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7.5 Strategies for Design

• Objective: minimize the source vibration energy 
flowing to the receiver with undesirable results

• Three of most important strategies
– Reduce amplitude of the source
– Block the flow of energy using isolators in the path
– Detune resonances in the system
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Design for Vibration Strategies

• Reduce amplitude of the source
– Powertrain

• Minimize reciprocating mass in engine
• Add balance shafts to in-line 4 cylinder engine

– Suspension
• Balance tires
• High quality tires with low radial force vibration
• Minimize shock absorber forces using a linkage ratio ~ 1

• Block the flow of energy using isolators in the path
– Mounted powertrain at isolator
– Suspension as isolator
– Rubber bushings in chassis links at acoustic frequencies

• Detune resonances in the system
– Position  body primary bending and torsion resonances
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Vibration Control Strategies
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Noise and Vibration Mode Map

• Detune resonances of the body from sources and 
responders

• Desirable structural resonance band: 22~25 Hz
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7.6 Body Structure Vibration Testing (1)

• Result of a vibration test
– Transfer function: P(ω)
– Deflected shape (mode shape) for each resonance

• Typical test set-up
– Support soft springs: inflated inner tubes or elastic cords

• Rigid body modes at low frequencies (< 3Hz)
– Electromagnetic or hydraulic shaker: (forcing location) front 

bumper attachment
• Excite major modes of vibration (not near a nodal point)
• Locally stiff (not to locally flexing the structure)

– Accelerometer: body at the shaker attachment
• Measure the driving point frequency response

– input(randomly varying force)[Fourier Transform](out signals)
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Body Structure Vibration Testing (2)

• Driving point response
– Force amplitude fixed  frequency incremented

• Mode shape
– Forcing frequency fixed (resonance)  amplitude measured
– Node(no deflection) /  Anti-node(greatest deflection)
– Lightly damped structure: In-phase / 180° out-of-phase
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7.7 Modeling Resonant Behavior

• Structure’s modal density
– Number of modes occurring in a fixed bandwidth
– Increase with increasing frequency

• Lower frequency
– 10~150Hz
– individual modes
– modal model

• High frequency
– 1000Hz~
– high modal density
– statistical approach
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Modal Model (1)

• Primary modes of vibration
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Modal Model (2)
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Example: Effect of Mass Placement

• Primary body resonance: 22~25 Hz
• Increase the resonant frequency

– Increased body stiffness
– Careful placement of subsystem masses

• Selection of battery location: front corner, dash, trunk
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Effect on Resonant Frequency of an Added Mass
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7.8 Vibration at High Frequency

• Primary body structure resonance: 18~50Hz
– Vibration at the receiver: tactile

• Higher frequencies: 50~400Hz
– More localized response of body structure, acoustic

• Structure-borne panel vibration system

Source
F(ω)

Body structure transfer 
function P(ω)

Acoustic deflection
X(ω)

Body panel vibrations Passenger compartment 
acoustic resonances

Interior sound pressure
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Body Panel Vibration (1)
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Body Panel Vibration (2)
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Acoustic Cavity Resonance

• Closed air cavity of passenger compartment
– Resonate with a standing acoustic wave
– Closed boundary conditions at either end
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Example

• Vibration frequencies for floor pan
• Vibration modes of sedan interior cavity
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Panel and Acoustic Cavity
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Vibration Isolation through Elastomeric Elements

• Suspension elements due to road impacts → high 
frequency deflections

• Isolation of higher frequency vibration
– Elastomeric bushings at the body connections

Source Isolator Force into 
body

Body 
transfer 
function

Body 
deflection

F(ω) T(ω) FT(ω) P(ω) X(ω)
High frequency 
chassis 
deflections

Chassis
links with 
end 
bushings

Body panel
vibrations

Passenger 
compartment 
acoustic 
resonances

Interior sound 
pressure
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Suspension Lower Control Arm
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Modeling Isolators

 
* *
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Response of Isolators
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Example

• gear meshing in the transmission  front wheel drive 
shaft  suspension knuckle  suspension control 
arm  body structure
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Example: High-Frequency Powertrain 
Vibration through Engine Mount (1)

• Powertrain  engine mount  body structure: direct mount
• High frequency vibration of engine block: structure-borne noise
• Increase engine spark timing  improve fuel economy

– Increase dynamic block deflections in 400~2000Hz range
– To isolate acoustic vibrations, engine mount with free mass
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Example: High-Frequency Powertrain 
Vibration through Engine Mount (2)

• Target static stiffness: 200 N/mm
• Isolation begins at 270 Hz
• Needed intermediate mass?
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Local Stiffness Effect on Vibration Isolators

• Desired high-frequency-isolation: bush material?
• Localized flexing of structure: local stiffness
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