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1.1 Four Special Matrices

• Matrices
– Storage of information
– Operator

Kn Tn Bn Cn

Symmetric O O O O
Sparse O O O O

Tridiagonal O O O
Constant diagonals O O Fourier?
Invertible O O determinant
Determinant n+1 1 0 0
Positive definite O O pivots, eigenvalues

   1,1 1 , 1

:  circulant matrix

n n n n
n n n

n

  K TK T B
C
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Matrices in MATLAB

• eye, ones, zeros, diag
• toeplitz
• sparse → full, spdiags

• K\f
• lu(K)
• inv(K)
• eig(K)
• chol(K)
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Examples

1

1.1 A   and  might be solvable even though  and  are singular!
Show that every vector  has 0.

physical meaning: the external forces balance
linear algebra meaning:  is solvable 

n

Bu f Cu f B C
f Bu f f

Bu f

 
  

 



when  is perpendicular to 
                                    the all-ones column vector 

f
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2 1 0 1 1 0
1.1 B Connect to ("fixed-free") = 1 2 1  by ("free-fixed")= 1 2 1

0 1 1 0 1 2

0 0 1
using the reverse identity matrix 0 1 0

1 0 0

back=3:-1:1, H=T(back, back)

H T

J

H JTJ
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1.2 Differences, Derivatives, BCs

• Differences replace derivatives: error?

• Finite differences: derivatives
– Forward difference
– Backward difference
– Centered difference

• Difference of difference: second derivative

 
 

2 2

2 21 onesd u u
dx x
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Important Multiplications

• Constant, linear, squares

• Delta, step, ramp at k

• Sines, cosines, exponentials
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linear 0

squares 2 ones
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sines sines

cosines cosines
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Finite Difference Equations
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0 12
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1 11  with  0 0  fixed end   and  1 0
2 2

2 11  with  0  and  0    
2

11  with  0 0  free end   and  1 0 1
2

2
1  with 
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Boundary Conditions
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1.3 Elimination Leads to K=LDLT

• Solving a system of n linear equations Ku = f
• Gaussian elimination

– Forward elimination: K = LU
– Backward substitution

• Three possibilities to get n pivots of A
– No row change: A = LU (invertible)
– Row changes by P: PA = LU (invertible)
– No way: singular A

• Symmetric factorization: K=LDLT

• Cholesky factorization: K=ATA (upper triangular A)
• Determinant of Kn = n+1

 
 

entry to eliminate in row 
multiplier  =

pivot in row ij
i

l
j
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1.4 Inverses and Delta Functions

equation u’’(x) = f(x) Ku = f
solution u(x): function u: vector 
f: uniform load parabola parabola
f: point load Green’s function Discrete Green’s function

equation fixed-fixed free-fixed

   u x x a  

2
i j ju Ku    
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1.5 Eigenvalues & Eigenvectors

• Ax=b: steady-state problem, Ax=λx : dynamic problem
• Eigenvectors: certain exceptional vectors x lie along 

the same line as Ax
• Eigenvalues: Ax is a number λ times the original x

– Whether the special vector x is stretched(λ = 2) or shrunk(λ = 
1/2) or reversed(λ = −1) or left unchanged(λ = 1, steady state), 
when it is multiplied by A

– λ = 0: nullspace contains eigenvectors
– Separate λ from x

   
singular characteristic equation

0 det 0Ax x A I x A I         

1 11

det ,   trace 
n n n

i ii i
i ii

A A a 
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– If A is triangular then its eigenvalues lie along its main diagonal
– The eigenvalues of A2 are λ1

2, . . . , λn
2. The eigenvalues of A−1

are 1/λ1, . . . , 1/λn.
– Eigenvalues of A + B and AB are not known from eigenvalues of 

A and B.

• Markov matrix
– No negative entries, each column adds to 1
– eigshow

– no real eigenvectors
– only one line of eigenvectors (unusual)
– two independent eigenvectors
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Diagonalization

• Powers of a matrix

• Diagonalization: A = SΛS−1

• Differential equation: u’ = Au
• Symmetric matrices have real eigenvalues and 

orthonormal eigenvectors.
• Symmetric diagonalization A = SΛS−1 = QΛQT with 

QT = Q−1.

1
0 1

0 0 0
a S u k k k k

k ku Sa a u S a S S u u A u
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Derivatives and Differences

–y’’=y : Eigenfunctions y(x) are cosines and sines
analogy BCs eigenvectors eigenvalues

Kn y(0)=0, y(1)=0 y(x)=sinkx =k22

Bn y’(0)=0, y’(1)=0 y(x)=coskx =k22

Cn y(0)=y(1), y’(0)=y’(1) y(x)=sin2kx, cos2kx =4k22

Tn y’(0)=0, y(1)=0 y(x)=cos(k+1/2)x =(k+1/2)22

 

  1

2 2cos sin , ,

1 3 12 2cos cos ,cos , , cos
2 2 2

22 2 2cos 1, , ,
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k k k ky n
n n n n

kw w y w w
n

   

   

 

    

         
  

       

K

B

C









Computational Engineering Applied Linear Algebra - 14

1.6 Positive Definite Matrices

– Every K = ATA is symmetric and positive definite (or at least 
semidefinite)

– If K1 and K2 are positive definite matrices then so is K1 + K2

– All pivots and all eigenvalues of a positive definite matrix are 
positive

• energy-based definition of positive definiteness
– a point where all partial derivatives are zero, is a minimum 

(not a maximum or saddle point) if the matrix of second 
derivatives is positive definite

Energy-based Sum of squares
Positive definite always positive three(ATA), two(LDLT)
Semidefinite positive or zero one
Indefinite positive or negative Mixed signs
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– The symmetric matrix S is positive definite when uTSu > 0 for 
every vector u except u = 0

Positive definite K K = toeplitz([2 − 1 0])
All pivots are positive K = LDLT with pivots 2, 3/2 , 4/3
Upper left determinants > 0 K has determinants 2, 3, 4
All eigenvalues are positive K = QΛQT with λ = 2,2+√2, 2−√2
uTKu > 0 if u = 0

K = ATA, indep. columns A can be the Cholesky factor chol(K)

2 2
2

1 2 2 3 3
1 3 2 42
2 2 3 3

Tu Ku u u u u u          
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Minimum Problems

• Newton’s method

   
 

2 2
1 1 2 2 1 1 2 2

min

1
2

0
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Quadratic function Not a quadratic function

1st derivative vector linear

2nd derivative matrix K

0
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P
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1.7 Numerical Linear Algebra

• “build up, break down” process
– Ku = f, Kx = x, Mu’’+Ku = 0

• A: may be rectangular, better conditioned and more sparse
– A: independent columns → K = ATA: symmetric positive definite

• K: symmetric and more beautiful
• Three essential factorization

– Elimination: A = LU (triangular matrices)
– Orthogonalization: A = QR (orthogonal matrices)

• Gram-Schmidt algorithm
• Householder algorithm

– Singular value decomposition: A = UVT (very sparse matrices)
• Positive definite K: U=Q, V=QT, =, K=QQT
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Orthogonalization

• Orthonormal: Orthogonality + Normalization to unit 
vectors

• Q: square → orthogonal matrix
– Q-1= QT

– ∥Qx ∥= ∥x∥ (length preserved)

• Permutation, Rotation, Reflection
• A: (m x n), linearly independent columns an → 

orthonormal vectors qn
– Gram-Schmidt: (m x n) (n x n)
– Householder: qr(A), (m x m) (m x n)

• Why Q? stability
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Diagonalization

• A = SS-1: orthogonal S?
• Two different orthogonal matrices: A = UVT 

• Find V and  from K = ATA
• Diagonal matrix 

– Singular values instead of eigenvalues

• AV = U→ ui = Avi/i (orthonormal eigenvectors of AAT)
• A+ = pinv(A) = V+UT → A+ui = vi/i
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Condition Numbers and Norms

• Condition number of a positive definite matrix
– c(K) = max/ min

– Sensitivity of the linear system Ku = f
– maximum “blowup factor” in the relative error

• When A is not symmetric
– Other vectors can blow up more than eigenvectors
– Norm ∥A∥=max(∥Ax∥/ ∥x∥): measure of size A

– c(A)= ∥A∥∥A-1∥

– order 1/(∆x)2 in approximating a 2nd-order differential equation
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1.8 Best Basis from the SVD

• A: measurement data
– Measuring m properties (or features) of n samples

• Correlation
– Sample correlation: ATA, Property correlation: AAT

• Principal component analysis
– To identify the most important properties revealed by the 

measurements in A
– Covariance matrix

• Gene expression data
• Model order reduction

– To identify the components in a dynamic problem that are 
most important to follow

– Proper orthogonal decomposition


