
Modeling of moving
interfaces

• Will talk about Levelset and Fast marching method

• Based on notes of Per-Olof Persson (see download link on course website)

• Problem statement: Moving interfaces

Evolving Curves and Surfaces

• Propagate curve according to speed function v = Fn

• F depends on space, time, and the curve itself

• Surfaces in three dimensions

F
Evolving Curves and Surfaces

• Propagate curve according to speed function v = Fn

• F depends on space, time, and the curve itself

• Surfaces in three dimensions

F

Two different approachesGeometry Representations

Explicit Geometry

• Parameterized boundaries

(x, y) = (x(s), y(s))

Implicit Geometry

• Boundaries given by zero level set

φ(x, y) = 0

φ(x, y) < 0

φ(x, y) > 0

Explicit geometry modeling
• Simple approach: Model geometry explicitly by parametrized curves c(s) or

surfaces Ω(s1,s2)

• Discretized as a set of nodes x(i), connected by edges (in 3D: “triangulated
surface”)

• Move nodes according to ODEs: 
 
 

• Geometric properties (normal vector, curvature etc.) obtained by finite
differences, e.g.

Explicit Techniques

• Simple approach: Represent curve explicitly by nodes x
(i) and lines

• Propagate curve by solving ODEs

dx
(i)

dt
= v(x(i), t), x

(i)(0) = x
(i)
0 ,

• Normal vector, curvature, etc by difference approximations, e.g.:

dx
(i)

ds
≈

x
(i+1) − x

(i−1)

2∆s

• MATLAB Demo

Explicit Techniques

• Simple approach: Represent curve explicitly by nodes x
(i) and lines

• Propagate curve by solving ODEs

dx
(i)

dt
= v(x(i), t), x

(i)(0) = x
(i)
0 ,

• Normal vector, curvature, etc by difference approximations, e.g.:

dx
(i)

ds
≈

x
(i+1) − x

(i−1)

2∆s

• MATLAB Demo

Disadvantages of explicit
geometry modeling

• Shape deformation leads to distortion => need to redistribute
nodes to accurately represent geometry!

• Incorrect behavior at corners

• Difficult to deal with topology changes!

Explicit Techniques - Drawbacks

• Node redistribution required, introduces errors

• No entropy solution, sharp corners handled incorrectly

• Need special treatment for topology changes

• Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes

Implicit geometry modeling
• Sethian & Osher (1988)

• Represent curve by the zero level set of a function, ɸ(x)=ɸ(x,y,…)=0

• Level set of a function f(x): Values x along which f has constant
value

Circle of radius r is in the level
set of the function f(x)=x2+y2

Topological changes easy to
model!

Implicit geometry modeling
• Discretization (idea): Discretize implicit function ɸ(x) on background

grid

• To find curve of zero level set ɸ(x)=0, interpolate for general x.

Discretized Implicit Geometries

• Discretize implicit function φ on background grid

• Obtain φ(x) for general x by interpolation

Cartesian Quadtree/Octree

Implicit geometry modeling
• A special but very important choice for ɸ(x) is the signed distance function. Then:

Implicit Geometries

• Represent curve by zero level set of a function, φ(x) = 0

• Special case: Signed distance function:

– |∇φ| = 1

– |φ(x)| gives (shortest) distance from x to curve

φ>0

φ<0

Implicit geometry modeling
• When the curve is evolving, it’s often necessary to know its geometric

properties. For instance, a forest fire only moves normal to its current front

• Normal vector n (for general 𝜙)  
 

• Curvature (for 2D curve): 
 

• Material parameters (e.g. density inside vs. outside):  
 
 
 
where θ is the Heaviside step function (smoothened in the discretized
case)

Geometric Variables

• Normal vector n (without assuming distance function):

n =
∇φ

|∇φ|

• Curvature (in two dimensions):

κ = ∇ ·
∇φ

|∇φ|
=

φxxφ2
y − 2φyφxφxy + φyyφ2

x

(φ2
x + φ2

y)
3/2

.

• Write material parameters, etc, in terms of φ:

ρ(x) = ρ1 + (ρ2 − ρ1)θ(φ(x))

Smooth Heaviside function θ over a few grid cells.

Geometric Variables

• Normal vector n (without assuming distance function):

n =
∇φ

|∇φ|

• Curvature (in two dimensions):

κ = ∇ ·
∇φ

|∇φ|
=

φxxφ2
y − 2φyφxφxy + φyyφ2

x

(φ2
x + φ2

y)
3/2

.

• Write material parameters, etc, in terms of φ:

ρ(x) = ρ1 + (ρ2 − ρ1)θ(φ(x))

Smooth Heaviside function θ over a few grid cells.

Geometric Variables

• Normal vector n (without assuming distance function):

n =
∇φ

|∇φ|

• Curvature (in two dimensions):

κ = ∇ ·
∇φ

|∇φ|
=

φxxφ2
y − 2φyφxφxy + φyyφ2

x

(φ2
x + φ2

y)
3/2

.

• Write material parameters, etc, in terms of φ:

ρ(x) = ρ1 + (ρ2 − ρ1)θ(φ(x))

Smooth Heaviside function θ over a few grid cells.

Level set equation
• Propagate 𝜙 (not only its zero level set!) by solving the advection equation

The Level Set Equation

• Solve convection equation to propagate φ = 0 by velocities v

φt + v ·∇φ = 0.

• For v = Fn, use n = ∇φ/|∇φ| and∇φ ·∇φ = |∇φ|2 to obtain the
Level Set Equation

φt + F |∇φ| = 0.

• Nonlinear, hyperbolic equation (Hamilton-Jacobi).

• Since only normal part F=v ·n of velocity changes shape of curve, we can
simply assume v=Fn. Then, we obtain, using

The Level Set Equation

• Solve convection equation to propagate φ = 0 by velocities v

φt + v ·∇φ = 0.

• For v = Fn, use n = ∇φ/|∇φ| and∇φ ·∇φ = |∇φ|2 to obtain the
Level Set Equation

φt + F |∇φ| = 0.

• Nonlinear, hyperbolic equation (Hamilton-Jacobi).

The Level Set Equation

• Solve convection equation to propagate φ = 0 by velocities v

φt + v ·∇φ = 0.

• For v = Fn, use n = ∇φ/|∇φ| and∇φ ·∇φ = |∇φ|2 to obtain the
Level Set Equation

φt + F |∇φ| = 0.

• Nonlinear, hyperbolic equation (Hamilton-Jacobi).

The Level Set Equation

• Solve convection equation to propagate φ = 0 by velocities v

φt + v ·∇φ = 0.

• For v = Fn, use n = ∇φ/|∇φ| and∇φ ·∇φ = |∇φ|2 to obtain the
Level Set Equation

φt + F |∇φ| = 0.

• Nonlinear, hyperbolic equation (Hamilton-Jacobi).

level set equation

• Since F can depend on shape of curve, this is a nonlinear (hyperbolic) equation.
• Shape of curve is obtained by finding the zero level set

Discretization
• Discretize 𝜙 using upwind finite differences (schemes from

conservation laws!)

• See online notes for details of discretization (change upwind direction
depending on sign of F).

• Matlab demo

Reinitialization
• Consider the level set equation

The Level Set Equation

• Solve convection equation to propagate φ = 0 by velocities v

φt + v ·∇φ = 0.

• For v = Fn, use n = ∇φ/|∇φ| and∇φ ·∇φ = |∇φ|2 to obtain the
Level Set Equation

φt + F |∇φ| = 0.

• Nonlinear, hyperbolic equation (Hamilton-Jacobi).
• After few timesteps, ∇𝜙 varies from point to point.
• => requires small timestep for stable time integration!
• => Re-initialize by finding a new 𝜙 with the same zero level set, but with | ∇𝜙|=1

• Two different approaches:
• Stop advection, instead integrate the reinitialization equation for a few timesteps:

Reinitialization

• Large variations in∇φ for general speed functions F

• Poor accuracy and performance, need smaller timesteps for stability

• Reinitialize by finding new φ with same zero level set but |∇φ| = 1

• Different approaches:

1. Integrate the reinitialization equation for a few time steps

φt + sign(φ)(|∇φ|− 1) = 0

2. Compute distances from φ = 0 explicitly for nodes close to boundary,
use Fast Marching Method for remaining nodes

• Find a completely new 𝜙 with | ∇𝜙|=1 : Signed distance function! 
=> Need to find signed distance of each mesh point from current curve, i.e.
from 𝜙=0 (e.g. using the fast marching method)

Fast marching
method

• Equivalent problem: Let the curve propagate in normal direction with uniform
speed F>0 (outward), or F<0 (inward), and find the arrival time of the front for
each grid point.

• Problem statement:
Find distance of grid
points from curve 𝜙=0.

• Arrival time calculation is a very generic problem:

First arrivals and shortest geodesic paths

Visibility around obstacles

Implicit Geometries

• Represent curve by zero level set of a function, φ(x) = 0

• Special case: Signed distance function:

– |∇φ| = 1

– |φ(x)| gives (shortest) distance from x to curve

φ>0

φ<0

Fast marching method
• Problem statement:  

Find distance of grid points from curve 𝜙=0 <=> arrival time T(x) for front
propagating with speed F>0

• Note: Since time * velocity = distance, we obtain the Eikonal equation

The Boundary Value Formulation

• For F > 0, formulate evolution by an arrival function T

• T (x) gives time to reach x from initial Γ

• time * rate = distance gives the Eikonal equation:

|∇T |F = 1, T = 0 on Γ.

• Special case: F = 1 gives distance functions

yx

T(x,y) T(x,y) for 𝛤 a circle

• T(x) is the time needed to reach x from initial curve 𝛤

The Boundary Value Formulation

• For F > 0, formulate evolution by an arrival function T

• T (x) gives time to reach x from initial Γ

• time * rate = distance gives the Eikonal equation:

|∇T |F = 1, T = 0 on Γ.

• Special case: F = 1 gives distance functions

yx

T(x,y)

This is now an boundary value problem, not an initial value problem! In other words,
the fast marching method actually solves an Eikonal equation…
• To obtain the distance function, we are interested in constant F=1

Fast marching method
• Rough sketch of method: First, identify curve and fixed values. Mark nearest

neighbors as candidates and everything else as far-distance. Then:

1. Let Trial be the candidate point with smallest T.

2. Mark Trial as a fixed value (meaning T is known)

3. Move all far-distance neighbors of Trial as Candidates

4. Compute T for all neighbors of Trial

5. Repeat 1-4 until all grid points are fixed

The Fast Marching algorithm

! Loop {

1. Let Trial be the point in Narrow band with smallest u

2. Move Trial from Narrow band to Alive

3. Move all neighbors of Trial to Narrow band

4. Recompute u for all neighbors of Trial

}

Alive
Narrow band
Far

fixed
candidates
far-distance points

this is done by solving the Eikonal  
equation using a FD scheme

The Boundary Value Formulation

• For F > 0, formulate evolution by an arrival function T

• T (x) gives time to reach x from initial Γ

• time * rate = distance gives the Eikonal equation:

|∇T |F = 1, T = 0 on Γ.

• Special case: F = 1 gives distance functions

yx

T(x,y)

