1.1 Four Special Matrices

» Matrices K _Kal)=t = Tt g
. . n 7 In 7 Dp
— Storage of information _ _
C, : circulant matrix
— Operator
K, | T, B, | C,
Symmetric O O O O
Sparse O O O O
Tridiagonal O O O
Constant diagonals | O O | Fourier?
Invertible O O determinant
Determinant n+1 1 0 0
Positive definite O pivots, eigenvalues
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Matrices in MATLAB

e eye, ones, zeros, diag
« toeplitz
« sparse — full, spdiags

o K\f

e [u(K)
e inv(K)
« eig(K)
« chol(K)
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Examples

1.1 A Bu= f and Cu = f might be solvable even though B and C are singular!
Show that every vector f =Bu has f; +--- f, =0.

physical meaning: the external forces balance

— < linear algebra meaning: Bu = f is solvable when f is perpendicular to
the all-ones column vector e

(2 -1 0] (1 -1 0
1.1 B Connect to H ("'fixed-free")=| -1 2 -1| by T("free-fixed")=| -1 2 -1
0 -1 1] 0 -1 2|
(0 0 1]
using the reverse identity matrixJ ={0 1 O
1 00

H=JTJ
back=3:-1:1, H=T (back, back)
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1.2 Differences, Derivatives, BCs

« Differences replace derivatives: error?

2 — (AX)Zz(oneS)

* Finite differences: derivatives
— Forward difference
— Backward difference
— Centered difference

 Difference of difference: second derivative
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Important Multiplications

« Constant, linear, squares A’ (constant) = 0
A* (linear) =0
A* (squares) = 2-(ones)

« Delta, step, ramp at k A* (ramp) = (delta)
« Sines, cosines, exponentials A (sines) = - (sines)

A (cosines) = A -(cosines)

A* (exponentials) = A - (exponentials)
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Finite Difference Equations

-

2
—3—2:1 with u(0)=0 (fixedend) and u(1)=0—>u(x)=%x—%x2
X
b,
‘“i+1+hzzui “Yi1 9 with ug=0 and U, =0 —u :%(ih—izhz)
f dzu : , 1 2
~z =1 with u'(0)=0 (freeend) and u(1)=0—>u(x):§(1—x )
Ui 20 Ui g e u1;u0 =0 and U,,; =0 >y, :%hz(n+i)(n+1—i)

more accurate? 2oL _( - O(hz)
2h

L
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Boundary Conditions

u(0)=0, u(1)=0 — K, Uy =u,,; =0
u'(0)=0, u’(1)=0 — B, Uy =U;, U, =Up,;
u'(0)=0, u(1)=0 —T, Uy =Ug, Uy, =0

u(0)=u(1), u'(0)=u’(1)>C, uy =U,, U =Upy
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1.3 Elimination Leads to K=LDL"

« Solving a system of n linear equations Ku = f

Gaussian elimination
— Forward elimination: K = LU
— Backward substitution

Three possibilities to get n pivots of A
— No row change: A = LU (invertible)

— Row changes by P: PA = LU (invertible)

— No way: singular A

Symmetric factorization: K=LDLT

Cholesky factorization: K=ATA (upper triangular A)

Determinant of K, = n+1

entry to eliminate(in row i)
pivot (in row j)

multiplier I; =
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1.4 Inverses and Delta Functions

equation —u”(x) = f(x) Ku=f
solution u(x): function u: vector
f: uniform load parabola parabola
f: point load Green’s function | Discrete Green’s function
equation fixed-fixed free-fixed
1-a)x for x<a _
—U”(X)=5(X—a) U(X)Z{( ) U(X)Z{l a for x<a

(1-x)a for x>a

1-x for x>a

—AU; =6 > Ku=6

J

column j of K™

( n+1—jj. .
| for 1< _ o
u = n+1 {n+1—1 for i< |
I~ s i = s ; .
n+1 Ijjforizj n+1—i for i> |
n+1 columnj of T2
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1.5 Eigenvalues & Eigenvectors

* Ax=b: steady-state problem, Ax=Ax : dynamic problem

» Eigenvectors: certain exceptional vectors x lie along
the same line as Ax

* Eigenvalues: Ax is a number A times the original x

— Whether the special vector x is stretched(A = 2) or shrunk(A =
1/2) or reversed(A = —1) or left unchanged(A = 1, steady state),
when it is multiplied by A

— A =0: nullspace contains eigenvectors
— Separate A from x

AX=AX — (A-A1)x=0-—>det(A-11)=0
%/_J \ ~ J
singular characteristic equation

det A= 11[&-, trace A = Zn:a” = Zn:ﬂq-
i=1 i=1 =1
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— If Ais triangular then its eigenvalues lie along its main diagonal

— The eigenvalues of A2are A2, ..., A 2. The eigenvalues of A~
are 1/, ..., 1/A,.

— Eigenvalues of A + B and AB are not known from eigenvalues of
A and B.

 Markov matrix
— No negative entries, each column adds to 1
— eigshow

— no real eigenvectors

— only one line of eigenvectors (unusual)
— two independent eigenvectors
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Diagonalization

« Powers of a matrix

ol ~
U, =Sa—22% s Aka 5 u, =SA*a=SA*S ™, o u, = Afu,

« Diagonalization: A = SAS™
 Differential equation: u’ = Au

* Symmetric matrices have real eigenvalues and
orthonormal eigenvectors.

« Symmetric diagonalization A = SAS™! = QAQT with
Q' =Q™".
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Derivatives and Differences

—y”=Ly : Eigenfunctions y(x) are cosines and sines
analogy BCs eigenvectors eigenvalues
K, y(0)=0, y(1)=0 y(X)=sinknx A=k2n?
B, y’(0)=0, y’(1)=0 y(Xx)=coskmnx A=K?m?
C, y(0)=y(1), y'(0)=y’(1) |y(x)=sin2rkx, cos2nkx |A=4k?m?
T, y’(0)=0, y(1)=0 y(x)=cos(k+1/2)nx A=(k+1/2)?m?

Ky = 4 =2-2coskzh — y, =(sinkzh,...,nkzh)

1 kr 3krx ( 1jk72
COS——,C0S——, ..., cos| n—— |—
2 n 2 n 2)n

C.o—> A =2-w —w™ =2-2c0s 2K . =(1,wk .....

B, = A4 :2—2003k—”—>yk =

Computational Engineering
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1.6 Positive Definite Matrices

— Every K= ATA is symmetric and positive definite (or at least
semidefinite)

— If K; and K, are positive definite matrices then so is K; + K,
— All pivots and all eigenvalues of a positive definite matrix are
positive
* energy-based definition of positive definiteness

— a point where all partial derivatives are zero, is a minimum
(not a maximum or saddle point) if the matrix of second
derivatives is positive definite

Energy-based Sum of squares
Positive definite | always positive three(ATA), two(LDLT)
Semidefinite positive or zero one
Indefinite positive or negative | Mixed signs
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— The symmetric matrix S is positive definite when u'Su > 0 for
every vector u except u =

ut Ku ut Mu

Positive definite K K = toeplitz([2 — 1 0])
All pivots are positive K = LDLT with pivots 2, 3/2 , 4/3

Upper left determinants >0 | K has determinants 2, 3, 4
All eigenvalues are positive | K= QAQT with A = 2,242, 2—2

T . — 2 2
uUKu>0ifu=0 uTKu:Z(ul—%uzj +g(u2—§u3j +%u32

K = ATA, indep. columns A can be the Cholesky factor chol(K)
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Minimum Problems

P(u):%uT Ku—u'f :(u12 — Uy, +u22)—u1f1—u2 f,

P (u)— P, >0
Quadratic function | Not a quadratic function
o . oP
1st derivative vector |linear P 0
|
o* iy .
ond derivative matrix | K Hij = p . positive definite
U;ou;

* Newton’s method
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1.7 Numerical Linear Algebra

* “build up, break down” process
— Ku=f, Kx =Ax, Mu”+Ku =0

* A: may be rectangular, better conditioned and more sparse
— A:independent columns — K = ATA: symmetric positive definite

« K: symmetric and more beautiful

* Three essential factorization
— Elimination: A = LU (triangular matrices)

— Orthogonalization: A = QR (orthogonal matrices)
» Gram-Schmidt algorithm
* Householder algorithm

— Singular value decomposition: A = UXVT (very sparse matrices)
« Positive definite K: U=Q, V=QT, Z=A, K=QAQT

Computational Engineering Applied Linear Algebra - 17




Orthogonalization

* Orthonormal: Orthogonality + Normalization to unit

vectors

« Q: square — orthogonal matrix
- Q'1= QT
— 11Qx =l x 1l (length preserved)

 Permutation, Rotation, Reflection

* A:(m x n), linearly independent columns a, —
orthonormal vectors q,
— Gram-Schmidt: (m x n) (n x n)
— Householder: gr(A), (m x m) (m x n)

* Why Q7 stability
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Diagonalization

« A =SAS": orthogonal S?
« Two different orthogonal matrices: A = UXVT
« Find V and X from K = ATA

« Diagonal matrix X
— Singular values instead of eigenvalues

« AV =UZX — u, = Av/c;(orthonormal eigenvectors of AAT)
« A*=pinv(A) = VZ*UT - A*u; = v/o;
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Condition Numbers and Norms

« Condition number of a positive definite matrix
— C(K) = 7\‘max/ }‘“min
— Sensitivity of the linear system Ku = f
— maximum “blowup factor” in the relative error

* When A is not symmetric
— Other vectors can blow up more than eigenvectors
— Norm TAll=max( Il Ax Il / 1IxIl): measure of size A
— c(A)= A1 I A1
— order 1/Ax)? in approximating a 2nd-order differential equation
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1.8 Best Basis from the SVD

* A: measurement data

— Measuring m properties (or features) of n samples
Correlation

— Sample correlation: ATA, Property correlation: AAT
Principal component analysis

— To identify the most important properties revealed by the
measurements in A

— Covariance matrix
Gene expression data

Model order reduction

— To identify the components in a dynamic problem that are
most important to follow

— Proper orthogonal decomposition
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