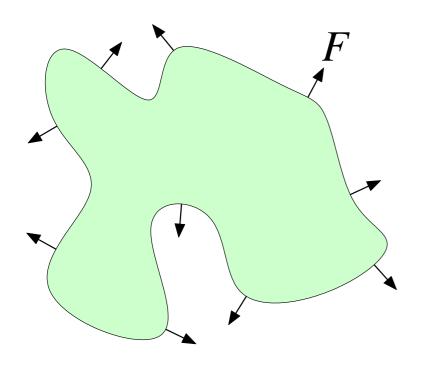
Modeling of moving interfaces

- Will talk about Levelset and Fast marching method
- Based on notes of Per-Olof Persson (see download link on course website)
- Problem statement: Moving interfaces



Propagate curve according to speed function $\boldsymbol{v} = F\boldsymbol{n}$ F depends on space, time, and the curve itself Surfaces in three dimensions

Two different approaches

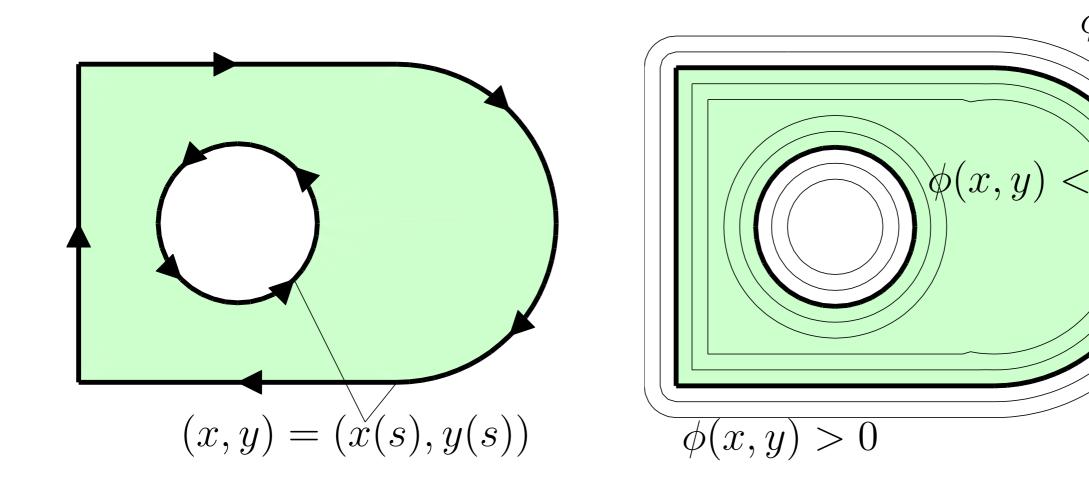
Explicit Geometry

Implicit Geometry

• Parameterized boundaries

• Boundaries given by zero level set

 $\phi(x, y) = 0$



- Simple approach: Model geometry explicitly by parametrized curves c(s) or surfaces $\Omega(s_1,s_2)$
- Discretized as a set of nodes $x^{(i)}$, connected by edges (in 3D: "triangulated surface")
- Move nodes according to ODEs:

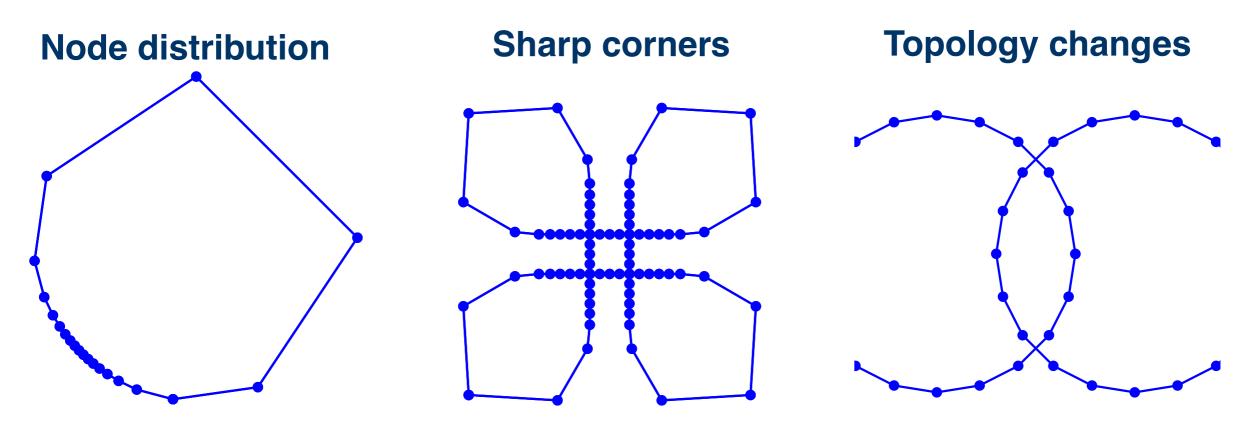
$$\frac{dx^{(i)}}{dt} = v(x^{(i)}, t), \quad x^{(i)}(0) = x_0^{(i)}$$

• Geometric properties (normal vector, curvature etc.) obtained by finite differences, e.g.

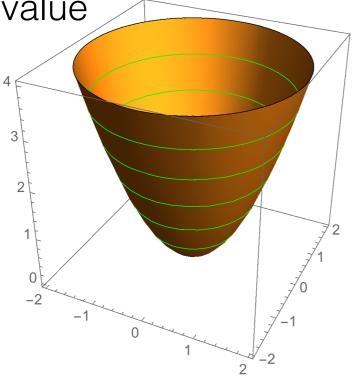
$$\frac{d\boldsymbol{x}^{(i)}}{ds} \approx \frac{\boldsymbol{x}^{(i+1)} - \boldsymbol{x}^{(i-1)}}{2\Delta s}$$

Disadvantages of explicit geometry modeling

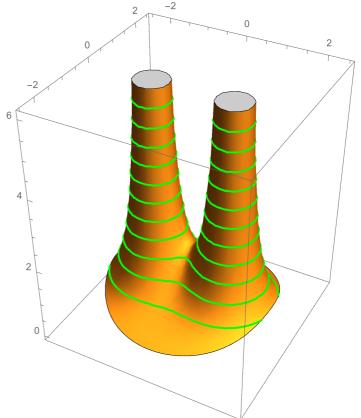
- Shape deformation leads to distortion => need to redistribute nodes to accurately represent geometry!
- Incorrect behavior at corners
- Difficult to deal with topology changes!



- Sethian & Osher (1988)
- Represent curve by the *zero level set* of a function, $\phi(\mathbf{x}) = \phi(x,y,...) = 0$
- Level set of a function f(x): Values x along which f has constant value

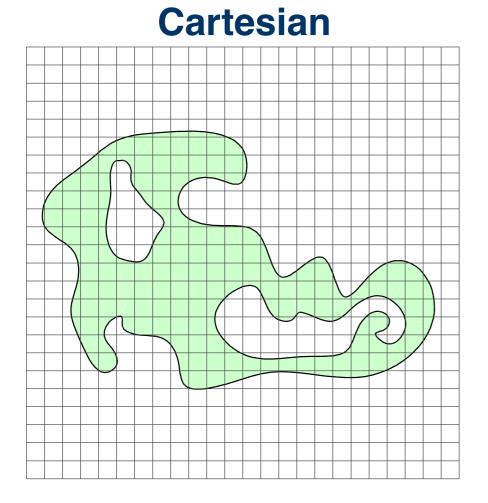


Circle of radius r is in the level set of the function $f(\mathbf{x})=x^2+y^2$

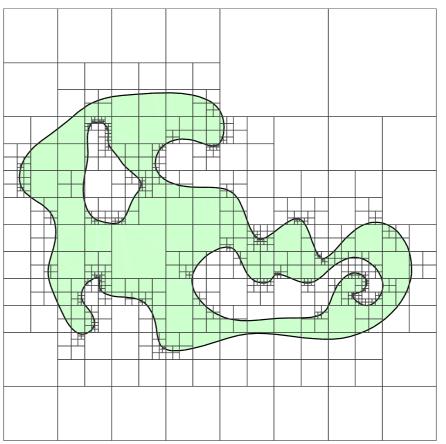


Topological changes easy to model!

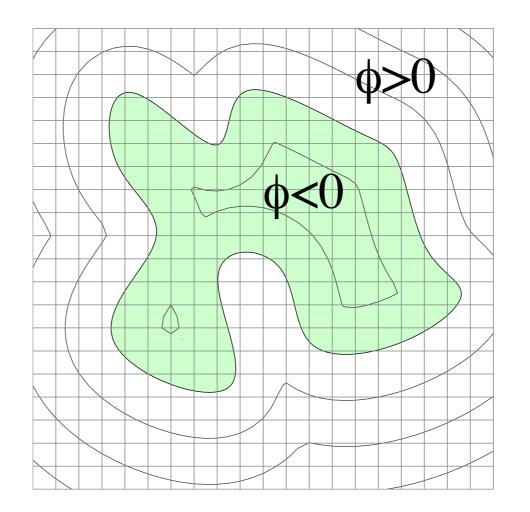
- Discretization (idea): Discretize implicit function φ(x) on background grid
- To find curve of zero level set $\phi(\mathbf{x})=0$, interpolate for general \mathbf{x} .



Quadtree/Octree



- A special but very important choice for $\phi(\mathbf{x})$ is the signed distance function. Then:
 - $|\nabla \phi| = 1$
 - $|\phi(\pmb{x})|$ gives (shortest) distance from \pmb{x} to curve



- When the curve is evolving, it's often necessary to know its geometric properties. For instance, a forest fire only moves *normal* to its current front
- Normal vector \boldsymbol{n} (for general $\boldsymbol{\phi}$)

$$oldsymbol{n} = rac{
abla \phi}{|
abla \phi|}$$

• Curvature (for 2D curve):

$$\kappa = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} = \frac{\phi_{xx} \phi_y^2 - 2\phi_y \phi_x \phi_{xy} + \phi_{yy} \phi_x^2}{(\phi_x^2 + \phi_y^2)^{3/2}}$$

• Material parameters (e.g. density inside vs. outside):

$$\rho(\boldsymbol{x}) = \rho_1 + (\rho_2 - \rho_1)\theta(\phi(\boldsymbol{x}))$$

where θ is the Heaviside step function (smoothened in the discretized case)

Level set equation

• Propagate ϕ (not only its zero level set!) by solving the advection equation

 $\phi_t + \boldsymbol{v} \cdot \nabla \phi = 0$

• Since only normal part F=**v** • **n** of velocity changes shape of curve, we can simply assume v = F n. Then, we obtain, using

 $\boldsymbol{n} = \nabla \phi / |\nabla \phi|$ $\nabla \phi \cdot \nabla \phi = |\nabla \phi|^2$

$\phi_t + F |\nabla \phi| = 0.$ level set equation

- Since F can depend on shape of curve, this is a nonlinear (hyperbolic) equation.
- Shape of curve is obtained by finding the zero level set

Discretization

- Discretize φ using upwind finite differences (schemes from conservation laws!)
- See online notes for details of discretization (change upwind direction depending on sign of F).
- Matlab demo

Reinitialization

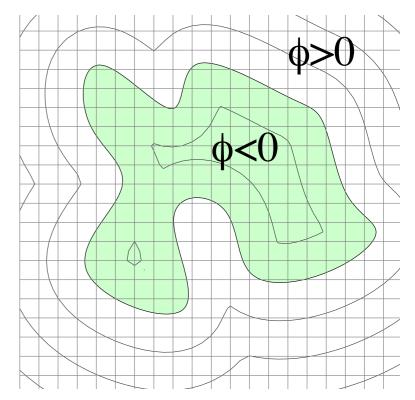
- Consider the level set equation $\phi_t + F |\nabla \phi| = 0$.
- After few timesteps, $\nabla \phi$ varies from point to point.
- => requires small timestep for stable time integration!
- => Re-initialize by finding a new ϕ with the same zero level set, but with $|\nabla \phi|=1$
- Two different approaches:
 - Stop advection, instead integrate the *reinitialization equation* for a few timesteps:

 $\phi_t + \operatorname{sign}(\phi)(|\nabla \phi| - 1) = 0$

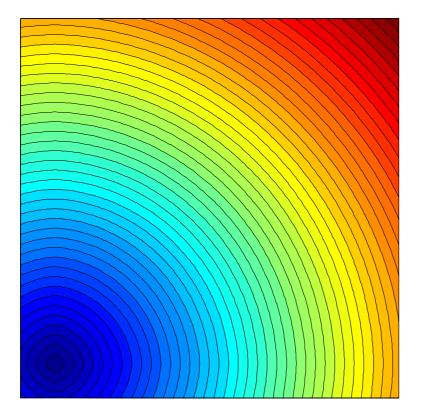
Find a completely new φ with | ∇φ|=1 : Signed distance function!
 => Need to find signed distance of each mesh point from current curve, i.e. from φ=0 (e.g. using the *fast marching method*)

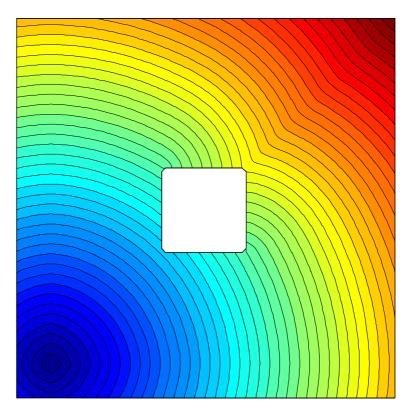
Fast marching method

• Problem statement: Find distance of grid points from curve $\phi=0$.



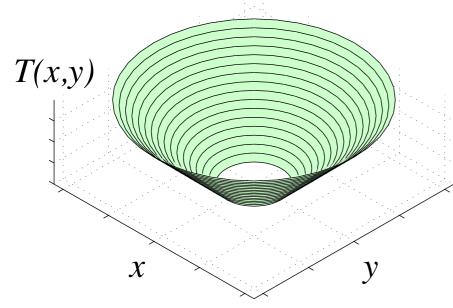
- Equivalent problem: Let the curve propagate in normal direction with uniform speed F>0 (outward), or F<0 (inward), and find the arrival time of the front for each grid point.
- Arrival time calculation is a very generic problem:





Fast marching method

- Problem statement: Find distance of grid points from curve φ=0 <=> arrival time T(x) for front propagating with speed F>0
- $T(\mathbf{x})$ is the time needed to reach \mathbf{x} from initial curve Γ



T(x,y) for Γ a circle

• Note: Since time * velocity = distance, we obtain the Eikonal equation

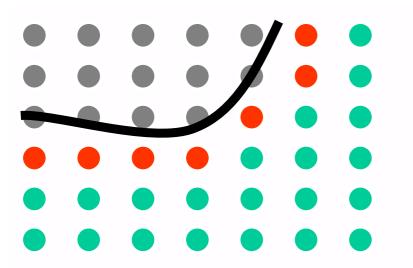
 $|\nabla T|F = 1, \quad T = 0 \text{ on } \Gamma$

This is now an boundary value problem, not an initial value problem! In other words, the fast marching method actually solves an Eikonal equation...

• To obtain the distance function, we are interested in constant F=1

Fast marching method

- Rough sketch of method: First, identify curve and fixed values. Mark nearest neighbors as candidates and everything else as far-distance. Then:
 - 1. Let Trial be the candidate point with smallest T.
 - 2. Mark Trial as a fixed value (meaning T is known)
 - 3. Move all far-distance neighbors of Trial as Candidates
 - 4. Compute T for all neighbors of Trial
 - 5. Repeat 1-4 until all grid points are fixed



- fixed
 - candidates
 - far-distance points

this is done by solving the Eikonal \mathcal{J} equation using a FD scheme $|\nabla T|F=1$