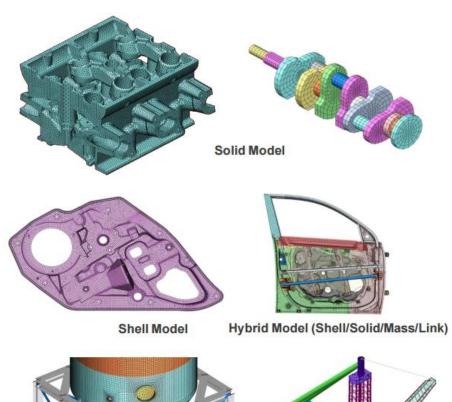
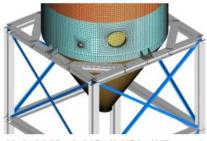
MIDAS NFX 소개

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

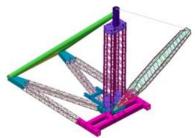
MIDAS NFX

LINEAR STATIC ANALYSIS

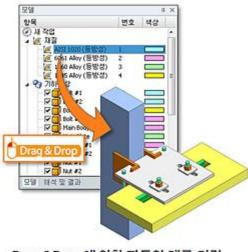

• 선형정적해석


- 모든 해석의 기본이 되는 해석
- 힘, 온도, 자중 등의 작용하중에 대해 변위, 응력, 안전율 등의 응답 결과를 분석하여 구조물의 변형 거동과 항복/파손여부 등의 강도 안정성을 평가
- 정적해석의 조건
 - 작용하중이 시간에 따라 변하지 않고 일정함 (↔ 동해석)
- 선형의 조건
 - 재료물성이 선형 (↔ 재료비선형)
 재료물성이 탄성으로, 하중과 변위, 응력과 변형률이 선형비례 관계임
 - 기하학적 형상이 선형 (↔ 기하비선형)
 변형에 의한 구조물의 강성 변화를 무시할 수 있을 만큼 변위가 작음
 - 경계조건이 선형 (↔ 경계/접촉비선형)
 하중의 작용시점부터 최종 변형 상태까지 경계조건이 변하지 않음

ELEMENTS


• 3D 요소

- 일반 솔리드
 사면체, 오면체, 피라미드, 육면체
- 복합재 솔리드 (오면체, 육면체)
- 2D 요소
 - 쉘, 평면응력, 평면변형률, 축대칭
 - 복합재 쉘, 표면요소
- 1D 요소
 - 보, 봉(트러스), 파이프
- 기타
 - 스프링, 분포질량, 집중질량, 댐퍼
 - 강체연결, 보간연결, 부쉬(Bush)



Frame Model

MATERIAL PROPERTIES

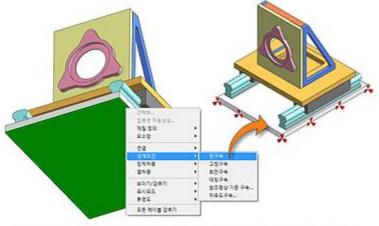
구조·열해석을 위한 재료물성값 제공 (안전율 계산 포함)

Drag&Drop에 의한 파트의 재료 지정

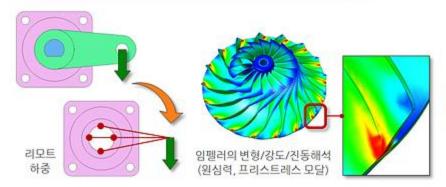
재료물성 DB

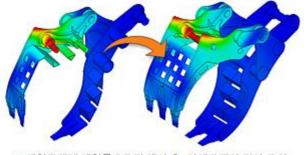
→ 강재, 합금, 알루미늄 합금, 플라스틱 KS를 포함한 국가별 표준강재 등

기본재질 등록으로 새 프로젝트 시작시 ◆ 기본재질 자동 제공



KS 강재 포함, 총 1,000여개의 재료물성 DB 제공

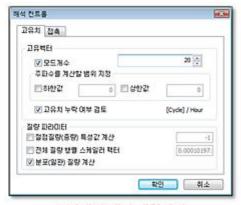

BOUNDARY CONDITIONS


하중

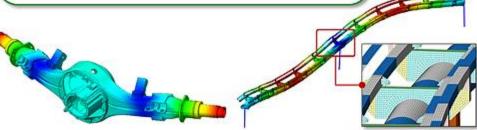
- 자중, 원심력, 집중하중, 모멘트,
 온도, 압력, 보하중, 파이프 내압
- 리모트 하중, 베어링 하중
- 경계조건
 - 고정/핀/회전구속, 자유도구속
 - 대칭구속, 참조형상 기준 구속

대상 면 선택 후, 오른쪽 버튼 클릭으로 하중/경계조건 직접 부여

½ 대칭모델에 대칭구속조건 해석 후, 전체모델의 결과 표현


MODAL ANALYSIS (1)

모달해석


- 모든 동해석의 기본이 되는 자유진동해석
- 외력과 감쇠가 없는 조건에서 구조물의 강성과 질량에 의해 결정되는
 고유 진동수와 고유 진동수별 고유 변형형상(모드형상)을 분석
- 구조물의 중요한 동적특성
 - 고유 진동수(고유주기), 각 고유 진동수별 모드형상, 모드기여계수 등
- 모달해석의 활용
 - 진동이 발생하는 구조물에 장착되는 부품에 대해 공진을 피하도록 설계
 - → 부품의 모달해석을 수행하여 부품의 고유진동수를 계산한 후, 구조물의 진동수 또는 작용하중의 진동수와 비교하여 안정성을 파악/개선
 - 시스템의 운영 진동수에서의 변형형상을 파악/유도
 - → 변형형상이 취약부에 영향을 미치지 않도록 하거나, 반대로 음향기기 같은 제품에서는 운영 진동수에서 원하는 동적변형이 발생하도록 유도
 - 모드법 기반의 과도응답해석/주파수응답해석에서 기본 데이터로 활용

MODAL ANALYSIS (2)

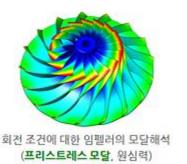
- 병렬 Block Lanczos 솔버
- 해석결과
 - 고유진동수, 모드형상
 - 모드참여율, 유효질량, 계산오차
 - 응력, 변형률, 변형에너지 등
- 분포질량, 집중질량
- 계산 진동수 범위 지정 가능
- 고유치 누락 체크 (Sturm Sequence)

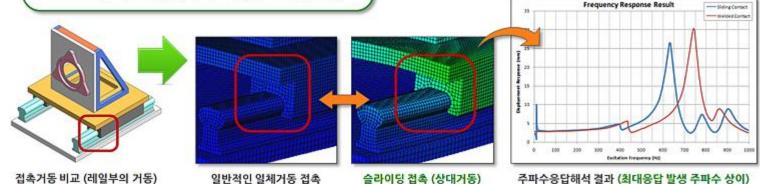
모달해석 제어 대화상자

차축의 모달해석 (7차모드, 구속조건이 없는 강체모드해석)

궤도레일의 모달해석 (4차모드, 쉘/프레임 모델)

	REAL EIGENVALUES					
MODE	EXEMPLE	RADANS	CYCLES	DEMERALIZED WASS	STATISTES	DATHOGODALLTY LOSS
	1.146+009	3.374+004	5.074+005	1.00e+000	1.164-009	0.009+000
- 2	1.164+009	3.374+004	8.374+003	1.00e+000	1.74+4000	4874-010
3.	2 10e+009	4.50e+004	T 30e+003	1.00e+000	2 10e+009	188e-011
4	6.40e+009	8-36e+304	1.20e+004	1 00e+000	6 d3e+009	2.80x.010
	7 97e+000	8.90e+004	4 40e+004	1.00e+000	T \$7e+000	236e411
			MODAL ER	PECTIVE WA	155	
MODE NUMBER	71	12	13		12	AS .
. 1	2.76±006	5.15e-003	0.00e+000	3.10e+001	1 86e-002	1.25e+001
- 2	5.15m-003	2.75e-006	0.00e+000	1 68e-002	3 10e-001	1.35e+001
3	6-00e+000	0-00e+000	0.30e+000	3 52e-016	2-00e-215	1.05e+001
4	6-00e+000	6.36e-315	6.614-203	1.50e+001	1.50e=001	2.22+411
- 6	3.49e-005	1.464-505	0.00e+000	100e-001	2544-005	4 90e+000
101AL	5.19e-013	6 60e-000	6 614-865	4.524-001	4.614-001	4.124+001
N MOODL	7.86e-013	7.66+303	7,66e-565	0.30++000	0.004-000	6 00e-000
	PERCENTAGE MODAL EFFECTIVE WASE					
MODE	79	12	п	111	12	83
	0.04%	65.43%	0.00%	2.00%	E 007%	0.00%
	65.42%	0.04%	2 00%	2 00%	E.00%	0.00%
1	0.00%	0.00%	2.00%	1.00%	6.00%	0.00%
4	0.00%	0.00%	76.45%	1 00%	6.00%	8 00%
4	0.44%	10.00%	1 00%	1.00%	6.00%	9 00%


모달해석의 수치결과 테이블의 예


MODAL ANALYSIS (3)

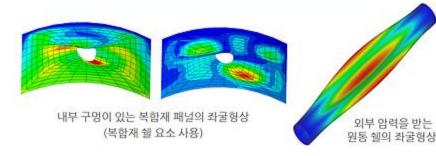
- 프리스트레스 모달해석
 - 2개 서브케이스의 연속 해석
 프리스트레스 조건 해석 후,
 구조물의 강성에 반영/갱신하고
 고유치해석 수행
- 선형접촉 지원
 - 파트간 상대거동을 고려한 모드
 - 일체거동, 슬라이딩, 보간연결

2개의 서브케이스로 구성된 프리스트레스 모달해석

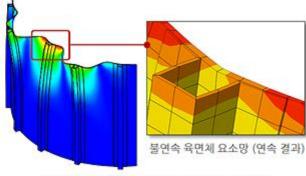
BUCKLING ANALYSIS (1)

- 좌굴해석
 - 구조물의 불안정성을 유발하는 **임계하중**을 찾고, **안정성을 검토**하는 해석
 - 고유치 문제

임계하중을 계산하기 위하여 작용하중(Pa)에 대한 계수(λ)를 구하며, 이 계수(λ)가 **고유치**임 \rightarrow 임계하중은 둘의 곱으로 계산 ($\lambda \times P_a$)

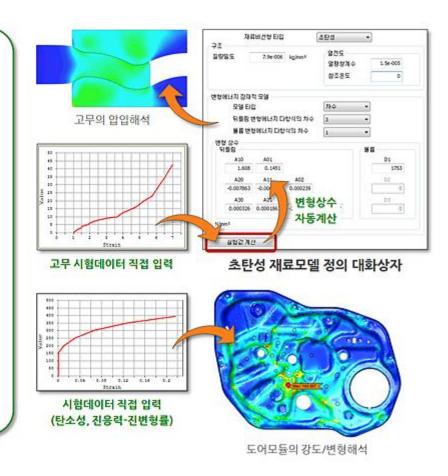

- 구조물이 크기가 큰 압축하중을 받는 경우
- 구조물의 형상이 길고 가는 경우, 구조물의 두께가 얇은 경우

〈예〉 축방향의 압축하중을 받는 기둥, 외부압력을 받는 박판 원통 등



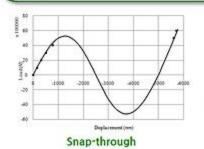
BUCKLING ANALYSIS (2)

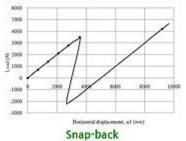
- 병렬 Block Lanczos 솔버
- 복합재료 솔리드 등 모든 요소 지원
- 해석결과
 - 고유치(계수), 모드형상
 - 응력, 변형률, 변형에너지 등
- 계산 고유치 범위 지정 가능
- 고유치 누락 체크 (Sturm Sequence)
- 선형접촉 지원

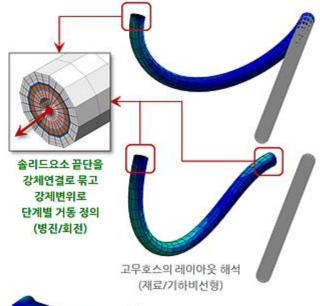

일체거동 접촉조건을 적용한 좌굴해석과 좌굴형상

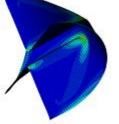
NONLINEAR ANALYSIS

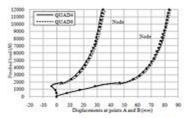
- 선형해석과 비선형해석의 차이
 - 선형해석: 선형근사에 의한 비교/경향을 파악하는 해석
 - 비선형해석: 보다 정확한 결과와 성능 파악을 목적으로 하는 해석
 - 작동조건/결과 등이 선형근사해석으로 충분하지 못할 경우, 비선형해석 수행
- 재료비선형
 - 응력-변형률의 관계가 선형탄성이 아닌 재료물성에 대한 해석
 〈예〉 항복응력을 넘어 소성영역까지 고려한 해석, 고무 등의 해석
- 기하비선형
 - 구조물의 강성변화를 유발할 수 있는 대변형 거동에 대한 해석
- 접촉비선형
 - 하중이 작용하는 동안 경계조건/접촉조건이 변하는 거동에 대한 해석
 〈예〉 파트간 접촉면에서 충돌, 미끄러짐, 분리 등의 거동이 발생하는 경우

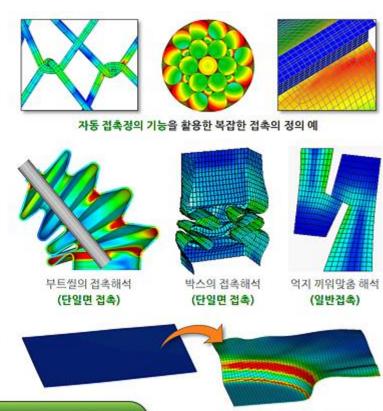

MATERIAL NONLINEAR


- 탄소성/초탄성 재료모델
- 탄소성 재료모델
 - 소성경화 곡선 정의
 - 응력-변형률 곡선 정의
- 초탄성 재료모델
 - 비압축성
 Mooney-Rivlin, Ogden
 Neo-Hookean Polynomial
 - 압축성 (Blatz-Ko)
 - 시험데이터 직접 입력 가능
- 경화거동
 - 등방, 이동, 혼합




GEOMETRY NONLINEAR

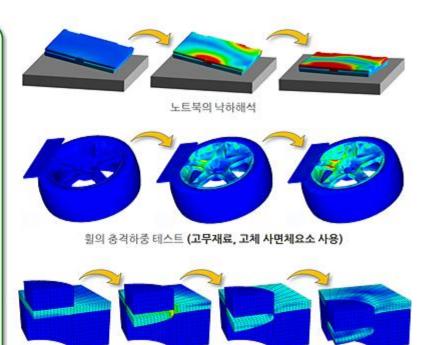

- 전체요소의 Updated Lagrangian 정식화
- 대변위/대회전고려
 - 강체연결요소의 대변위/대회전 지원
- 종동력 (Follower Force)
 - 집중하중, 압력, 중력, 원심력
 - 보하중
- Arc-Length법 지원
 - Snap-through, Snap-back



Pinched Shell의 기하비선형해석

CONTACT NONLINEAR

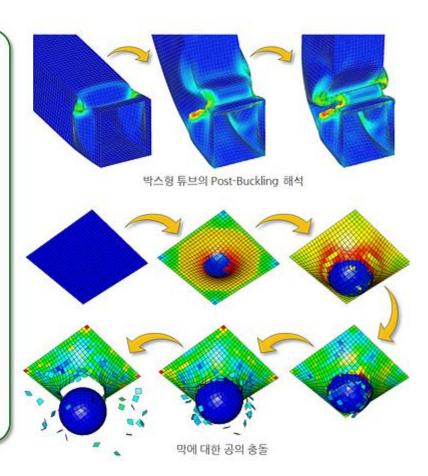
- 접촉면 자동탐색 및 정의 지원
 - 3차원 면-면, 점-면 접촉
 - 단일면 접촉
- 접촉거동
 - 일체거동, 보간연결, 거친접촉
 - 슬라이딩, 일반접촉
- 마찰계수, 강성계수, 쉘 두께 고려
 (쉘의 양면 접촉 지원)
- 제공 결과 (접촉력, 접촉응력 등)
- 열접촉 지원

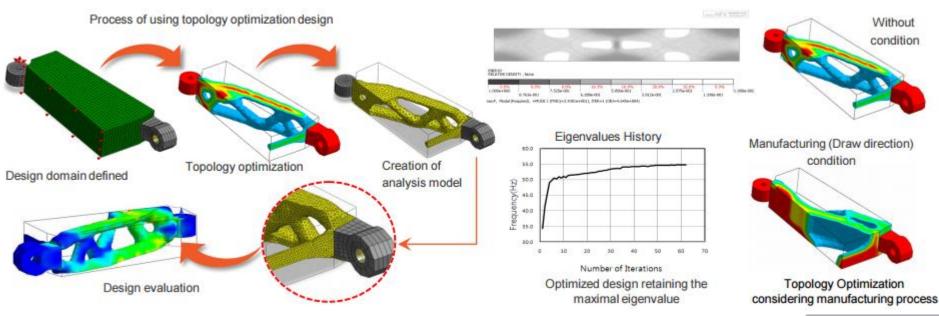


재료/기하비선형 및 Explicit 해석과 연계한 다양한 실무활용 가능

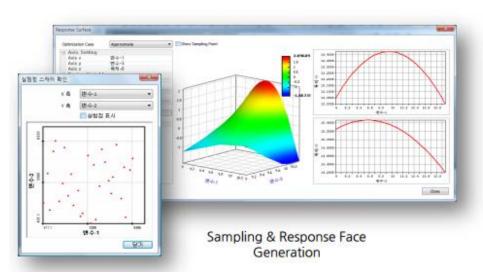
웰의 양면 접촉기능을 이용한 프레스 성형해석

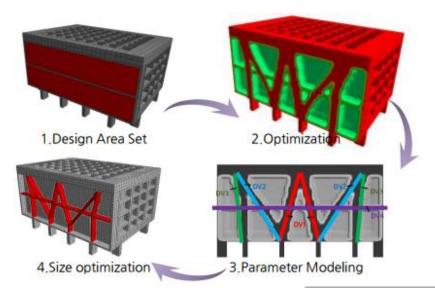
CRASH ANALYSIS (1)


- 다양한 요소 지원 (육면체, 고차사면체, 피라미드 등)
- 재료비선형
 - 탄소성 (경화거동)
 - 초탄성 (압축성, 비압축성)
- 기하비선형
 - Updated Lagragian 정식화
 - 종동력 (Follower Force)
- 접촉비선형
 - 3차원 면-면, 단일면 접촉
 - 일체거동, 보간연결, 거친접촉 슬라이딩, 일반접촉 (마찰)
 - 매 스텝 자동 재검색/업데이트


CRASH ANALYSIS (2)

- 모든 2D/3D 요소의 감차적분 지원
- 감쇠
 - 질량/강성 비례 감쇠
 - 구조감쇠
- 질량스케일
 - 요소 그룹별 스케일
 - 시간스텝 기준 질량 조절
- 요소별 안전 시간스텝 계산/적용
- 해석 수행중 수렴 진행상황과 중간스텝 결과 제공
- Explicit, Implicit 해석의 연계활용 (Generalized Coupled Analysis)


TOPOLOGY OPTIMIZATION


- 정적해석 및 동적해석을 연계한 최적화 해석 기능
 - 선형정적해석
 - 모드해석
 - 주파수응답해석
- 제작 공정 조건을 고려한 해석 기능
 - 응력, 변위, 부피, Draw Direction, 대칭조건 등의 설계 제한/제약 조건 설정 가능
- 다양한 가동조건/하중조건을 고려한 동시 최적화 해석 수행 가능
- 별도의 CAD 작업 없이 해석모델 자동 재생성 기능 및 Mesh Smoothing 기능
- 기타 실무 편의 기능
 - 모드추적, 설계/비설계 영역지정, 초기값 설정

SIZE OPTIMIZATION

- 모든 종류의 열/구조 해석을 치수최적화와 연동
- 특성 및 재료의 설계변수
 - 직관적인 치수최적설계변수 지정기능
 - 단면 치수 및 두께, 복합재료 적층 두께 및 각도, 스프링 강성, 감쇠, 질량, 탄성계수 등
- 실험점 추출 (Design Sampling)
 - 다양한 실험계획법 (FFD, CCD, OA, LHD) 및 1차원 파라미터 스터디
 - 설계변수와 응답의 연관성(Correlation) 분석
- 근사모델 기반 치수최적설계
 - 근사모델 기법(Kriging model, Polynomial Regression model)
 - 근사모델 형상 분석을 위한 2D/3D 그래픽 툴
 - 최적설계안 예측 및 설계안에 대한 실제해석결과 확인
 - 설계안에 대한 자동 모델 생성

