1.1 Four Special Matrices

- Matrices
 - Storage of information
 - Operator

$$K_n \xrightarrow{K_n(1,1)=1} T_n \xrightarrow{T_n(n,n)=1} B_n$$

$$C_n : \text{ circulant matrix}$$

	K _n	T _n	B _n	C _n	
Symmetric	0	0	0	Ο	
Sparse	0	0	0	0	
Tridiagonal	0	0	0		
Constant diagonals	0			0	Fourier?
Invertible	0	0			determinant
Determinant	n+1	1	0	0	
Positive definite	0	0			pivots, eigenvalues

Matrices in MATLAB

- eye, ones, zeros, diag
- toeplitz
- sparse \rightarrow full, spdiags
- K\f
- lu(K)
- inv(K)
- eig(K)
- chol(K)

Examples

1.1 A Bu = f and Cu = f might be solvable even though *B* and *C* are singular! Show that every vector f = Bu has $f_1 + \dots + f_n = 0$. $\Rightarrow \begin{cases} \text{physical meaning: the external forces balance} \\ \text{linear algebra meaning: } Bu = f \text{ is solvable when } f \text{ is perpendicular to} \\ \text{the all-ones column vector } e \end{cases}$

1.1 B Connect to
$$H("fixed-free") = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
 by $T("free-fixed") = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
using the reverse identity matrix $J = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 $\rightarrow \begin{cases} H = JTJ \\ back=3:-1:1, H=T(back, back) \end{cases}$

1.2 Differences, Derivatives, BCs

• Differences replace derivatives: error?

$$-\frac{d^2 u}{dx^2} = 1 \rightarrow -\frac{\Delta^2 u}{\left(\Delta x\right)^2} = (\text{ones})$$

- Finite differences: derivatives
 - Forward difference
 - Backward difference
 - Centered difference
- Difference of difference: second derivative

Important Multiplications

• Constant, linear, squares

- $\Delta^{2} (\text{constant}) = 0$ $\Delta^{2} (\text{linear}) = 0$ $\Delta^{2} (\text{squares}) = 2 \cdot (\text{ones})$
- Delta, step, ramp at k $\Delta^2(\text{ramp}) = (\text{delta})$
- Sines, cosines, exponentials

 $\Delta^{2} (\text{sines}) = \lambda \cdot (\text{sines})$ $\Delta^{2} (\text{cosines}) = \lambda \cdot (\text{cosines})$ $\Delta^{2} (\text{exponentials}) = \lambda \cdot (\text{exponentials})$

Finite Difference Equations

$$\begin{cases} -\frac{d^2u}{dx^2} = 1 \text{ with } u(0) = 0 \text{ (fixed end) and } u(1) = 0 \rightarrow u(x) = \frac{1}{2}x - \frac{1}{2}x^2 \\ \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} = 1 \text{ with } u_0 = 0 \text{ and } u_{n+1} = 0 \rightarrow u_i = \frac{1}{2}(ih - i^2h^2) \\ \\ \frac{-\frac{d^2u}{dx^2}}{dx^2} = 1 \text{ with } u'(0) = 0 \text{ (free end) and } u(1) = 0 \rightarrow u(x) = \frac{1}{2}(1 - x^2) \\ \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} = 1 \text{ with } \frac{u_1 - u_0}{h} = 0 \text{ and } u_{n+1} = 0 \rightarrow u_i = \frac{1}{2}h^2(n+i)(n+1-i) \\ \\ e = u(ih) - u_i = \frac{1}{2}h(1 - x) \sim O(h) \\ \\ \text{more accurate?} \quad \frac{u_1 - u_{-1}}{2h} = 0 \sim O(h^2) \end{cases}$$

Computational Engineering

Boundary Conditions

$u(0) = 0, \ u(1) = 0$	$\rightarrow \mathbf{K}, \ u_0 = u_{n+1} = 0$
$u'(0) = 0, \ u'(1) = 0$	$\rightarrow \boldsymbol{B}, \ u_0 = u_1, \ u_n = u_{n+1}$
$u'(0) = 0, \ u(1) = 0$	$\rightarrow \boldsymbol{T}, \ \boldsymbol{u}_0 = \boldsymbol{u}_1, \ \boldsymbol{u}_{n+1} = 0$
u(0) = u(1), u'(0) = u'	$U(1) \rightarrow C, \ u_0 = u_n, \ u_1 = u_{n+1}$

1.3 Elimination Leads to $K=LDL^{T}$

- Solving a system of n linear equations Ku = f
- Gaussian elimination
 - Forward elimination: K = LU
 - Backward substitution
- Three possibilities to get n pivots of A
 - No row change: A = LU (invertible)
 - Row changes by P: PA = LU (invertible)
 - No way: singular A
- Symmetric factorization: $K=LDL^{T}$
- Cholesky factorization: $K = A^T A$ (upper triangular A)
- Determinant of K_n = n+1

multiplier $l_{ij} = \frac{\text{entry to eliminate}(\text{in row } i)}{\text{pivot}(\text{in row } j)}$

1.4 Inverses and Delta Functions

equation	-u''(x) = f(x)	Ku = f
solution	u(x): function	u: vector
f: uniform load	parabola	parabola
f: point load	Green's function	Discrete Green's function

equation	fixed-fixed	free-fixed
$-u''(x) = \delta(x-a)$	$u(x) = \begin{cases} (1-a)x & \text{for } x \le a \\ (1-x)a & \text{for } x \ge a \end{cases}$	$u(x) = \begin{cases} 1-a & \text{for } x \le a \\ 1-x & \text{for } x \ge a \end{cases}$
$-\Delta^2 u_i = \delta_j \to K u = \delta_j$	$u_{i} = \begin{cases} \left(\frac{n+1-j}{n+1}\right)i & \text{for } i \le j \\ \left(\frac{n+1-i}{n+1}\right)j & \text{for } i \le j \\ \left(\frac{n+1-i}{n+1}\right)j & \text{for } i \ge j \end{cases}$ $\text{column } j \text{ of } K^{-1}$	$u_{i} = \begin{cases} n+1-j \text{ for } i \leq j \\ n+1-i \text{ for } i \geq j \end{cases}$ column j of T^{-1}

Computational Engineering

Applied Linear Algebra - 9

1.5 Eigenvalues & Eigenvectors

- Ax=b: steady-state problem, $Ax=\lambda x$: dynamic problem
- Eigenvectors: certain exceptional vectors *x* lie along the same line as *Ax*
- Eigenvalues: Ax is a number λ times the original x
 - Whether the special vector x is stretched($\lambda = 2$) or shrunk($\lambda = 1/2$) or reversed($\lambda = -1$) or left unchanged($\lambda = 1$, steady state), when it is multiplied by A
 - $-\lambda = 0$: nullspace contains eigenvectors
 - Separate λ from x

$$Ax = \lambda x \longrightarrow \underbrace{(A - \lambda I)}_{\text{singular}} x = 0 \longrightarrow \underbrace{\det(A - \lambda I)}_{\text{characteristic equation}} = 0$$
$$\underbrace{\det A = \prod_{i=1}^{n} \lambda_{i}, \text{ trace } A = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}}_{ii}$$

- If A is triangular then its eigenvalues lie along its main diagonal
- The eigenvalues of A^2 are $\lambda_1^2, \ldots, \lambda_n^2$. The eigenvalues of A^{-1} are $1/\lambda_1, \ldots, 1/\lambda_n$.
- Eigenvalues of A + B and AB are not known from eigenvalues of A and B.
- Markov matrix
 - No negative entries, each column adds to 1
 - eigshow
 - no real eigenvectors
 - only one line of eigenvectors (unusual)
 - *two* independent eigenvectors

Diagonalization

• Powers of a matrix

$$u_0 = Sa \xrightarrow{a = S^{-1}u_0} \Lambda^k a \to u_k = S\Lambda^k a = S\Lambda^k S^{-1}u_0 \leftrightarrow u_k = A^k u_0$$

- Diagonalization: $A = S \wedge S^{-1}$
- Differential equation: u' = Au
- Symmetric matrices have real eigenvalues and orthonormal eigenvectors.
- Symmetric diagonalization A = $SAS^{-1} = QAQ^{T}$ with $Q^{T} = Q^{-1}$.

Derivatives and Differences

$-y''=\lambda y$: Eigenfunctions y(x) are cosines and sines			
analogy	BCs	eigenvectors	eigenvalues
K _n	y(0)=0, y(1)=0	$y(x)=sink\pi x$	$\lambda = k^2 \pi^2$
B _n	y'(0)=0, y'(1)=0	y(x)=cos <i>k</i> πx	$\lambda = k^2 \pi^2$
C _n	y(0)=y(1), y'(0)=y'(1)	$y(x)=sin2\pi kx, cos2\pi kx$	$\lambda = 4k^2\pi^2$
T _n	y'(0)=0, y(1)=0	y(x)=cos(<i>k</i> +1/2)π <i>x</i>	$\lambda = (k+1/2)^2 \pi^2$

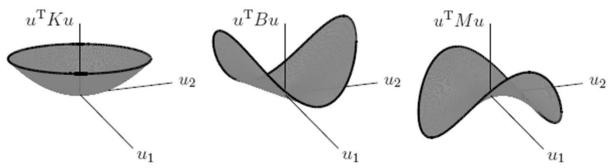
$$\begin{split} \mathbf{K}_n &\to \lambda_k = 2 - 2\cos k\pi h \to y_k = \left(\sin k\pi h, \dots, nk\pi h\right) \\ \mathbf{B}_n &\to \lambda_k = 2 - 2\cos \frac{k\pi}{n} \to y_k = \left(\cos \frac{1}{2}\frac{k\pi}{n}, \cos \frac{3}{2}\frac{k\pi}{n}, \dots, \cos \left(n - \frac{1}{2}\right)\frac{k\pi}{n}\right) \\ \mathbf{C}_n &\to \lambda_k = 2 - w^k - w^{-k} = 2 - 2\cos \frac{2\pi k}{n} \to y_k = \left(1, w^k, \dots, w^{(n-1)k}\right) \end{split}$$

1.6 Positive Definite Matrices

- Every $K = A^T A$ is symmetric and positive definite (or at least semidefinite)
- If K_1 and K_2 are positive definite matrices then so is $K_1 + K_2$
- All pivots and all eigenvalues of a positive definite matrix are positive
- energy-based definition of positive definiteness
 - a point where all partial derivatives are zero, is a minimum (not a maximum or saddle point) if the matrix of second derivatives is positive definite

	Energy-based	Sum of squares
Positive definite	always positive	three($A^{T}A$), two(LDL^{T})
Semidefinite	positive or zero	one
Indefinite	positive or negative	Mixed signs

 The symmetric matrix S is positive definite when u^TSu > 0 for every vector u except u = 0



Positive definite K	K = toeplitz([2 - 1 0])
All pivots are positive	$K = LDL^{T}$ with pivots 2, 3/2 , 4/3
Upper left determinants > 0	K has determinants 2, 3, 4
All eigenvalues are positive	$K = Q \wedge Q^{T}$ with $\lambda = 2, 2 + \sqrt{2}, 2 - \sqrt{2}$
$u^{T}Ku > 0$ if $u = 0$	$u^{T} K u = 2 \left(u_{1} - \frac{1}{2} u_{2} \right)^{2} + \frac{3}{2} \left(u_{2} - \frac{2}{3} u_{3} \right)^{2} + \frac{4}{3} u_{3}^{2}$
$K = A^T A$, indep. columns	A can be the Cholesky factor chol(K)

Minimum Problems

$$P(u) = \frac{1}{2}u^{T}Ku - u^{T}f = (u_{1}^{2} - u_{1}u_{2} + u_{2}^{2}) - u_{1}f_{1} - u_{2}f_{2}$$
$$P(u) - P_{\min} \ge 0$$

	Quadratic function	Not a quadratic function
1 st derivative vector	linear	$\frac{\partial P}{\partial u_i} = 0$
2 nd derivative matrix	К	$H_{ij} = \frac{\partial^2 P}{\partial u_i \partial u_j}$: positive definite

• Newton's method

1.7 Numerical Linear Algebra

- "build up, break down" process
 - Ku = f, Kx = λ x, Mu''+Ku = 0
- A: may be rectangular, better conditioned and more sparse
 - A: independent columns $\rightarrow K = A^T A$: symmetric positive definite
- K: symmetric and more beautiful
- Three essential factorization
 - Elimination: A = LU (triangular matrices)
 - Orthogonalization: A = QR (orthogonal matrices)
 - Gram-Schmidt algorithm
 - Householder algorithm
 - Singular value decomposition: $A = U\Sigma V^T$ (very sparse matrices)
 - Positive definite K: U=Q, V=Q^T, Σ = Λ , K=Q Λ Q^T

Orthogonalization

- Orthonormal: Orthogonality + Normalization to unit vectors
- Q: square \rightarrow orthogonal matrix
 - $Q^{-1} = Q^{T}$
 - ||Qx|| = ||x|| (length preserved)
- Permutation, Rotation, Reflection
- A: (m x n), linearly independent columns $a_n \rightarrow$ orthonormal vectors q_n
 - Gram-Schmidt: (m x n) (n x n)
 - Householder: qr(A), (m x m) (m x n)
- Why Q? stability

Diagonalization

- $A = S\Lambda S^{-1}$: orthogonal S?
- Two different orthogonal matrices: $A = U\Sigma V^{T}$
- Find V and Σ from K = A^TA
- Diagonal matrix Σ
 - Singular values instead of eigenvalues
- AV = U $\Sigma \rightarrow u_i = Av_i / \sigma_i$ (orthonormal eigenvectors of AA^T)
- $A^+ = pinv(A) = V\Sigma^+U^T \rightarrow A^+u_i = v_i/\sigma_i$

Condition Numbers and Norms

- Condition number of a positive definite matrix
 - c(K) = $\lambda_{max}/\lambda_{min}$
 - Sensitivity of the linear system Ku = f
 - maximum "blowup factor" in the relative error
- When A is not symmetric
 - Other vectors can blow up more than eigenvectors
 - Norm || A || =max(|| Ax || / || x ||): measure of size A
 - $C(A) = \parallel A \parallel \parallel A^{-1} \parallel$
 - order $1/(\Delta x)^2$ in approximating a 2nd-order differential equation

1.8 Best Basis from the SVD

- A: measurement data
 - Measuring m properties (or features) of n samples
- Correlation
 - Sample correlation: A^TA , Property correlation: AA^T
- Principal component analysis
 - To identify the most important properties revealed by the measurements in A
 - Covariance matrix
- Gene expression data
- Model order reduction
 - To identify the components in a *dynamic* problem that are most important to follow
 - Proper orthogonal decomposition