Ideas and Algorithms

- Not perfect
 - Mathematics courses teach analytical techniques
 - Engineering courses work on real problems
- Not efficient
 - Mathematics courses analyze numerical algorithms
 - Engineering and computer science implement the software
- Formula-based \rightarrow solution-based

Introduction

- Modeling: applied mathematics
 - Identify the key quantities in the problem
 - Connect them by differential equations or matrix equations
 - Study of special functions
 - Constructing the equations of equilibrium and motion (balance equations)
- Solving: scientific computing
 - Those equations
 - Numerical analysis of the algorithm to test its accuracy and stability
 - Solving steady state and time-dependent matrix and differential equations

Four Simplifications (1)

- Nonlinear \rightarrow Linear
 - Hooke's law in mechanics: displacement ∞ force
 - Ohm's law in networks: current ∞ voltage difference
 - Scaling law in economics: output ∞ input
 - Linear regression in statistics: a straight line or a hyperplane can fit the data
 - Physical nonlinearity vs. geometric nonlinearity
 - Curvature formula in the bending of a beam: $\frac{u''}{\sqrt{(1+(u')^2)^3}} \xrightarrow{\text{small } u''} u''$
- Continuous \rightarrow Discrete
 - Laplace's equation: gradient, divergence, curl
 - To discretize the continuous equation into Ku = f (Ch.3)
 - Finite element method
 - Finite difference method

Four Simplifications (2)

- To solve for u (Ch.7)
 - Direct elimination
 - · Iterations with preconditioning
- For very large K, good solution algorithm (multigrid) better than a supercomputer
- Stability for the discretization in the initial-value problems (Ch.6)
- Multidimensional \rightarrow One-dimensional
 - Separation of variables: u(x, t) = A(x)B(t)
 - Spectral method (Ch.5)
- Variable coefficients \rightarrow Constants
 - Fourier transform (Ch.4)
 - Sines, cosines, exponentials
 - physical domain (x, t) \rightarrow frequency domain (k, ω)

Computational Science and Engineering

- Large scale computation?
- Fundamentals of scientific computing with short codes to implement the key concepts
 - Symmetric positive definite matrices A^TCA: stiffness, conductance, multigrid matrices
 - A: geometry, C: physical properties
 - Spring-mass systems, networks, least squares, differential equations like div(c grad u)=f

Applications (1)

- Computational Engineering
 - Finite element method (computational mechanics)
 - Reliable and efficient for the mechanics of structures
 - 1D introduction in Section 3.1, 2D code in Section 3.6
 - Differential equations in weak form integrated against test functions
 - Stresses and displacements approximated by polynomials
 - Fluid-structure interactions, high-speed impact?
- Computational Electromagnetics
 - SPICE codes: solve network problems with many circuit elements
 - Variations of Newton's method $J\Delta u=-g$ (Section 2.6) for g(u)=0
 - Finite differences on a staggered grid (Yee's method) for Maxwell's equations
 - Helmholtz equation separates variables: indefinite equation with negative eigenvalues for high frequencies

Applications (2)

- Computational Physics and Chemistry
 - Large computation over many time steps, resolution for high accuracy → multigrid (Section 7.3)
 - Stability and accuracy over many periods: mu"=f(u) in Section 2.2
 → atomic oscillation, orbits in space
 - Computational fluid dynamics (Sections 6.6-6.7): convections with diffusion, divergence-free projection to solve the Navier-Stokes equations
- Computational Biology
 - Differential equations (part of biology)
 - Another large part: networks of nodes and edges (Section 2.4), combinatorial problems, probability, very large amount of data
 - Data mining: probability, statistics, signal processing, optimization

Applications (3)

- Computational Simulation and Design
 - Quicker and easier than physical experiments
 - Series of tests with varying parameters to approach an optimal design
 - Numerical simulations reliable? Problem of quantifying uncertainty
 - Validation (solving the right equations): modeling
 - Verification (solving the equations right): estimate of numerical error
 - Discretization: $O((\Delta x)^2)$, $O((\Delta t)^4)$
 - derivatives→difference, functions→polynomials, integrals→finite sums
 - Sensitivity analysis: *d*(output)/*d*(input) Section 8.7
 - Ill-posed inverse problem vs. well-posed forward problem

Applications (4)

- Computational Finance
 - Black-Scholes equation: Ito's lemma, Brownian motion (Section 6.5)
 - Constant volatility: reduce to the heat equation $u_t = u_{xx}$
 - Variable volatility: finite differences
 - Monte Carlo methods
- Computational Optimization
 - Compute a minimum or maximum subject to constraints
 - Lagrange multipliers: sensitivity of the solution to changes in the data
 - duality for least squares (Section 8.1)
 - Calculus of variations: function of x or t
 - Lagrangians and Hamiltonians in mechanics

Basics of Scientific Computing (1)

- Matrix equations (problems of linear algebra)
 - Iu(A): Ax = b by elimination and A=LU (triangular factors)
 - eig(A): Ax= λ x leading to diagonalization A=S Λ S⁻¹ (eigenvalues in Λ)
 - qr(A): Au≈b by solving $A^TA\hat{u}=A^Tb$ with orthogonalization A=QR
 - svd(A): Best bases from the Singular Value Decomposition $A=U\Sigma V^T$
- Differential equations in space and time: boundary and initial values
 - Explicit solution by Fourier and Laplace transforms
 - Finite difference solutions with tests for accuracy and stability
 - Finite element solutions using polynomials on unstructured meshes
 - Spectral methods of exponential accuracy by Fast Fourier Transform

Basics of Scientific Computing (2)

- Large sparse systems of linear and nonlinear equations
 - Direction solution by reordering the unknowns before elimination
 - Multigrid solution by fast approximation at multiple scales
 - Iterative solution by conjugate gradients and MINRES
 - Newton's method: linearization with approximate Jacobians

Applied Mathematics for Computational Design and Analysis 전산설계 및 해석을 위한 응용수학

Ch	Contents	
1	Applied Linear Algebra	\bigcirc
2	A Framework for Applied Mathematics	\bigcirc
3	Boundary Value Problems	\bigcirc
4	Fourier Series and Integrals	
5	Analytic Functions	
6	Initial Value Problems	
7	Solving Large Systems	
8	Optimization and Minimum Principles	\bigcirc

Advanced Numerical Methods in Engineering 수치해석특론

Ch	Contents	
1	Applied Linear Algebra	
2	A Framework for Applied Mathematics	
3	Boundary Value Problems	
4	Fourier Series and Integrals	\bigcirc
5	Analytic Functions	
6	Initial Value Problems	\bigcirc
7	Solving Large Systems	\bigcirc
8	Optimization and Minimum Principles	
	Variational Method	\bigcirc