2.11 Z-section cantilever

REFERENCE	NAFEMS [2-3]
KEYWORDS	shell elements, solid elements, layered solid elements
MODEL FILENAME	Linearstatic11.nfxa

Figure 2.11.1 shows a Z-section cantilever clamped on one end. Torque moment of 1.2 *MN m* is applied on the other end by uniformly distributed edge shears, S = 0.6 MN at each flange. The cantilever model is discretized using shell, solid and layered solid elements. Axial stress, σ_x^A is evaluated at point A and compared with the reference solution. The solution from the standard NAFEMS benchmarks is taken as the reference.

Figure 2.11.1 Z-section cantilever model (all units in meters)

Material data	Young's modulus	$E = 210 \ GPa$
	Poisson's ratio	v = 0.3
Section property	Thickness	t = 0.1 m

		σ_{χ}^{A} [MPa]
Reference		-108
Element type	Number of elements	
TRIA-3	48	-30.80 -76.58*
QUAD-4	24	-110.23 -115.43*
TRIA-6	48	-107.76
QUAD-8	24	-110.09

Table 2.11.1 Stress σ_{χ}^{A} at point A obtained using shell elements

* obtained using shell element formulations with 6-dof per node.

Table 2.11.2 Stress σ_X^A at point A obtained using solid elements

		$\sigma_{\scriptscriptstyle X}^{\scriptscriptstyle A}$ [MPa]
Reference		-108
Element type	Number of elements	
PENTA-6	80	-3.047*
HEXA-8	40	-107.357*
PENTA-15	80	-104.509*
HEXA-20	40	-107.094*

obtained by averaging stresses at top and bottom nodes

*

Table 2.11.3	Stress σ_x^A	at point A obtained using shell elements tied to layered solid elements by contact condition

		$\sigma_{\scriptscriptstyle X}^{\scriptscriptstyle A}$ [MPa]
Reference		-108
Element type	Number of elements	
QUAD-4 (PENTAL-6)	16 (16)	-110.11
QUAD-4 (HEXAL-8)	16 (8)	-112.96