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Finite Element Method (FEM)

* [generally speaking]

— a powerful computational technique for the solution of
differential and integral equations that arise in various fields
of engineering and applied sciences

« [mathematically]

— a generalization of the classical variational (i.e., Ritz) and
weighted-residual (e.g., Galerkin, least-squares, etc.)
methods.
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Motivation

* Most of the real problems
— are defined on domains that are geometrically complex

— may have different boundary conditions on different portions of
the boundary

« Therefore, it is usually impossible (or difficult)

— to find a solution analytically (so one must resort to approximate
methods),

— to generate approximation functions required in the traditional
variational methods

* An answer to these problems is a finite-element approach
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Main Concept of FEM

« A given domain can be viewed as an assemblage of
simple geometric shapes, called finite elements, for
which it is possible to systematically generate the
approximation functions.

« Remarks:

— The approximation functions are also called shape functions or
interpolation functions since they are often constructed using
ideas from interpolation theory.

— The finite element method is a piecewise (or element-wise)
application of the variational and weighted-residual methods.

— For a given BVP, it is possible to develop different finite element
approximations (or finite element models), depending on the
choice of a particular variational and weighted-residual
formulation.
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Major Steps of Finite Element Analysis

Discretization of the domain into a set of finite elements (mesh
generation)

Weighted-integral or weak formulation of the differential
equation over a typical finite element (subdomain)

Development of the finite element model of the problem using its
weighted-integral or weak form. The finite element model
consists of a set of algebraic equations among the unknown
parameters (degrees of freedom) of the element

Assembly of finite elements to obtain the global system (i.e., for
the total problem) of algebraic equations — for the unknown
global degrees of freedom

Imposition of essential boundary conditions

Solution of the system of algebraic equations to find
(approximate) values in the global degrees of freedom

Post-computation of solution and quantities of interest
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Model Problem (1)

(O)DE: —%(a(x) dudg(x)]+y(x)u(x): f(x) forxe(a,b)

— a(x), y(x), f(x) are the known data of the problem: the first two
quantities result from the material properties and geometry of the
problem whereas the third one depends on source or loads

— u(x) is the solution to be determined; it is also called dependent
variable of the problem (with x being the independent variable)

« The domain of this 1D problem is an interval (a, b), and

the points x = a and x = b are the boundary points where
boundary conditions are imposed, e.g.,
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Model Problem (2)

((Q(a)ﬂx(a)=)—a(x)3—i(a) § (Neumann b.c.)

\ u(b)=0 (Dirichletb.c.)

BCs: <

— "q and U are the given boundary values

— n, is the component of the outward unit vector normal to the
boundary. In the 1D case there is only one component and:
n(a) = -1, n,(b) = +1

— q(x)=a(x)du(x)/dx is the so-called secondary variable specified
on the boundary by the Neumann boundary condition also
known as the second kind or natural boundary condition

— u(x) is the primary variable specified on the boundary by the
Dirichlet boundary condition also known as the first kind or
essential boundary condition
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Examples of different physical problems (1)

u (primary var.) a (material data) f (source, load) g (secondary var.)

Heat transfer

temperature thermal conductance | heat generation heat

Flow through porous medium

fluid-head permeability infiltration source

Flow through pipes

pressure pipe resistance 0 source

Flow of viscous fluids

velocity viscosity pressure gradient | shear stress

0% 0= 1) torxe(an
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Examples of different physical problems (2)

u (primary var.)

a (material data)

f (source, load)

g (secondary var.)

Elastic cables

displacement tension transversal force | point force
Elastic bars

displacement axial stiffness axial force point force
Torsion of bars

angle of twist shear stiffness 0 torque
Electrostatics

electric potential | Dielectric constant charge density electric flux
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Boundary-Value Problem (BVP)

Q= (a, b) be an open set (an open interval in case of 1D problems)

I be the boundary of Q, that is, I" = {a, b}

I=r,uTl, whereT', ={a} and I', = {b} are disjoint parts of the boundary
relating to the Neumann and Dirichlet bounday conditions, respectively
(the data of the problem) f :Q >R, ¢: Q> R, y: Q> R,

(the values prescribed on the boundary) §:T', - %, G:T, >R

Find u = ? satisfying

differential eq.: —(au')' +yu=f inQ=(a,b)
Neumann b.c.: aun,=q onT', ={a}
Dirichlet b.c.: u=0 onTl, ={b}
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Strong Form

« The classical strong form of a boundary-value
problem consists of:
— the differential equation of the problem,

— the Neumann boundary conditions, i.e., the natural
conditions imposed on the secondary dependent variable
(which involves the first derivative of the dependent variable)

— The Dirichlet (essential) boundary conditions must be
satisfied a priori.

strong form: —(au’)' +yu=f
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Weak Form (1)

— (1) Write the weighted-residual statement for the domain equation

— (2) Trade differentiation from u to du using integration by parts
* The integration by parts weakens the differentiability requirement for
the trial functions u (i.e., for the solution)

— (3) Use the Neumann boundary condition (au'n, ="qon I';) and
the property of test function (du = 0 on I';) for the boundary term

~ b
weak form: [-Gou] + ja [au’su’+ yusu— féuldx =0

— The weak form is mathematically equivalent to the strong one,
that is, if u is a solution to the strong (local, differential)
formulation of a BVP, it also satisfies the corresponding weak
(global, integral) formulation for any du (admissible, i.e.,
sufficiently smooth and du=0onT )
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Weak Form (2)

— The essential boundary conditions must be explicitly
satisfied by the trial functions:u=0on T, . (In case of
displacement formulations of many mechanical and
structural engineering problems this is called kinematic
admissibility requirement.)

— Consequently, the test functions must satisfy the adequate
homogeneous essential boundary conditions: du =0 on I

— The trial functions u (and test functions, du) need only to be
continuous. (Remember that in the case of strong form the
continuity of the first derivative of solution u was required.)
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Weak Form: Remarks

— The strong form can be derived from the corresponding weak
formulation if we take more demanding assumptions for the
smoothness of trial functions (i.e., one-order higher
differentiability).

— In variational methods, any test function is a variation defined
as the difference between any two trial functions. Since any
trial function satisfy the essential boundary conditions, the
requirement that du = 0 on ', follows immediately.
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Test and Trial Functions

u(x),oulx)

Iul
solution and trial functions, u ug

|
|
: test functions, du

X

I_‘u rq
Dirichlet b.c. Neumann b.c.
u=u, ou=0

u,,u,: arbitrary trial functions

u,=u onl,
ou =u, —U, and —ou=0 onT,

u,=U0 onT,
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Associated Variational Problem

— U: space of solution (or trial functions)

— W: space of test functions (or weighting functions)
— A: bilinear form defined on U x W

— F: linear form defined on W

« Variational problem:

FindueU sothat A(u,6u)=F(6u) VéueW
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Principle of the minimum total potential energy

« The weak form or the variational problem is the
statement of the principle of the minimum total
potential energy

FindueU sothat A(u,6u)=F(6u) VéueW

SP(u)=A(u,é6u)—F(éu)=0

P(u)= % A(u,u)—F (u): potential defined by the quadratic functional
Eé‘A(u,u)zl A(Su,u)+A(u,éu) |=A(u,8u), SF(u)=F(su)
: iy

since the bilinear form is symmetric
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Galerkin Method

 If the problem is well-posed one can try to find an
approximated solution u,, by solving the so-called
discrete problem which is an approximation of the
corresponding variational problem.

» Discrete (approximated) problem:
Find u, eU, sothat A (u,,du,)=F,(du,) VYdu, eW,

— U, is a finite-dimension space of functions called approximation
space whereas u,, is the approximate solution

— 0Ou, are discrete test functions from the discrete test space W,
isIn the Galerkin method W, =V, (in general, W, # V,)

— A, is an approximation of the biliear form A
— F, is an approximation of the linear form F
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Interpolation

* In the Galerkin method (W=U) the same shape functions,
¢:.(x), are used to interpolate the approximate solution as
well as the (discrete) test functions:

N N
u, (X)=>6.4,(x), ou,(x)=> 664 (x), 6 : degrees of freedom
=1 i=1

« Using this interpolation for the approximated problem
leads to a system of algebraic equations
— The left-hand and right-hand sides of the problem equation yield

A, (u,,éu, ) ZZa@¢W&9ZQMpw

=l j=1 =l j=1

)=YF.(4)56,= Foq
i=1

i=1
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System of Algebraic Equations

« Using this interpolation for the approximated problem
leads to a system of algebraic equations

— The coefficient matrix (stiffness matrix) and the right-nand-
side vector are defined as follow

Aij :Ah(¢j’¢i)’ Fi :Fh(¢i)

— Now, the approximated problem may be written as

ZN:ZN:\AJ.QJ. ~F|06, =0 V&0, eV,

i=1 j=1

— ltis (always) true if the expression in brackets equals zero
which gives the system of algebraic equations

N
Z AY; =F
i=1
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Discretization

— The domain internal is divided into N-1 finite elements (subdomains).
— There are N nodes, each with only 1 degree of freedom.
— Local (or element) shape function is (most often) defined on an element
in this way that it is equal 1 in a particular node and 0 in the other(s).

* Only two linear interpolation functions in 1D finite element

« Higher-order interpolation functions involve additional nodes inside element
— Global shape function ¢, is defined on the whole domain as

 Local shape functions on (neighboring) elements sharing the node i

« |dentically equal zero on all other elements

pi(x)
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Shape Functions

i (x)
1K
\¢1 on/
0-¢ ? ¢ 4 x
a=x1 X9 X;_9 *N-1 xpy=b
— k ok e e A —
hi hig  hicx  hi Ry hn-1
e _x
=L forxeQ, ,
i—-1
X, — X X — X
2 forxe Q) X . —X —L forxeQ,
=1 h ¢ =1 - forx e Q) d =1 M
0 otherwise ‘ _ 0 otherwise
0 otherwise
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Shape Functions: First Derivatives

lf)’-(-l')hz'
ik ;';/ lh’ (‘i)( (")’
T~ Fi—1 1 141 "N
1 e . _______________________}
0 ¢—d ————— —
a3x] X2 Xi-2  Xj-1 X Xi+l  Xi42 IN-1 axpn=b
("J’ (1’), fh’ (')/
"1 "i1—1 'l 1+ 1
-1 -
p————— 5 ok S S | f——
hy hig hisx i hig hn-1
1 (1/h . forxe Q.
~-— forxeQ Wh - forxeQ, .
0 otherwise 0 otherwise 0 otherwise

— Discontinuous at interfaces (points) between elements (in the
case of linear interpolation they are element-wise constant)
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Lagrange interpolation functions
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Finite Element System of Algebraic Equations

— The symmetry of the bilinear form A involves the symmetry of the
matrix of the FE system of algebraic equations, i.e., Aij = Aji.

— A component A; is defined as an integral (over the problem domain)
of a sum of a product of shape functions, ¢; and ¢;, and a product of
their derivatives, ¢'; and ¢’;.

— The product of two shape functions (or their derivatives) is nonzero
only on the elements that contain the both corresponding degrees

of freedom (since a shape function corresponding to a particular
degree of freedom is nonzero only on the elements sharing it).

— Therefore, the integral can be computed as a sum of the integrals
defined only over these finite elements that share the both degrees
of freedom (since the contribution from all other elements is null):

A=2AT= 2 AT

ecE eeE(i,j)

E : set of all finite elements
E(i, j): setof finite elements that contain the DOF i and
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(AD fori=j=1
A Al fori=j=2,...
A =AN"Y  fori=j=N
AV, forfi-jl=1
0 for [i—j|>1
f(h,+h)

f ( x)=const=f

Computational Engineering

1D Problem

\

(N-1)

fori=1

fori=2,.

a(x)=const=cr

7(x)=const=y

(N-2)

F, =? fori=N (areaction to the essential BC)
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Imposition of Essential BCs (1)

— In general, the assembled matrix A; is singular and the system
of algebraic equations is undetermined. We need to impose the
essential boundary conditions to make it solvable.

— Let B be the set of all degrees of freedom where the essential
boundary conditions are applied, that is,

forne B:6, =6, where én IS a given value
— In practice, the essential BCs are imposed as described below.

. Compute a new r.h.s. vector: F = F, —ZAnén fori=1...,N

neB

e

. Set: F =46

n

. Set: A _=1and all other components in the n-th row and

n-th column to zero, i.e., A, = A =5, fori=1...,N
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Imposition of Essential BCs (2)

~

Now, the new (slightly modified) system of equations, Ajei =F,

Is solved for 6.

N
Eventually, a reaction (force, source) is computed F, = Z A6
i=1

0 fori=N

F, = ZANlel - AN,(N—l)(gN—1+ A Oy
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Results of Analytical and FE Solutions
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