Science and Engineering: Theory / Experiment / Simulation

Fundamentals of Finite Element Method

Engineering Simulation

- Three types of models
 - Conceptual
 - Mathematical
 - Computational
- Verification: domain of mathematics
 - Process of determining that a computational model accurately represents the underlying mathematical model and its solution
- Validation: domain of physics
 - Process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model

Multi-physics Phenomena

Mathematical Modeling

- Are there any basic principles to follow when a differential equation is set up?
 - No general answer
- Modeling: art
 - Problem types, simplifying assumptions
 - Chemical engineering: conservation principles
 - Electromagnetic field theory: Maxwell's equations
 - Control theory: block diagram
- Classification
 - Differential equations considered as nature laws
 - Constitutive differential equations
 - Conservative differential equations

Nature Laws

- Mathematical relation that cannot be derived from physical facts
 - Observations
 - No experiment has been designed that contradicts the law
- Examples
 - Newton's law for the motion of a particle
 - Maxwell's laws for the electromagnetic field
 - Schrödinger's equation in quantum mechanics

Constitutive Equations

- Mathematical model of the physical properties of a gas, fluid, or solid: empirical nature
 - Observations of a phenomenon
 - Measurements of an experiment
- Examples
 - Equations in heat transfer problems
 - Equations in mass diffusion problems
 - Equations in mechanical moment diffusion problems
 - Equations in elastic solid mechanics problems
 - Equations in chemical reaction engineering problems
 - Equations in electrical engineering problems

Discretization: Mathematical \rightarrow Computational

Simulation Process

Verification

- Code verification
 - Mathematical model and solution algorithms are working correctly?
 - Domain of software developers: Software Quality Assurance techniques along with testing of each released version
 - To compare code outputs with analytical solutions
- Calculation verification
 - Discrete solution of the mathematical model is accurate?
 - Domain of user of the software
 - Estimating the errors in the numerical solution due to discretization
 - Mesh-to-mesh comparison: to determine the rate of convergence of the solution

Validation

- Answering the adequacy of the selected models for representing the reality of interest
 - Mechanics (physics) included in the models sufficient to provide reliable answers to the questions posed in the problem statement
- Interaction between mathematics and physics in V&V process
 - Close cooperation among modelers and experimentalist
 - 'cross-talk' activity to model the same conceptual model, e.g., fixedend condition
 - Segregation of the outcomes
- Role of uncertainty quantification (UQ)
 - Different experimental results
 - Distributed numerical and physical parameters

ASME V&V 10-2006 - Guide for Verification and Validation in Computational Solid Mechanics