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– Motivation and general concepts
– Major steps of finite element analysis

• Strong and weak forms
– Model problem
– Boundary-value problem and the strong form
– Weak form
– Associated variational problem

• Galerkin method
– Discrete (approximated) problem
– System of algebraic equations
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Outline (2)

• Finite element model
– Discretization and (linear) shape functions
– Lagrange interpolation functions
– Finite element system of algebraic equations

• Matix of the system
• Right-hand-side vector
• Imposition of the essential boundary conditions

– Results of analytical and FE solutions



Computational Engineering FEM - 3

Finite Element Method (FEM)

• [generally speaking] 
– a powerful computational technique for the solution of 

differential and integral equations that arise in various fields 
of engineering and applied sciences

• [mathematically] 
– a generalization of the classical variational (i.e., Ritz) and 

weighted-residual (e.g., Galerkin, least-squares, etc.) 
methods.



Computational Engineering FEM - 4

Motivation

• Most of the real problems
– are defined on domains that are geometrically complex
– may have different boundary conditions on different portions of 

the boundary

• Therefore, it is usually impossible (or difficult)
– to find a solution analytically (so one must resort to approximate 

methods),
– to generate approximation functions required in the traditional 

variational methods

• An answer to these problems is a finite-element approach
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Main Concept of FEM

• A given domain can be viewed as an assemblage of 
simple geometric shapes, called finite elements, for 
which it is possible to systematically generate the 
approximation functions.

• Remarks:
– The approximation functions are also called shape functions or 

interpolation functions since they are often constructed using 
ideas from interpolation theory.

– The finite element method is a piecewise (or element-wise) 
application of the variational and weighted-residual methods.

– For a given BVP, it is possible to develop different finite element 
approximations (or finite element models), depending on the 
choice of a particular variational and weighted-residual 
formulation.
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Major Steps of Finite Element Analysis

• Discretization of the domain into a set of finite elements (mesh 
generation)

• Weighted-integral or weak formulation of the differential 
equation over a typical finite element (subdomain)

• Development of the finite element model of the problem using its 
weighted-integral or weak form. The finite element model 
consists of a set of algebraic equations among the unknown 
parameters (degrees of freedom) of the element

• Assembly of finite elements to obtain the global system (i.e., for 
the total problem) of algebraic equations – for the unknown 
global degrees of freedom

• Imposition of essential boundary conditions
• Solution of the system of algebraic equations to find 

(approximate) values in the global degrees of freedom
• Post-computation of solution and quantities of interest
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Model Problem (1)

– (x), (x), f(x) are the known data of the problem: the first two 
quantities result from the material properties and geometry of the 
problem whereas the third one depends on source or loads

– u(x) is the solution to be determined; it is also called dependent 
variable of the problem (with x being the independent variable)

• The domain of this 1D problem is an interval (a, b), and 
the points x = a and x = b are the boundary points where 
boundary conditions are imposed, e.g.,

           (O)DE:    for ,
du xd x x u x f x x a b

dx dx
 
 

    
 
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Model Problem (2)

– ˆq and û are the given boundary values
– nx is the component of the outward unit vector normal to the 

boundary. In the 1D case there is only one component and: 
nx(a) = -1, nx(b) = +1

– q(x)≡(x)du(x)/dx is the so-called secondary variable specified 
on the boundary by the Neumann boundary condition also 
known as the second kind or natural boundary condition

– u(x) is the primary variable specified on the boundary by the 
Dirichlet boundary condition also known as the first kind or 
essential boundary condition

          

   

ˆ  Neumann b.c.
BCs:  

ˆ                                         Dirichlet b.c.

x
duq n x q
dx

u b u

      

 
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Examples of different physical problems (1)

u (primary var.) α (material data) f (source, load) q (secondary var.)

Heat transfer

temperature thermal conductance heat generation heat

Flow through porous medium

fluid-head permeability infiltration source

Flow through pipes

pressure pipe resistance 0 source

Flow of viscous fluids

velocity viscosity pressure gradient shear stress

            for ,
du xd x x u x f x x a b

dx dx
 
 

    
 
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Examples of different physical problems (2)

u (primary var.) α (material data) f (source, load) q (secondary var.)

Elastic cables

displacement tension transversal force point force

Elastic bars

displacement axial stiffness axial force point force

Torsion of bars

angle of twist shear stiffness 0 torque

Electrostatics

electric potential Dielectric constant charge density electric flux

            for ,
du xd x x u x f x x a b

dx dx
 
 

    
 
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Boundary-Value Problem (BVP)

   
 
 

Find ?  satisfying

differential eq.:   in ,

ˆ Neumann b.c. :               on 

ˆ  Dirichlet b.c.:                      on 
x q

u

u

u u f a b

u n q a

u u b

 





    

   

  

 
 

   

,  be an open set (an open interval in case of 1D problems)

 be the boundary of , that is, ,

 where  and  are disjoint parts of the boundary

relating to the Neumann and Dirichlet 
q u q u

a b

a b

a b

 

   

       

 
 

bounday conditions, respectively
the data of the problem  : ,  : ,  : ,

ˆ ˆthe values prescribed on the boundary  : ,  :q u

f

q u

   

   
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Strong Form

• The classical strong form of a boundary-value 
problem consists of:
– the differential equation of the problem,
– the Neumann boundary conditions, i.e., the natural 

conditions imposed on the secondary dependent variable 
(which involves the first derivative of the dependent variable)

– The Dirichlet (essential) boundary conditions must be 
satisfied a priori.

 strong form: u u f   



Computational Engineering FEM - 13

Weak Form (1)

– (1) Write the weighted-residual statement for the domain equation
– (2) Trade differentiation from u to δu using integration by parts

• The integration by parts weakens the differentiability requirement for 
the trial functions u (i.e., for the solution)

– (3) Use the Neumann boundary condition (u’nx = ˆq on Γq) and 
the property of test function (δu = 0 on Γq) for the boundary term

– The weak form is mathematically equivalent to the strong one, 
that is, if u is a solution to the strong (local, differential) 
formulation of a BVP, it also satisfies the corresponding weak 
(global, integral) formulation for any δu (admissible, i.e., 
sufficiently smooth and δu = 0 on Γu)

   ˆweak form: 0
b

x a a
q u u u u u f u dx     


     
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Weak Form (2)

– The essential boundary conditions must be explicitly 
satisfied by the trial functions: u = û on Γu . (In case of 
displacement formulations of many mechanical and 
structural engineering problems this is called kinematic 
admissibility requirement.)

– Consequently, the test functions must satisfy the adequate 
homogeneous essential boundary conditions: δu = 0 on Γu

– The trial functions u (and test functions, δu) need only to be 
continuous. (Remember that in the case of strong form the 
continuity of the first derivative of solution u was required.)
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Weak Form: Remarks

– The strong form can be derived from the corresponding weak 
formulation if we take more demanding assumptions for the 
smoothness of trial functions (i.e., one-order higher 
differentiability).

– In variational methods, any test function is a variation defined 
as the difference between any two trial functions. Since any 
trial function satisfy the essential boundary conditions, the 
requirement that δu = 0 on Γu follows immediately.
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Test and Trial Functions

1 2

1
1 2

2

, : arbitrary trial functions
ˆ  on 

and 0  on 
ˆ  on 

u
u

u

u u
u u

u u u u
u u

 
  

      
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Associated Variational Problem

– U: space of solution (or trial functions)
– W: space of test functions (or weighting functions)
– A: bilinear form defined on U x W
– F: linear form defined on W

• Variational problem:

   Find  so that ,   u U A u u F u u W     
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Principle of the minimum total potential energy

• The weak form or the variational problem is the 
statement of the principle of the minimum total 
potential energy

   
     

     

   
 

       
,

Find  so that ,   

, 0
1 , : potential defined by the quadratic functional
2

1 1, , , , ,   
2 2

since the bilinear form is symmetric
A u u

u U A u u F u u W

P u A u u F u

P u A u u F u

A u u A u u A u u A u u F u F u


  

  

     

   

  

 

 
    
 
  

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Galerkin Method

• If the problem is well-posed one can try to find an 
approximated solution uh by solving the so-called 
discrete problem which is an approximation of the 
corresponding variational problem.

• Discrete (approximated) problem:

– Uh is a finite-dimension space of functions called approximation 
space whereas uh is the approximate solution

– δuh are discrete test functions from the discrete test space Wh 
isIn the Galerkin method Wh = Vh (in general, Wh ≠ Vh )

– Ah is an approximation of the biliear form A
– Fh is an approximation of the linear form F

   Find  so that ,   h h h h h h h h hu U A u u F u u W     
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Interpolation

• In the Galerkin method (W=U) the same shape functions, 
i(x), are used to interpolate the approximate solution as 
well as the (discrete) test functions:

• Using this interpolation for the approximated problem 
leads to a system of algebraic equations 
– The left-hand and right-hand sides of the problem equation yield

       
1 1

,   ,    :  degrees of freedom
N N

h j j h i i i
j i

u x x u x x     
 

  

   

   

1 1 1 1

1 1

, ,
N N N N

h h h h j i j i ij j i
i j i j

N N

h h h i i i i
i i

A u u A A

F u F F

      

   

   

 

 

 

 

 
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System of Algebraic Equations

• Using this interpolation for the approximated problem 
leads to a system of algebraic equations
– The coefficient matrix (stiffness matrix) and the right-hand-

side vector are defined as follow

– Now, the approximated problem may be written as

– It is (always) true if the expression in brackets equals zero 
which gives the system of algebraic equations

1 1
0  

N N

ij j i i i h
i j

A F V  
 

   

   , ,   ij h j i i h iA A F F   

1

N

ij j i
i

A F



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Discretization

– The domain internal is divided into N-1 finite elements (subdomains).
– There are N nodes, each with only 1 degree of freedom.
– Local (or element) shape function is (most often) defined on an element 

in this way that it is equal 1 in a particular node and 0 in the other(s).
• Only two linear interpolation functions in 1D finite element
• Higher-order interpolation functions involve additional nodes inside element

– Global shape function i is defined on the whole domain as
• Local shape functions on (neighboring) elements sharing the node i
• Identically equal zero on all other elements
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Shape Functions

1
1

1
12

11
1 11

  for 

  for   for 
        for       

0           otherwise 0           otherwise
0             otherwise

i
i

i
N

i Ni
Ni i N

i

x x x
h

x xx x x xx xh hx
h

  










 
           

   





Computational Engineering FEM - 24

Shape Functions: First Derivatives

– Discontinuous at interfaces (points) between elements (in the 
case of linear interpolation they are element-wise constant)

1 1
1

111

1   for 11   for   for 
         1   for          

0       otherwise 0        otherwise0       otherwise

i i
Ni

Ni i i N

h x
xx

hh h x  
 




           
   



Computational Engineering FEM - 25

Lagrange interpolation functions



Computational Engineering FEM - 26

Finite Element System of Algebraic Equations

– The symmetry of the bilinear form A involves the symmetry of the 
matrix of the FE system of algebraic equations, i.e., Aij = Aji.

– A component Aij is defined as an integral (over the problem domain) 
of a sum of a product of shape functions, i and j, and a product of 
their derivatives, ’i and ’j.

– The product of two shape functions (or their derivatives) is nonzero 
only on the elements that contain the both corresponding degrees 
of freedom (since a shape function corresponding to a particular 
degree of freedom is nonzero only on the elements sharing it).

– Therefore, the integral can be computed as a sum of the integrals 
defined only over these finite elements that share the both degrees 
of freedom (since the contribution from all other elements is null):

   

   ,

:  set of all finite elements
   

, :  set of finite elements that contain the DOF  and 
e e

ij ij ij
e E e E i j

E
A A A

E i j i j 

  


 
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1D Problem

 

     
 

 

 
 

1

1
1

111

1
1

const=1
const=

, 1

+
3

             for 1 + +
3  for 2, , 1

         for 

          for 1

0                for 1

i

i i
i iii ii

xN
ij NN ijx

i
i j

h
h

hA i j
h hA A i j N

A A i j N A

A i j

i j

 
 



 









  


   
    


 
  



     

 

1

1

1

const= 1

3

+
3

+
6

0

ˆ          for 1
2

  for 2, , 1
2
?   for  a reaction to the essential BC

i

N

N

i

i

f x f i i
i

N

h

h
h

h
h

fh q i

f h h
F i N

F i N











 

















  


   

  







Computational Engineering FEM - 28

Imposition of Essential BCs (1)

– In general, the assembled matrix Aij is singular and the system 
of algebraic equations is undetermined. We need to impose the 
essential boundary conditions to make it solvable.

– Let B be the set of all degrees of freedom where the essential 
boundary conditions are applied, that is, 

– In practice, the essential BCs are imposed as described below.

ˆ ˆfor :  where  is a given valuen n nn B    

ˆ  Compute a new r.h.s. vector:     for 1, ,

ˆ  Set:  

  Set:  1 and all other components in the -th row and

           -th column to zero, i.e.,    for 

i i in n
n B

n n

nn

ni in in

F F A i N

F

A n

n A A i









  





  

 




  1, , N
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Imposition of Essential BCs (2)

1

Now, the new (slightly modified) system of equations, ,

is solved for .

Eventually, a reaction (force, source) is computed   

ij i j

i
N

n ni i
i

A F

F A












 

 

 

  1, 1
1

   for 1, , 1

  for , 1, ,

  for 1, , ,

ˆ    for 1, , 1
ˆ                 for 

ˆ

ij

ij Nj

iN

i iN N
i

N

N

n Ni i N NN NN N
i

A i N

A i N j N

i N j N

F A i N
F

i N

F A A A









  


  


  
  
    



  


 




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Results of Analytical and FE Solutions

   
   

1,  3,  1

ˆ ˆ0,  0 1,  2,  2 0

x f x

a q q b u u

   

     


