SHELL 요소 비틀림 해석 (closed section/spot weld flange)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Closed section beam
 - Spot weld flange
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

예제: CLOSED SECTION BEAM

비틀림 강성을 계산하시오

CLOSED SECTION 쉘 요소

기하형상 생성 (1)

기하형상 생성 (2)

작업 평면 옮기기를 통해 전 체 좌표계에서 YZ 평면으로 작업평면 이동

기하형상 생성 (3)

연결선 생성메뉴를 통해 가 로, 세로 100 mm 인 직각삼 ¦ 각형 생성

기하형상 생성 (4)

기하형상 생성 (5)

기하형상 생성 (6)

기하형상 생성 (7)

기하형상 생성 (8)

재료 물성 및 특성 입력 (1)

번호 2 이름 재료 색상
Al ·
17-4PH, H1100 AISI 1020 AISI 300 SS Annealed AISI 5tel_1005 AISI 5tel_1005 A AISI 5tel_1008 HR H1-1000 H0-1 H0-4 Inconel_718, Aged Plain Carbon Steel SASHC SGAC
SM490A(KS) SPCC SPDE SPRC340 SPRC340

탄성계수 207 GPa 푸아송비 0.327 재료 생성

재료 물성 및 특성 입력 (2)

요소망 생성

요소망 생성 (방법 2)

하중조건 및 구속조건 설정

해석 케이스 정의 및 해석 실행

Copyright © Computational Design Lab. All rights reserved.

후처리 (1)

해석 및 결과 창에서 -쉘요소 상단 최대 전단응력 -X방향 회전변위

결과 추가

<mark>2</mark>쉘 최대 응력은 29.11 MPa 로 오차 16.44% 확인 (이 값은 구속조건과 하중조 건이 작용하는 부분에 응력 집중 현상이 발생하여 도출 된 결과임)

후처리 (3)

예제: SPOT WELD FLANGE

비틀림 강성을 계산하시오

SPOT WELD FLANGE 쉘 요소

연결선을 클릭한 후 위치

치수대로 닫힌 단면 생성

(-8,0) 부터 예제에서 주어진

단면형상 생성

솔리드 형상 생성 후 단면 추출

재료 물성 및 특성 입력 (1)

H.R. Market and the second	
번호 2 이름	재료 색상
All	선형 탄소성 초탄성 온도의존
All 17-4PH, H1100 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI 310 SS AISI_410_SS AISI_5teel_1005 AISI_5teel_1008+HR AISI 4340 Annealed AISI_340 Annealed AISI 4340 Annealed AISI 4340 Annealed AISI 4340 Annealed Cast Carbon Steel Cast Carbon Steel Cast Carbon Steel Cast Carbon Steel Cast Carbon Steel Chrome Stainless Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACCN SGACCN SGACCS SGACCS SGACCS SGACCS SGACCS SGACCS SGACCAS SGACCS SGACCAS SGACAS SGACCAS SGACCAS SGAC	선형 탄소성 초단성 온도의존 구조 탄성계수 207000 N/mm 프와송비 0.327 함량말도 0 kg/mm ³ 연용력 열팽쳐수 0 참조온도 0 TI 열전도 전도을 0 W/(mm·TI) 비열 0 J/(kg·TI) 발열계수 1 안전를계산방법 파손이론 Von Mises 응력(Ductile) • 인장 0 N/mm ² 압축 0 N/mm ² 감숙 지수 질량 비례 감쇠 계수 0 1/sec 강성 비례 감쇠 계수 0 sec 구조 감쇠 계수 0
< Ⅲ ▶	화인 최소 전용

탄성계수 207 GPa 푸아송비 0.327 재료 생성

재료 물성 및 특성 입력 (2)

요소망 생성 (1)

요소망 생성 (3)-2

구속조건 및 하중조건 설정

전 예제와 동일한 방식으로 구속조건 및 하중조건 설정

해석 케이스 정의 및 해석 실행

Copyright © Computational Design Lab. All rights reserved.

차체구조

연습문제 1: 용접 거리에 따른 영향

연습문제 2

• NAFEMS benchmark test: LE1 elliptic membrane

Geometry: meters, thickness 0.1 Boundary conditions

- Edge AB: symmetry about y axis
- Edge CD: symmetry about x axis Material properties
- Isotropic: E = 210 * 10³ MPa, v = 0.3Output
- Tangential edge stress (σ_{yy}) at point D: 92.7 MPa

• NAFEMS benchmark test: LE3 hemisphere-point loads

Geometry: meters, thickness 0.04

Boundary conditions

- Edge AE, symmetry about zx plane, i.e. zero y displacement, zero normal rotation
- Edge CE, symmetry about yz plane, i.e. zero x displacement, zero normal rotation
- All other displacements on edge AC are free. Material properties
- Isotropic: E = 68.25×10^3 MPa, v = 0.3

Output

- x displacement at point A: 0.185 m

• NAFEMS benchmark test: LE5 z-section cantilever

Geometry: meters, thickness 0.1 Boundary conditions

- At edge x = 0, all displacements zero
 Material properties
- Isotropic: E = 210 * 10³ MPa, v = 0.3Output
- axial (x-x) stress at mid-surface, point A: -108 MPa

해석적인 방법과 유한요소 프로그램으로 다음 문제의 비틀림 강성을 계산하시오 용접 거리에 따른 비틀림 강성을 구하고 해석적인 결과와 비교 분석하시오

재료 물성 및 하중은 예제와 동일

