
Computational Engineering FEM - 1

Outline (1)

• Introduction
– Motivation and general concepts
– Major steps of finite element analysis

• Strong and weak forms
– Model problem
– Boundary-value problem and the strong form
– Weak form
– Associated variational problem

• Galerkin method
– Discrete (approximated) problem
– System of algebraic equations

Computational Engineering FEM - 2

Outline (2)

• Finite element model
– Discretization and (linear) shape functions
– Lagrange interpolation functions
– Finite element system of algebraic equations

• Matix of the system
• Right-hand-side vector
• Imposition of the essential boundary conditions

– Results of analytical and FE solutions

Computational Engineering FEM - 3

Finite Element Method (FEM)

• [generally speaking]
– a powerful computational technique for the solution of

differential and integral equations that arise in various fields
of engineering and applied sciences

• [mathematically]
– a generalization of the classical variational (i.e., Ritz) and

weighted-residual (e.g., Galerkin, least-squares, etc.)
methods.

Computational Engineering FEM - 4

Motivation

• Most of the real problems
– are defined on domains that are geometrically complex
– may have different boundary conditions on different portions of

the boundary

• Therefore, it is usually impossible (or difficult)
– to find a solution analytically (so one must resort to approximate

methods),
– to generate approximation functions required in the traditional

variational methods

• An answer to these problems is a finite-element approach

Computational Engineering FEM - 5

Main Concept of FEM

• A given domain can be viewed as an assemblage of
simple geometric shapes, called finite elements, for
which it is possible to systematically generate the
approximation functions.

• Remarks:
– The approximation functions are also called shape functions or

interpolation functions since they are often constructed using
ideas from interpolation theory.

– The finite element method is a piecewise (or element-wise)
application of the variational and weighted-residual methods.

– For a given BVP, it is possible to develop different finite element
approximations (or finite element models), depending on the
choice of a particular variational and weighted-residual
formulation.

Computational Engineering FEM - 6

Major Steps of Finite Element Analysis

• Discretization of the domain into a set of finite elements (mesh
generation)

• Weighted-integral or weak formulation of the differential
equation over a typical finite element (subdomain)

• Development of the finite element model of the problem using its
weighted-integral or weak form. The finite element model
consists of a set of algebraic equations among the unknown
parameters (degrees of freedom) of the element

• Assembly of finite elements to obtain the global system (i.e., for
the total problem) of algebraic equations – for the unknown
global degrees of freedom

• Imposition of essential boundary conditions
• Solution of the system of algebraic equations to find

(approximate) values in the global degrees of freedom
• Post-computation of solution and quantities of interest

Computational Engineering FEM - 7

Model Problem (1)

– (x), (x), f(x) are the known data of the problem: the first two
quantities result from the material properties and geometry of the
problem whereas the third one depends on source or loads

– u(x) is the solution to be determined; it is also called dependent
variable of the problem (with x being the independent variable)

• The domain of this 1D problem is an interval (a, b), and
the points x = a and x = b are the boundary points where
boundary conditions are imposed, e.g.,

           (O)DE: for ,
du xd x x u x f x x a b

dx dx
 
 

    
 

Computational Engineering FEM - 8

Model Problem (2)

– ˆq and û are the given boundary values
– nx is the component of the outward unit vector normal to the

boundary. In the 1D case there is only one component and:
nx(a) = -1, nx(b) = +1

– q(x)≡(x)du(x)/dx is the so-called secondary variable specified
on the boundary by the Neumann boundary condition also
known as the second kind or natural boundary condition

– u(x) is the primary variable specified on the boundary by the
Dirichlet boundary condition also known as the first kind or
essential boundary condition

          

   

ˆ Neumann b.c.
BCs:

ˆ Dirichlet b.c.

x
duq n x q
dx

u b u

      

 

Computational Engineering FEM - 9

Examples of different physical problems (1)

u (primary var.) α (material data) f (source, load) q (secondary var.)

Heat transfer

temperature thermal conductance heat generation heat

Flow through porous medium

fluid-head permeability infiltration source

Flow through pipes

pressure pipe resistance 0 source

Flow of viscous fluids

velocity viscosity pressure gradient shear stress

            for ,
du xd x x u x f x x a b

dx dx
 
 

    
 

Computational Engineering FEM - 10

Examples of different physical problems (2)

u (primary var.) α (material data) f (source, load) q (secondary var.)

Elastic cables

displacement tension transversal force point force

Elastic bars

displacement axial stiffness axial force point force

Torsion of bars

angle of twist shear stiffness 0 torque

Electrostatics

electric potential Dielectric constant charge density electric flux

            for ,
du xd x x u x f x x a b

dx dx
 
 

    
 

Computational Engineering FEM - 11

Boundary-Value Problem (BVP)

   
 
 

Find ? satisfying

differential eq.: in ,

ˆ Neumann b.c. : on

ˆ Dirichlet b.c.: on
x q

u

u

u u f a b

u n q a

u u b

 





    

   

  

 
 

   

, be an open set (an open interval in case of 1D problems)

 be the boundary of , that is, ,

 where and are disjoint parts of the boundary

relating to the Neumann and Dirichlet
q u q u

a b

a b

a b

 

   

       

 
 

bounday conditions, respectively
the data of the problem : , : , : ,

ˆ ˆthe values prescribed on the boundary : , :q u

f

q u

   

   

Computational Engineering FEM - 12

Strong Form

• The classical strong form of a boundary-value
problem consists of:
– the differential equation of the problem,
– the Neumann boundary conditions, i.e., the natural

conditions imposed on the secondary dependent variable
(which involves the first derivative of the dependent variable)

– The Dirichlet (essential) boundary conditions must be
satisfied a priori.

 strong form: u u f   

Computational Engineering FEM - 13

Weak Form (1)

– (1) Write the weighted-residual statement for the domain equation
– (2) Trade differentiation from u to δu using integration by parts

• The integration by parts weakens the differentiability requirement for
the trial functions u (i.e., for the solution)

– (3) Use the Neumann boundary condition (u’nx = ˆq on Γq) and
the property of test function (δu = 0 on Γq) for the boundary term

– The weak form is mathematically equivalent to the strong one,
that is, if u is a solution to the strong (local, differential)
formulation of a BVP, it also satisfies the corresponding weak
(global, integral) formulation for any δu (admissible, i.e.,
sufficiently smooth and δu = 0 on Γu)

   ˆweak form: 0
b

x a a
q u u u u u f u dx     


     

Computational Engineering FEM - 14

Weak Form (2)

– The essential boundary conditions must be explicitly
satisfied by the trial functions: u = û on Γu . (In case of
displacement formulations of many mechanical and
structural engineering problems this is called kinematic
admissibility requirement.)

– Consequently, the test functions must satisfy the adequate
homogeneous essential boundary conditions: δu = 0 on Γu

– The trial functions u (and test functions, δu) need only to be
continuous. (Remember that in the case of strong form the
continuity of the first derivative of solution u was required.)

Computational Engineering FEM - 15

Weak Form: Remarks

– The strong form can be derived from the corresponding weak
formulation if we take more demanding assumptions for the
smoothness of trial functions (i.e., one-order higher
differentiability).

– In variational methods, any test function is a variation defined
as the difference between any two trial functions. Since any
trial function satisfy the essential boundary conditions, the
requirement that δu = 0 on Γu follows immediately.

Computational Engineering FEM - 16

Test and Trial Functions

1 2

1
1 2

2

, : arbitrary trial functions
ˆ on

and 0 on
ˆ on

u
u

u

u u
u u

u u u u
u u

 
  

      

Computational Engineering FEM - 17

Associated Variational Problem

– U: space of solution (or trial functions)
– W: space of test functions (or weighting functions)
– A: bilinear form defined on U x W
– F: linear form defined on W

• Variational problem:

   Find so that , u U A u u F u u W     

Computational Engineering FEM - 18

Principle of the minimum total potential energy

• The weak form or the variational problem is the
statement of the principle of the minimum total
potential energy

   
     

     

   
 

       
,

Find so that ,

, 0
1 , : potential defined by the quadratic functional
2

1 1, , , , ,
2 2

since the bilinear form is symmetric
A u u

u U A u u F u u W

P u A u u F u

P u A u u F u

A u u A u u A u u A u u F u F u


  

  

     

   

  

 

 
    
 
  


Computational Engineering FEM - 19

Galerkin Method

• If the problem is well-posed one can try to find an
approximated solution uh by solving the so-called
discrete problem which is an approximation of the
corresponding variational problem.

• Discrete (approximated) problem:

– Uh is a finite-dimension space of functions called approximation
space whereas uh is the approximate solution

– δuh are discrete test functions from the discrete test space Wh
isIn the Galerkin method Wh = Vh (in general, Wh ≠ Vh)

– Ah is an approximation of the biliear form A
– Fh is an approximation of the linear form F

   Find so that , h h h h h h h h hu U A u u F u u W     

Computational Engineering FEM - 20

Interpolation

• In the Galerkin method (W=U) the same shape functions,
i(x), are used to interpolate the approximate solution as
well as the (discrete) test functions:

• Using this interpolation for the approximated problem
leads to a system of algebraic equations
– The left-hand and right-hand sides of the problem equation yield

       
1 1

, , : degrees of freedom
N N

h j j h i i i
j i

u x x u x x     
 

  

   

   

1 1 1 1

1 1

, ,
N N N N

h h h h j i j i ij j i
i j i j

N N

h h h i i i i
i i

A u u A A

F u F F

      

   

   

 

 

 

 

 

Computational Engineering FEM - 21

System of Algebraic Equations

• Using this interpolation for the approximated problem
leads to a system of algebraic equations
– The coefficient matrix (stiffness matrix) and the right-hand-

side vector are defined as follow

– Now, the approximated problem may be written as

– It is (always) true if the expression in brackets equals zero
which gives the system of algebraic equations

1 1
0

N N

ij j i i i h
i j

A F V  
 

   

   , , ij h j i i h iA A F F   

1

N

ij j i
i

A F




Computational Engineering FEM - 22

Discretization

– The domain internal is divided into N-1 finite elements (subdomains).
– There are N nodes, each with only 1 degree of freedom.
– Local (or element) shape function is (most often) defined on an element

in this way that it is equal 1 in a particular node and 0 in the other(s).
• Only two linear interpolation functions in 1D finite element
• Higher-order interpolation functions involve additional nodes inside element

– Global shape function i is defined on the whole domain as
• Local shape functions on (neighboring) elements sharing the node i
• Identically equal zero on all other elements

Computational Engineering FEM - 23

Shape Functions

1
1

1
12

11
1 11

 for

 for for
 for

0 otherwise 0 otherwise
0 otherwise

i
i

i
N

i Ni
Ni i N

i

x x x
h

x xx x x xx xh hx
h

  










 
           

   



Computational Engineering FEM - 24

Shape Functions: First Derivatives

– Discontinuous at interfaces (points) between elements (in the
case of linear interpolation they are element-wise constant)

1 1
1

111

1 for 11 for for
 1 for

0 otherwise 0 otherwise0 otherwise

i i
Ni

Ni i i N

h x
xx

hh h x  
 




           
   

Computational Engineering FEM - 25

Lagrange interpolation functions

Computational Engineering FEM - 26

Finite Element System of Algebraic Equations

– The symmetry of the bilinear form A involves the symmetry of the
matrix of the FE system of algebraic equations, i.e., Aij = Aji.

– A component Aij is defined as an integral (over the problem domain)
of a sum of a product of shape functions, i and j, and a product of
their derivatives, ’i and ’j.

– The product of two shape functions (or their derivatives) is nonzero
only on the elements that contain the both corresponding degrees
of freedom (since a shape function corresponding to a particular
degree of freedom is nonzero only on the elements sharing it).

– Therefore, the integral can be computed as a sum of the integrals
defined only over these finite elements that share the both degrees
of freedom (since the contribution from all other elements is null):

   

   ,

: set of all finite elements

, : set of finite elements that contain the DOF and
e e

ij ij ij
e E e E i j

E
A A A

E i j i j 

  


 

Computational Engineering FEM - 27

1D Problem

 

     
 

 

 
 

1

1
1

111

1
1

const=1
const=

, 1

+
3

 for 1 + +
3 for 2, , 1

 for

 for 1

0 for 1

i

i i
i iii ii

xN
ij NN ijx

i
i j

h
h

hA i j
h hA A i j N

A A i j N A

A i j

i j

 
 



 









  


   
    


 
  



     

 

1

1

1

const= 1

3

+
3

+
6

0

ˆ for 1
2

 for 2, , 1
2
? for a reaction to the essential BC

i

N

N

i

i

f x f i i
i

N

h

h
h

h
h

fh q i

f h h
F i N

F i N











 

















  


   

  





Computational Engineering FEM - 28

Imposition of Essential BCs (1)

– In general, the assembled matrix Aij is singular and the system
of algebraic equations is undetermined. We need to impose the
essential boundary conditions to make it solvable.

– Let B be the set of all degrees of freedom where the essential
boundary conditions are applied, that is,

– In practice, the essential BCs are imposed as described below.

ˆ ˆfor : where is a given valuen n nn B    

ˆ Compute a new r.h.s. vector: for 1, ,

ˆ Set:

 Set: 1 and all other components in the -th row and

 -th column to zero, i.e., for

i i in n
n B

n n

nn

ni in in

F F A i N

F

A n

n A A i









  





  

 




  1, , N

Computational Engineering FEM - 29

Imposition of Essential BCs (2)

1

Now, the new (slightly modified) system of equations, ,

is solved for .

Eventually, a reaction (force, source) is computed

ij i j

i
N

n ni i
i

A F

F A












 

 

 

  1, 1
1

 for 1, , 1

 for , 1, ,

 for 1, , ,

ˆ for 1, , 1
ˆ for

ˆ

ij

ij Nj

iN

i iN N
i

N

N

n Ni i N NN NN N
i

A i N

A i N j N

i N j N

F A i N
F

i N

F A A A









  


  


  
  
    



  


 





Computational Engineering FEM - 30

Results of Analytical and FE Solutions

   
   

1, 3, 1

ˆ ˆ0, 0 1, 2, 2 0

x f x

a q q b u u

   

     

