28.16). This approximation deteriorates when θ becomes large.
These analyses are typical of cases you will routinely encounter as an engineer. The

utility of the numerical techniques becomes particularly significant in nonlinear problems,
and in many cases real-world problems are nonlinear.

TABLE 28.2 Comparison of the period of an oscillating body calculated from linear and
nonlinear models.

Period, s

Initial Linear Model Nonlinear Model
Displacement, θθ0 (T � 2ππ �I/g�) [Numerical Solution of Eq. (28.15)]

π/16 1.5659 1.57
π/4 1.5659 1.63
π/2 1.5659 1.85

TABLE 28.1 Comparison of a linear analytical solution of the swinging pendulum problem
with three nonlinear numerical solutions.

Nonlinear Numerical Solutions

Linear
Analytical Euler 4th-Order RK 4th-Order RK

Time, Solution (h � 0.05) (h � 0.05) (h � 0.01)
s (a) (b) (c) (d)

0.0 0.785398 0.785398 0.785398 0.785398
0.2 0.545784 0.615453 0.566582 0.566579
0.4 −0.026852 0.050228 0.021895 0.021882
0.6 −0.583104 −0.639652 −0.535802 −0.535820
0.8 −0.783562 −1.050679 −0.784236 −0.784242
1.0 −0.505912 −0.940622 −0.595598 −0.595583
1.2 0.080431 −0.299819 −0.065611 −0.065575
1.4 0.617698 0.621700 0.503352 0.503392
1.6 0.778062 1.316795 0.780762 0.780777
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828 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

Chemical/Bio Engineering
28.1 Perform the first computation in Sec. 28.1, but for the case
where h = 10. Use the Heun (without iteration) and the fourth-
order RK method to obtain solutions.
28.2 Perform the second computation in Sec. 28.1, but for the sys-
tem described in Prob. 12.4.
28.3 A mass balance for a chemical in a completely mixed reactor
can be written as

V
dc

dt
= F − Qc − kV c2

where V = volume (12 m3), c = concentration (g/m3), F = feed rate
(175 g/min), Q = flow rate (1 m3/min), and k = a second-order
reaction rate (0.15 m3/g/min). If c(0) = 0, solve the ODE until
the concentration reaches a stable level. Use the midpoint method
(h = 0.5) and plot your results.

Challenge question: If one ignores the fact that concentrations
must be positive, find a range of initial conditions such that you
obtain a very different trajectory than was obtained with c(0) = 0.
Relate your results to the steady-state solutions.
28.4 If cin = cb(1 − e−0.12t), calculate the outflow concentration of a
conservative substance (no reaction) for a single, completely mixed
reactor as a function of time. Use Heun’s method (without itera-
tion) to perform the computation. Employ values of cb = 40 mg/m3,
Q = 6 m3/min, V = 100 m3, and c0 = 20 mg/m3. Perform the com-
putation from t = 0 to 100 min using h = 2. Plot your results along
with the inflow concentration versus time.
28.5 Seawater with a concentration of 8000 g/m3 is pumped into a
well-mixed tank at a rate of 0.6 m3/hr. Because of faulty design
work, water is evaporating from the tank at a rate of 0.025 m3/hr.
The salt solution leaves the tank at a rate of 0.6 m3/hr.
(a) If the tank originally contains 1 m3 of the inlet solution, how

long after the outlet pump is turned on will the tank run dry?
(b) Use numerical methods to determine the salt concentration in

the tank as a function of time.
28.6 A spherical ice cube (an “ice sphere”) that is 6 cm in diam-
eter is removed from a 0°C freezer and placed on a mesh screen at
room temperature Ta = 20°C. What will be the diameter of the
ice cube as a function of time out of the freezer (assuming that all
the water that has melted immediately drips through the screen)?
The heat transfer coefficient h for a sphere in a still room is about
3 W/(m2 · K). The heat flux from the ice sphere to the air is
given by

Flux = q

A
= h(Ta − T )

where q = heat and A = surface area of the sphere. Use a numeri-
cal method to make your calculation. Note that the latent heat of
fusion is 333 kJ/kg and the density of ice is approximately
0.917 kg/m3.
28.7 The following equations define the concentrations of three
reactants:

dca

dt
= −10cacc + cb

dcb

dt
= 10cacc − cb

dcc

dt
= −10cacc + cb − 2cc

If the initial conditions are ca = 50, cb = 0, and cc = 40, find the
concentrations for the times from 0 to 3 s.
28.8 Compound A diffuses through a 4-cm-long tube and reacts as
it diffuses. The equation governing diffusion with reaction is

D
d2 A

dx2
− k A = 0

At one end of the tube, there is a large source of A at a concentra-
tion of 0.1 M. At the other end of the tube there is an adsorbent
material that quickly absorbs any A, making the concentration 0 M.
If D = 1.5 × 10−6 cm2/s and k = 5 × 10−6 s−1, what is the concen-
tration of A as a function of distance in the tube?
28.9 In the investigation of a homicide or accidental death, it is
often important to estimate the time of death. From the experimen-
tal observations, it is known that the surface temperature of an ob-
ject changes at a rate proportional to the difference between the
temperature of the object and that of the surrounding environment
or ambient temperature. This is known as Newton’s law of cooling.
Thus, if T(t) is the temperature of the object at time t, and Ta is the
constant ambient temperature:

dT

dt
= −K (T − Ta)

where K > 0 is a constant of proportionality. Suppose that at time
t = 0 a corpse is discovered and its temperature is measured to be To.
We assume that at the time of death, the body temperature, Td, was
at the normal value of 37°C. Suppose that the temperature of the
corpse when it was discovered was 29.5°C, and that two hours later,
it is 23.5°C. The ambient temperature is 20°C.
(a) Determine K and the time of death. 
(b) Solve the ODE numerically and plot the results.
28.10 The reaction A → B takes place in two reactors in series.
The reactors are well mixed but are not at steady state. The

PROBLEMS
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unsteady-state mass balance for each stirred tank reactor is shown
below:

dCA1

dt
= 1

τ
(CA0 − CA1) − kCA1

dCB1

dt
= − 1

τ
CB1 + kCA1

dCA2

dt
= 1

τ
(CA1 − CA2) − kCA2

dCB2

dt
= 1

τ
(CB1 − CB2) + kCA2

where CA0 = concentration of A at the inlet of the first reactor, CA1 =
concentration of A at the outlet of the first reactor (and inlet of the
second), CA2 = concentration of A at the outlet of the second reactor,
CB1 = concentration of B at the outlet of the first reactor (and inlet
of the second), CB2 = concentration of B in the second reactor, τ =
residence time for each reactor, and k = the rate constant for reaction
of A to produce B. If CA0 is equal to 20, find the concentrations of A
and B in both reactors during their first 10 minutes of operation. Use
k = 0.12/min and τ = 5 min and assume that the initial conditions of
all the dependent variables are zero.
28.11 A nonisothermal batch reactor can be described by the fol-
lowing equations:

dC

dt
= −e(−10/(T +273))C

dT

dt
= 1000e(−10/(T +273))C − 10(T − 20)

where C is the concentration of the reactant and T is the tempera-
ture of the reactor. Initially the reactor is at 15°C and has a concen-
tration of reactant C of 1.0 gmol/L. Find the concentration and tem-
perature of the reactor as a function of time.
28.12 The following system is a classic example of stiff ODEs that
can occur in the solution of chemical reaction kinetics:

dc1

dt
= −0.013c1 − 1000c1c3

dc2

dt
= −2500c2c3

dc3

dt
= −0.013c1 − 1000c1c3 − 2500c2c3

Solve these equations from t = 0 to 50 with initial conditions c1(0) =
c2(0) = 1 and c3(0) = 0. If you have access to MATLAB software,
use both standard (for example, ode45) and stiff (for example,
ode23s) functions to obtain your solutions.
28.13 A biofilm with a thickness, Lf [cm], grows on the surface of
a solid (Fig. P28.13). After traversing a diffusion layer of thickness,
L [cm], a chemical compound, A, diffuses into the biofilm where it

is subject to an irreversible first-order reaction that converts it to a
product, B. 

Steady-state mass balances can be used to derive the following
ordinary differential equations for compound A:

D
d2ca

dx2
= 0 0 ≤ x < L

Df
d2ca

dx2
− kca = 0 L ≤ x < L + L f

where D = the diffusion coefficient in the diffusion layer = 0.8
cm2/d, Df = the diffusion coefficient in the biofilm = 0.64 cm2/d,
and k = the first-order rate for the conversion of A to B = 0.1/d. The
following boundary conditions hold:

ca = ca0 at x = 0

dca

dx
= 0 at x = L + L f

where ca 0 = the concentration of A in the bulk liquid = 100 mol/L.
Use the finite-difference method to compute the steady-state distri-
bution of A from x = 0 to L + Lf, where L = 0.008 cm and Lf =
0.004 cm. Employ centered finite differences with �x = 0.001 cm.
28.14 The following differential equation describes the steady-state
concentration of a substance that reacts with first-order kinetics in
an axially-dispersed plug-flow reactor (Fig. P28.14),

D
d2c

dx2
− U

dc

dx
− kc = 0

where D = the dispersion coefficient [m2/hr], c =
concentration[mol/L], x = distance [m], U = the velocity [m/hr],

Bulk
liquid

0

Diffusion
layer Biofilm

x

Solid
surface

L Lf

Figure P28.13
A biofilm growing on a solid surface.
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830 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

Use the finite-difference approach to solve for the concentration of
each reactant as a function of distance given: D = 0.1 m2/min, U =
1 m/min, k1 = 3/min, k2 = 1/min, L = 0.5 m, ca,in = 10 mol/L.
Employ centered finite-difference approximations with �x = 0.05 m
to obtain your solutions and assume Danckwerts boundary condi-
tions as described in Prob. 28.14. Also, compute the sum of the
reactants as a function of distance. Do your results make sense?
28.16 Bacteria growing in a batch reactor utilize a soluble food
source (substrate) as depicted in Fig. P28.16. The uptake of the
substrate is represented by a logistic model with Michaelis-Menten
limitation. Death of the bacteria produces detritus which is subse-
quently converted to the substrate by hydrolysis. In addition, the
bacteria also excrete some substrate directly. Death, hydrolysis and
excretion are all simulated as first-order reactions. 

Mass balances can be written as

d X

dt
= μmax

(
1 − X

K

)(
S

Ks + S

)
X − kd X − ke X

dC

dt
= kd X − khC

dS

dt
= ke X + khC − μmax

(
1 − X

K

)(
S

Ks + S

)
X

where X, C, and S = the concentrations [mg/L] of bacteria, detritus,
and substrate, respectively; μmax = maximum growth rate [/d], K =
the logistic carrying capacity [mg/L]; Ks = the Michaelis-Menten
half-saturation constant [mg/L], kd = death rate [/d]; ke = excretion
rate [/d]; and kh = hydrolysis rate [/d]. Simulate the concentrations
from t = 0 to 100 d, given the initial conditions X(0) = 1 mg/L, S(0) =
100 mg/L and C(0) = 0 mg/L. Employ the following parameters in
your calculation: μmax = 10/d, K = 10 mg/L, Ks = 10 mg/L, kd =
0.1/d, ke = 0.1/d, and kh = 0.1/d.

Civil/Environmental Engineering
28.17 Perform the same computation for the Lotka-Volterra sys-
tem in Sec. 28.2, but use (a) Euler’s method, (b) Heun’s method
(without iterating the corrector), (c) the fourth-order RK method,
and (d) the MATLAB ode45 function. In all cases use single-
precision variables, a step size of 0.1, and simulate from t = 0 to 20.
Develop phase-plane plots for all cases.

and k = the reaction rate [/hr]. The boundary conditions can be
formulated as

Ucin = Uc(x = 0) − D
dc

dx
(x = 0)

dc

dx
(x = L) = 0

where cin = the concentration in the inflow [mol/L], and L = the
length of the reactor [m]. These are called Danckwerts boundary
conditions. Use the finite-difference approach to solve for concen-
tration as a function of distance given the following parameters:
D = 5000 m2/hr, U = 100 m/hr, k = 2/hr, L = 100 m and cin = 100
mol/L. Employ centered finite-difference approximations with
�x = 10 m to obtain your solutions. Compare your numerical
results with the analytical solution,

c = Ucin

(U − Dλ1)λ2eλ2 L − (U − Dλ2)λ1eλ1 L

� 
(
λ2eλ2 L eλ1x − λ1eλ1 L eλ2x)

where

λ1

λ2
= U

2D

(
1 ±

√
1 + 4k D

U 2

)

28.15 A series of first-order, liquid-phase reactions create a
desirable product (B) and an undesirable byproduct (C) 

A
k1→ B

k2→ C

If the reactions take place in an axially-dispersed plug-flow reactor
(Fig. P28.14), steady-state mass balances can be used to develop the
following second-order ODEs,

D
d2ca

dx2
− U

dca

dx
− k1ca = 0

D
d2cb

dx2
− U

dcb

dx
+ k1ca − k2cb = 0

D
d2cc

dx2
− U

dcc

dx
+ k2cb = 0

x � 0 x � L
x

Figure P28.14
An axially-dispersed plug-flow reactor.

hydrolysis

excretion

deathuptakeSubstrate
S

Bacteria
X

Detritus
C

Figure P28.16
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28.18 Perform the same computation for the Lorenz equations in
Sec. 28.2, but use (a) Euler’s method, (b) Heun’s method (without
iterating the corrector), (c) the fourth-order RK method, and (d) the
MATLAB ode45 function. In all cases use single-precision vari-
ables and a step size of 0.1 and simulate from t = 0 to 20. Develop
phase-plane plots for all cases.
28.19 The following equation can be used to model the deflection
of a sailboat mast subject to a wind force:

d2 y

dz2
= f

2EI
(L − z)2

where f = wind force, E = modulus of elasticity, L = mast length,
and I = moment of inertia. Calculate the deflection if y = 0 and
dy/dz = 0 at z = 0. Use parameter values of f = 60, L = 30, E =
1.25 × 108, and I = 0.05 for your computation.
28.20 Perform the same computation as in Prob. 28.19, but rather
than using a constant wind force, employ a force that varies with
height according to (recall Sec. 24.2)

f(z) = 200z

5 + z
e−2z/30

28.21 An environmental engineer is interested in estimating the
mixing that occurs between a stratified lake and an adjacent
embayment (Fig. P28.21). A conservative tracer is instantaneously
mixed with the bay water, and then the tracer concentration is
monitored over the ensuing period in all three segments. The val-
ues are

t 0 2 4 6 8 12 16 20
c1 0 15 11 7 6 3 2 1
c2 0 3 5 7 7 6 4 2
c3 100 48 26 16 10 4 3 2

Bay
(3)

Upper
layer
(1)

Lower
layer
(2)

Figure P28.21

Using mass balances, the system can be modeled as the following
simultaneous ODEs:

V1
dc1

dt
= −Qc1 + E12(c2 − c1) + E13(c3 − c1)

V2
dc2

dt
= E12(c1 − c2)

V3
dc3

dt
= E13(c1 − c3)

where Vi = volume of segment i, Q = flow, and Eij = diffusive
mixing rate between segments i and j. Use the data and the differ-
ential equations to estimate the E’s if V1 = 1 × 107, V2 = 8 × 106,
V3 = 5 × 106, and Q = 4 × 106. Employ Euler’s method with a step
size of 0.1 for your analysis.
28.22 Population-growth dynamics are important in a variety of
planning studies for areas such as transportation and water-
resource engineering. One of the simplest models of such growth
incorporates the assumption that the rate of change of the popula-
tion p is proportional to the existing population at any time t:

dp

dt
= Gp (P28.22)

where G = a growth rate (per year). This model makes intuitive
sense because the greater the population, the greater the number
of potential parents. At time t = 0, an island has a population of
6000 people. If G = 0.075 per year, employ Heun’s method (with-
out iteration) to predict the population at t = 20 years, using a step
size of 0.5 year. Plot p versus t on standard and semilog graph
paper. Determine the slope of the line on the semilog plot. Discuss
your results.
28.23 Although the model in Prob. 28.22 works adequately when
population growth is unlimited, it breaks down when factors such as
food shortages, pollution, and lack of space inhibit growth. In such
cases, the growth rate itself can be thought of as being inversely
proportional to population. One model of this relationship is

G = G ′(pmax − p) (P28.23)

where G ′ = a population-dependent growth rate (per people-year)
and pmax = the maximum sustainable population. Thus, when pop-
ulation is small (p � pmax), the growth rate will be at a high con-
stant rate of G ′ pmax. For such cases, growth is unlimited and
Eq. (P28.23) is essentially identical to Eq. (P28.22). However, as
population grows (that is, p approaches pmax), G decreases until at
p = pmax it is zero. Thus, the model predicts that, when the popula-
tion reaches the maximum sustainable level, growth is nonexistent,
and the system is at a steady state. Substituting Eq. (P28.23) into
Eq. (P28.22) yields

dp

dt
= G ′(pmax − p)p
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For the same island studied in Prob. 28.22, employ Heun’s method
(without iteration) to predict the population at t = 20 years, using a
step size of 0.5 year. Employ values of G′ = 10−5 per people-year
and pmax = 20,000 people. At time t = 0, the island has a population
of 6000 people. Plot p versus t and interpret the shape of the curve.
28.24 Isle Royale National Park is a 210-square-mile archipelago
composed of a single large island and many small islands in Lake
Superior. Moose arrived around 1900 and by 1930, their population
approached 3000, ravaging vegetation. In 1949, wolves crossed an
ice bridge from Ontario. Since the late 1950s, the numbers of the
moose and wolves have been tracked. (Dash indicates no data.)

Year Moose Wolves Year Moose Wolves

1960 700 22 1972 836 23
1961 — 22 1973 802 24
1962 — 23 1974 815 30
1963 — 20 1975 778 41
1964 — 25 1976 641 43
1965 — 28 1977 507 33
1966 881 24 1978 543 40
1967 — 22 1979 675 42
1968 1000 22 1980 577 50
1969 1150 17 1981 570 30
1970 966 18 1982 590 13
1971 674 20 1983 811 23

(a) Integrate the Lotka-Volterra equations from 1960 through
2020. Determine the coefficient values that yield an optimal fit.
Compare your simulation with the data using a time-series ap-
proach, and comment on the results.

(b) Plot the simulation of (a), but use a phase-plane approach.
(c) After 1993, suppose that the wildlife managers trap one wolf

per year and transport it off the island. Predict how the popula-
tions of both the wolves and moose would evolve to the year
2020. Present your results as both time-series and phase-plane
plots. For this case, as well as for (d), use the following coeffi-
cients: a = 0.3, b = 0.01111, c = 0.2106, d = 0.0002632.

(d) Suppose that in 1993, some poachers snuck onto the island and
killed 50% of the moose. Predict how the populations of both
the wolves and moose would evolve to the year 2020. Present
your results as both time-series and phase-plane plots.

28.25 Acable is hanging from two supports atAand B (Fig. P28.25).
The cable is loaded with a distributed load whose magnitude varies
with x as

w = wo

[
1 + sin

(
πx

2lA

)]
where wo = 1000 lbs/ft. The slope of the cable (dy/dx) = 0 at x = 0,
which is the lowest point for the cable. It is also the point where the

tension in the cable is a minimum of To. The differential equation
that governs the cable is

d2 y

dx2
= wo

To

[
1 + sin

(
πx

2lA

)]

Solve this equation using a numerical method and plot the shape of
the cable (y versus x). For the numerical solution, the value of To is
unknown, so the solution must use an iterative technique, similar to
the shooting method, to converge on a correct value of hA for vari-
ous values of To.
28.26 The basic differential equation of the elastic curve for a can-
tilever beam (Fig. P28.26) is given as

EI
d2 y

dx2
= −P(L − x)

where E = the modulus of elasticity and I = the moment of inertia.
Solve for the deflection of the beam using a numerical method.
The following parameter values apply: E = 30,000 ksi, I = 800 in4,

L P

y

x

0

Figure P28.26

w = wo[1 + sin (�x/2la)]

lA = 200 ft

x
B

A

y

hA = 50 ft

Figure P28.25
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P = 1 kip, L = 10 ft. Compare your numerical results to the ana-
lytical solution,

y = − PLx2

2EI
+ Px3

6EI

28.27 The basic differential equation of the elastic curve for a uni-
formly loaded beam (Fig. P28.27) is given as

EI
d2 y

dx2
= wLx

2
− wx2

2

where E = the modulus of elasticity and I = the moment of inertia.
Solve for the deflection of the beam using (a) the finite-difference
approach (�x = 2 ft) and (b) the shooting method. The following
parameter values apply: E = 30,000 ksi, I = 800 in4, w = 1 kip/ft,
L = 10 ft. Compare your numerical results to the analytical solution,

y = wLx3

12EI
− wx4

24EI
− wL3x

24EI

28.28 A pond drains through a pipe as shown in Fig. P28.28.
Under a number of simplifying assumptions, the following differ-
ential equation describes how depth changes with time:

dh

dt
= − πd2

4A(h)

√
2g(h + e)

m3 = 8,000 kg

k3 = 1800 kN/m

k2 = 2400 kN/m

k1 = 3000 kN/m

m2 = 10,000 kg

m1 = 12,000 kg

Figure P28.29

L

y

w

x

0

Figure P28.27

e

d

h

A(h)

Figure P28.28

where h = depth (m), t = time (s), d = pipe diameter (m), A(h) =
pond surface area as a function of depth (m2), g = gravitational
constant (= 9.81 m/s2), and e = depth of pipe outlet below the pond
bottom (m). Based on the following area-depth table, solve this dif-
ferential equation to determine how long it takes for the pond to
empty given that h(0) = 6 m, d = 0.25 m, e = 1 m.

h, m 6 5 4 3 2 1 0

A(h), 104 m2 1.17 0.97 0.67 0.45 0.32 0.18 0

28.29 Engineers and scientists use mass-spring models to gain
insight into the dynamics of structures under the influence of
disturbances such as earthquakes. Figure P28.29 shows such a rep-
resentation for a three-story building. For this case, the analysis is
limited to horizontal motion of the structure. Force balances can be
developed for this system as

(
k1 + k2

m1
− ω2

)
X1 − k2

m1
X2 = 0

− k2

m2
X1 +

(
k2 + k3

m2
− ω2

)
X2 − k3

m2
X3 = 0

− k3

m3
X2 +

(
k3

m3
− ω2

)
X3 = 0

Determine the eigenvalues and eigenvectors and graphically repre-
sent the modes of vibration for the structure by displaying the am-
plitudes versus height for each of the eigenvectors. Normalize the
amplitudes so that the displacement of the third floor is one.
28.30 Under a number of simplifying assumptions, the steady-
state height of the water table in a one-dimensional, unconfined
groundwater aquifer (Fig. P28.30) can be modeled with the follow-
ing 2nd-order ODE,

K h̄
d2h

dx2
+ N = 0
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where x = distance (m), K = hydraulic conductivity [m/d], hh =
height of the water table [m], h̄ = the average height of the water
table [m], and N = infiltration rate [m/d]. 

Solve for the height of the water table for x = 0 to 1000 m
where h(0) = 10 m and h(1000) = 5 m. Use the following parame-
ters for the calculation: K = 1 m/d and N = 0.1 m/d. Set the aver-
age height of the water table as the average of the boundary condi-
tions. Obtain your solution with (a) the shooting method and (b) the
finite-difference method (�x = 100 m).
28.31 In Prob. 28.30, a linearized groundwater model was used to
simulate the height of the water table for an unconfined aquifer.
A more realistic result can be obtained by using the following
nonlinear ODE:

d

dx

(
K h

dh

dx

)
+ N = 0

where x = distance (m), K = hydraulic conductivity [m/d], h =
height of the water table [m], and N = infiltration rate [m/d]. Solve
for the height of the water table for the same case as in Prob. 28.30.
That is solve from x = 0 to 1000 m with h(0) = 10 m, h(1000) = 5 m,
K = 1 m/d, and N = 0.1 m/d. Obtain your solution with (a) the shoot-
ing method and (b) the finite-difference method (�x = 100 m).
28.32 The Lotka-Volterra equations described in Sec. 28.2 have
been refined to include additional factors that impact predator-prey
dynamics. For example, over and above predation, prey population
can be limited by other factors such as space. Space limitation can
be incorporated into the model as a carrying capacity (recall the
logistic model described in Prob. 28.16) as in

dx

dt
= a

(
1 − x

K

)
x − bxy

dy

dt
= −cy + dxy

where K = the carrying capacity. Use the same parameter values
and initial conditions as in Sec. 28.2 to integrate these equations
from t = 0 to 100 using ode45.
(a) Employ a very large value of K = 108 to validate that you

obtain the same results as in Sec. 28.2.
(b) Compare (a) with the more realistic carrying capacity of K =

20,000. Discuss your results.
28.33 The growth of floating, unicellular algae below a sewage
treatment plant discharge can be modeled with the following
simultaneous ODEs:

da

dt
= [

kg(n, p) − kd − ks
]

a

dn

dt
= rnckhc − rnakg(n, p)a

dp

dt
= rpckhc − rpakg(n, p)a

dc

dt
= rcakda − khc

where t = travel time [d], a = algal chlorophyll concentration
[μgA/L], n = inorganic nitrogen concentration [μgN/L], p = inor-
ganic phosphorus concentration [μgP/L], c = detritus concentra-
tion [μgC/L], kd = algal death rate [/d], ks = algal settling rate [/d],
kh = detrital hydrolysis rate [/d], rnc = nitrogen-to-carbon ratio
[μgN/μgC], rpc = phosphorus-to-carbon ratio [μgP/μgC], rna =
nitrogen-to-chlorophyll ratio [μgN/μgA], rpa = phosphorus-to-
chlorophyll ratio [μgP/μgA], and kg(n, p) = algal growth rate [/d],
which can be computed with

kg(n, p) = kg min

{
p

ksp + p
,

n

ksn + n

}
where kg = the algal growth rate at excess nutrient levels [/d], ksp =
the phosphorus half-saturation constant [μgP/L], and ksn = the
nitrogen half-saturation constant [μgN/L]. Use the ode45 and
ode15s functions to solve these equations from t = 0 to 20 d
given the initial conditions a = 1, n = 4000, p = 400, and c = 0.
Note that the parameters are kd = 0.1, ks = 0.15, kh = 0.025, rnc =
0.18, rpc = 0.08333, rna = 7.2, rpa = 1, kg = 0.5, ksp = 2, and 
ksn = 15. Develop plots of both solutions and interpret the results. 
28.34 The following ODEs have been proposed as a model of an
epidemic: 

dS

dt
= −aSI

d I

dt
= aSI − r I

d R

dt
= r I

Ground surface

Water table Infiltration
h

x

Confining bed

Aquifer
Groundwater flow

Figure P28.30
An unconfined or “phreatic” aquifer
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where S = the susceptible individuals, I = the infected, R = the
recovered, a = the infection rate, and r = the recovery rate. A city
has 10,000 people, all of whom are susceptible.
(a) If a single infectious individual enters the city at t = 0,

compute the progression of the epidemic until the number of
infected individuals falls below 10. Use the following parame-
ters: a = 0.002/(person·week) and r = 0.15�d. Develop time-
series plots of all the state variables. Also generate a phase-
plane plot of S versus I versus R. 

(b) Suppose that after recovery, there is a loss of immunity that
causes recovered individuals to become susceptible. This rein-
fection mechanism can be computed as ρR, where ρ = the
reinfection rate. Modify the model to include this mechanism
and repeat the computations in (a) using ρ = 0.015/d.

Electrical Engineering
28.35 Perform the same computation as in the first part of Sec. 28.3,
but with R = 0.025 �.
28.36 Solve the ODE in the first part of Sec. 8.3 from t = 0 to 0.5
using numerical techniques if q = 0.1 and i = −3.281515 at t = 0.
Use an R = 50 along with the other parameters from Sec. 8.3.
28.37 For a simple RL circuit, Kirchhoff’s voltage law requires
that (if Ohm’s law holds)

L
di

dt
+ Ri = 0

where i = current, L = inductance, and R = resistance. Solve for i,
if L = 1, R = 1.5, and i(0) = 0.5. Solve this problem analytically
and with a numerical method. Present your results graphically.
28.38 In contrast to Prob. 28.37, real resistors may not always
obey Ohm’s law. For example, the voltage drop may be nonlinear
and the circuit dynamics is described by a relationship such as

L
di

dt
+ R

[
i

I
−

(
i

I

)3
]

= 0

where all other parameters are as defined in Prob. 28.37 and I is a
known reference current equal to 1. Solve for i as a function of time
under the same conditions as specified in Prob. 28.37. 
28.39 Develop an eigenvalue problem for an LC network similar
to the one in Fig. 28.14, but with only two loops. That is, omit the
i3 loop. Draw the network, illustrating how the currents oscillate in
their primary modes.
28.40 Just as Fourier’s law and the heat balance can be employed
to characterize temperature distribution, analogous relationships
are available to model field problems in other areas of engineering.
For example, electrical engineers use a similar approach when
modeling electrostatic fields. Under a number of simplifying
assumptions, an analog of Fourier’s law can be represented in one-
dimensional form as

D = −ε
dV

dx

where D is called the electric flux density vector, ε = permittivity
of the material, and V = electrostatic potential. Similarly, a
Poisson equation for electrostatic fields can be represented in one
dimension as

d2V

dx2
= −ρv

ε

where ρv = charge density. Use the finite-difference technique
with �x = 2 to determine V for a wire where V (0) = 1000, V(20)
= 0, ε = 2, L = 20, and ρv = 30.

Mechanical/Aerospace Engineering
28.41 Perform the same computation as in Sec. 28.4 but for a 
1-m-long pendulum.
28.42 The rate of cooling of a body can be expressed as

dT

dt
= −k(T − Ta)

where T = temperature of the body (°C), Ta = temperature of the
surrounding medium (°C), and k = the proportionality constant
(min−1). Thus, this equation specifies that the rate of cooling is pro-
portional to the difference in temperature between the body and the
surrounding medium. If a metal ball heated to 90°C is dropped into
water that is held at a constant value of Ta = 20°C, use a numerical
method to compute how long it takes the ball to cool to 40°C if
k = 0.25 min−1.
28.43 The rate of heat flow (conduction) between two points on a
cylinder heated at one end is given by

dQ

dt
= λA

dT

dx

where λ = a constant, A = the cylinder’s cross-sectional area,
Q = heat flow, T = temperature, t = time, and x = distance from
the heated end. Because the equation involves two derivatives, we
will simplify this equation by letting

dT

dx
= 100(L − x)(20 − t)

100 − xt

where L is the length of the rod. Combine the two equations and
compute the heat flow for t = 0 to 25 s. The initial condition is
Q(0) = 0 and the parameters are λ = 0.5 cal · cm/s, A = 12 cm2,
L = 20 cm, and x = 2.5 cm. Plot your results.
28.44 Repeat the falling parachutist problem (Example 1.2), but
with the upward force due to drag as a second-order rate:

Fu = −cv2
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where c = 0.225 kg/m. Solve for t = 0 to 30, plot your results, and
compare with those of Example 1.2.
28.45 Suppose that, after falling for 13 s, the parachutist from
Examples 1.1 and 1.2 pulls the rip cord. At this point, assume that
the drag coefficient is instantaneously increased to a constant value
of 55 kg/s. Compute the parachutist’s velocity from t = 0 to 30 s
with Heun’s method (without iteration of the corrector) using a
step-size of 2 s. Plot v versus t for t = 0 to 30 s.
28.46 The following ordinary differential equation describes the
motion of a damped spring-mass system (Fig. P28.46):

m
d2x

dt2
+ a

∣∣∣∣dx

dt

∣∣∣∣ dx

dt
+ bx3 = 0

where x = displacement from the equilibrium position, t = time,
m = 1 kg mass, and a = 5 N/(m/s)2. The damping term is nonlinear
and represents air damping.

The spring is a cubic spring and is also nonlinear with b = 5 N/m3.
The initial conditions are

Initial velocity
dx

dt
= 0.5 m/s

Initial displacement x = 1 m

Solve this equation using a numerical method over the time period
0 ≤ t ≤ 8 s. Plot the displacement and velocity versus time and
plot the phase-plane portrait (velocity versus displacement) for all
the following cases:
(a) A similar linear equation

m
d2x

dt2
+ 2

dx

dt
+ 5x = 0

(b) The nonlinear equation with only a nonlinear spring term

d2x

dt2
+ 2

dx

dt
+ bx3 = 0

(c) The nonlinear equation with only a nonlinear damping term

m
d2x

dt2
+ a

∣∣∣∣dx

dt

∣∣∣∣ dx

dt
+ 5x = 0

(d) The full nonlinear equation where both the damping and spring
terms are nonlinear

m
d2x

dt2
+ a

∣∣∣∣dx

dt

∣∣∣∣ dx

dt
+ bx3 = 0

28.47 A forced damped spring-mass system (Fig. P28.47) has the
following ordinary differential equation of motion:

m
d2x

dt2
+ a

∣∣∣∣dx

dt

∣∣∣∣ dx

dt
+ kx = Fo sin(ωt)

where x = displacement from the equilibrium position, t = time,
m = 2 kg mass, a = 5 N/(m/s)2, and k = 6 N/m. The damping term
is nonlinear and represents air damping. The forcing function 
Fo sin(ωt) has values of Fo = 2.5 N and ω = 0.5 rad/sec. The initial
conditions are 

Initial velocity
dx

dt
= 0 m/s

Initial displacement x = 1 m

Solve this equation using a numerical method over the time period
0 ≤ t ≤ 15 s. Plot the displacement and velocity versus time, and
plot the forcing function on the same curve. Also, develop a sepa-
rate plot of velocity versus displacement.
28.48 The temperature distribution in a tapered conical cooling fin
(Fig. P28.48) is described by the following differential equation,
which has been nondimensionalized

d2u

dx2
+

(
2

x

)(
du

dx
− pu

)
= 0

whereu = temperature (0 ≤ u ≤ 1),x = axialdistance (0 ≤ x ≤ 1),

and p is a nondimensional parameter that describes the heat transfer
and geometry

p = hL

k

√
1 + 4

2m2

where h = a heat transfer coefficient, k = thermal conductivity, 
L = the length or height of the cone, and m = the slope of the cone
wall. The equation has the boundary conditions

u(x = 0) = 0 u(x = 1) = 1

Cubic spring

Air damping

x

m

Figure P28.46

Air damping

k

x

m
Fo sin(�t)

Figure P28.47
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Solve this equation for the temperature distribution using finite dif-
ference methods. Use second-order accurate finite difference ana-
logues for the derivatives. Write a computer program to obtain the
solution and plot temperature versus axial distance for various
values of p = 10, 20, 50, and 100.
28.49 The dynamics of a forced spring-mass-damper system can
be represented by the following second-order ODE:

m
d2x

dt2
+ c

dx

dt
+ k1x + k3x3 = P cos(ωt)

where m = 1 kg, c = 0.4 N · s/m, P = 0.5 N, and ω = 0.5/s. Use
a numerical method to solve for displacement (x) and velocity 
(v = dx/dt) as a function of time with the initial conditions x = v = 0.
Express your results graphically as time-series plots (x and v versus t)
and a phase plane plot (v versus x). Perform simulations for both
(a) linear (k1 = 1; k3 = 0) and (b) nonlinear (k1 = 1; k3 = 0.5)
springs.
28.50 The differential equation for the velocity of a bungee jumper
is different depending on whether the jumper has fallen to a dis-
tance where the cord is fully extended and begins to stretch. Thus,
if the distance fallen is less than the cord length, the jumper is only
subject to gravitational and drag forces. Once the cord begins to
stretch, the spring and dampening forces of the cord must also be

included. These two conditions can be expressed by the following
equations:

dv

dt
= g − sign(v)

cd

m
v2 x ≤ L

dv

dt
= g − sign(v)

cd

m
v2 − k

m
(x − L) − γ

m
v x > L

where v = velocity (m/s), t = time (s), g = gravitational constant
(= 9.81 m/s2), sign(x) = function that returns −1, 0, and 1 for neg-
ative, zero and positive x, respectively, cd = second-order drag co-
efficient (kg/m), m = mass (kg), k = cord spring constant (N/m),
γ = cord dampening coefficient (N · s/m), and L = cord length (m).
Determine the position and velocity of the jumper given the fol-
lowing parameters: L = 30 m, m = 68.1 kg, cd = 0.25 kg/m, 
k = 40 N/m, and γ = 8 kg/s. Perform the computation from t = 0 to
50 s and assume that the initial conditions are x(0) = v(0) = 0.
28.51 Two masses are attached to a wall by linear springs (Fig.
P28.51). Force balances based on Newton’s second law can be
written as

d2x1

dt2
= − k1

m1
(x1 − L1) + k2

m1
(x2 − x1 − w1 − L2)

d2x2

dt2
= − k2

m2
(x2 − x1 − w1 − L2)

where k = the spring constants, m = mass, L = the length of the
unstretched spring, and w = the width of the mass. Compute the
positions of the masses as a function of time using the following
parameter values: k1 = k2 = 5, m1 = m2 = 2, w1 = w2 = 5, and
L1 = L2 = 2. Set the initial conditions as x1 = L1 and
x2 = L1 + w1 + L2 + 6. Perform the simulation from t = 0 to 20.
Construct time-series plots of both the displacements and the
velocities. In addition, produce a phase-plane plot of x1 versus x2.

x = 1

u(x = 1) = 1

u(x = 0) = 0

x

Figure P28.48

x

k1

L1 w1 L2 w2

x10 x2

k2

m1 m2

Figure P28.51
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EPILOGUE: PART SEVEN

PT7.4 TRADE-OFFS

Table PT7.3 contains trade-offs associated with numerical methods for the solution of
initial-value ordinary differential equations. The factors in this table must be evaluated by
the engineer when selecting a method for each particular applied problem.

Simple self-starting techniques such as Euler’s method can be used if the problem
requirements involve a short range of integration. In this case, adequate accuracy may be
obtained using small step sizes to avoid large truncation errors, and the round-off errors
may be acceptable. Euler’s method may also be appropriate for cases where the mathemat-
ical model has an inherently high level of uncertainty or has coefficients or forcing func-
tions with significant errors as might arise during a measurement process. In this case,
the accuracy of the model itself simply does not justify the effort involved to employ a

838

Starting Iterations Global Ease of Changing Programming
Method Values Required Error Step Size Effort Comments

One step
Euler’s 1 No O (h) Easy Easy Good for quick estimates
Heun’s 1 Yes O (h2) Easy Moderate —
Midpoint 1 No O (h2) Easy Moderate —
Second-order Ralston 1 No O (h2) Easy Moderate The second-order RK

method that minimizes
truncation error

Fourth-order RK 1 No O (h4) Easy Moderate Widely used
Adaptive fourth-order
RK or RK-Fehlberg 1 No O (h5)* Easy Moderate to Error estimate allows

difficult step-size adjustment
Multistep

Non-self-starting 2 Yes O (h3)* Difficult Moderate to Simple multistep method
Heun difficult†

Milne’s 4 Yes O (h5)* Difficult Moderate to Sometimes unstable
difficult†

Fourth-order Adams 4 Yes O (h5)* Difficult Moderate to
difficult†

*Provided the error estimate is used to modify the solution.
†With variable step size.

TABLE PT7.3 Comparison of the characteristics of alternative methods for the numerical
solution of ODEs. The comparisons are based on general experience
and do not account for the behavior of special functions.
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more complicated numerical method. Finally, the simpler techniques may be best when
the problem or simulation need only be performed a few times. In these applications, it is
probably best to use a simple method that is easy to program and understand despite the
fact that the method may be computationally inefficient and relatively time-consuming to
run on the computer.

If the range of integration of the problem is long enough to involve a large number of
steps, then it may be necessary and appropriate to use a more accurate technique than
Euler’s method. The fourth-order RK method is popular and reliable for many engineering
problems. In these cases, it may also be advisable to estimate the truncation error for each
step as a guide to selecting the best step size. This can be accomplished with the adaptive
RK or fourth-order Adams approaches. If the truncation errors are extremely small, it may
be wise to increase the step size to save computer time. On the other hand, if the truncation
error is large, the step size should be decreased to avoid accumulation of error. Milne’s
method should be avoided if significant stability problems are expected. The Runge-Kutta
method is simple to program and convenient to use but may be less efficient than the mul-
tistep methods. However, the Runge-Kutta method is usually employed in any event to
obtain starting values for the multistep methods.

A large number of engineering problems may fall into an intermediate range of inte-
gration interval and accuracy requirement. In these cases, the second-order RK and the
non-self-starting Heun methods are simple to use and are relatively efficient and accurate.

Stiff systems involve equations with slowly and rapidly varying components. Special
techniques are usually required for the adequate solution of stiff equations. For example,
implicit approaches are often used. You can consult Enright et al. (1975), Gear (1971), and
Shampine and Gear (1979) for additional information regarding these techniques.

A variety of techniques are available for solving eigenvalue problems. For small
systems or where only a few of the smallest or largest eigenvalues are required, simple
approaches such as the polynomial and the power methods are available. For symmetric
systems, Jacobi’s, Given’s, or Householder’s method can be employed. Finally, the QR
method represents a general approach for finding all the eigenvalues of symmetric and
nonsymmetric matrices.

PT7.5 IMPORTANT RELATIONSHIPS AND FORMULAS

Table PT7.4 summarizes important information that was presented in Part Seven. This
table can be consulted to quickly access important relationships and formulas.

PT7.6 ADVANCED METHODS AND ADDITIONAL REFERENCES

Although we have reviewed a number of techniques for solving ordinary differential equa-
tions there is additional information that is important in engineering practice. The question
of stability was introduced in Sec. 26.2.4. This topic has general relevance to all methods
for solving ODEs. Further discussion of the topic can be pursued in Carnahan, Luther, and
Wilkes (1969), Gear (1971), and Hildebrand (1974).

In Chap. 27, we introduced methods for solving boundary-value problems. Isaacson
and Keller (1966), Keller (1968), Na (1979), and Scott and Watts (1976) can be consulted
for additional information on standard boundary-value problems. Additional material on
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eigenvalues can be found in Ralston and Rabinowitz (1978), Wilkinson (1965), Fadeev and
Fadeeva (1963), and Householder (1953, 1964).

In summary, the foregoing is intended to provide you with avenues for deeper explo-
ration of the subject. Additionally, all the above references provide descriptions of the basic
techniques covered in Part Seven. We urge you to consult these alternative sources to
broaden your understanding of numerical methods for the solution of differential equations.
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