2.1 Equilibrium

- Framework of linear equilibrium
 - (1) three steps:

$$u \xrightarrow{A} e \xrightarrow{C} w \xrightarrow{A^{T}} f$$

$$\underbrace{f}_{input} = A^{T} w = A^{T} C e = \underbrace{A^{T} C A}_{K} \underbrace{u}_{output}_{(stiffness) (displacement)}$$

- Modeling problem: to find $K = A^T C A$
- Computing problem: to solve Ku = f
- (2) minimum principles: minimize the total potential energy
- Extension
 - Nonlinear problem: when input becomes large
 - Time-dependent problem: linear but dynamic

Examples

- Steady state matrix equation: Ku =f
 - A line of springs: the spring can be stretched or compressed
 - Best solution of Au = b: least squares regression in statistics
 - A network with flows on the edges: driven by potential differences
- Dynamic problems: differential equation in time
 - The springs are oscillating
 - The circuit has inductors and capacitors and alternating current
 - New measurements require us to update the statistics

$$\frac{du}{dt} = Ku - f \text{ or } M \frac{d^2u}{dt^2} + Ku = f(t)$$

A Line of Springs (1)

	fixed-fixed	fixed-free	free-free
A	4 x 3	3 x 3	2 x 3
A ^T CA (C=I)	K ₃	H ₃	B ₃

A Line of Springs (2)

	spring	elasticity
Step 1	Difference in displacements	Kinematic equation
Step 2	Hooke's law	Constitutive law
Step 3	Balance equation	Static equation for equilibrium

- Properties of $K = A^T C A$
 - Tridiagonal
 - Symmetric
 - Positive definite
 - Full matrix of K⁻¹ with all positive entries

when
$$C = I$$
,

K

 $= A^T A$

$$= LL^T$$

Minimum Principles

2.2 Oscillation by Newton's Law

$$F = ma \Leftrightarrow f - Ku = Mu_{tt} \rightarrow Mu_{tt} + Ku = f$$

 $f = 0: u_{tt} = M^{-1}Ku$ (eigenvalue problem)

- Finite differences with time steps Δt
 - Explicit leapfrog method: short fast steps
 - Implicit trapezoidal rule: larger slow steps
- Explicit finite differences
 - Stability
- Implicit trapezoidal rule: (new+old)/2
 - First order
 - Second order

Key Example (1)

$$u'' + u = 0 \rightarrow \begin{cases} u = \cos t \\ v = u' = -\sin t \end{cases} \rightarrow u^2 + v^2 = 1$$

Exact solution travels around constant energy circle

• Forward Euler

$$\begin{aligned} u' &= \frac{u_{n+1} - u_n}{h} = v_n \\ v' &= \frac{v_{n+1} - v_n}{h} = -u_n \end{aligned} \right\} \rightarrow \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & h \\ -h & 1 \end{bmatrix} \begin{bmatrix} u_n \\ v_n \end{bmatrix} = G_F \begin{bmatrix} u_n \\ v_n \end{bmatrix} \rightarrow |\lambda| > 1 \end{aligned}$$

Backward Euler

$$u' = \frac{u_{n+1} - u_n}{h} = v_{n+1} \\ h = -u_{n+1} \\ \end{pmatrix} \rightarrow \begin{bmatrix} 1 & -h \\ h & 1 \end{bmatrix} \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} u_n \\ v_n \end{bmatrix} \rightarrow \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \frac{1}{\underbrace{1+h^2 \begin{bmatrix} 1 & h \\ -h & 1 \end{bmatrix}} \begin{bmatrix} u_n \\ v_n \end{bmatrix}} \rightarrow \left| \lambda \right| < 1$$

Computational Engineering

where to evaluate the right sides?

Key Example (2)

• Trapezoidal method: centered at n+1/2

$$u' = \frac{u_{n+1} - u_n}{h} = \frac{v_n + v_{n+1}}{2} \\ v' = \frac{v_{n+1} - v_n}{h} = -\frac{u_n + u_{n+1}}{2} \\ \rightarrow \begin{bmatrix} 1 & -h/2 \\ h/2 & 1 \end{bmatrix} \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & h/2 \\ -h/2 & 1 \end{bmatrix} \begin{bmatrix} u_n \\ v_n \end{bmatrix} \\ \rightarrow \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \frac{1}{\underbrace{1 + (h/2)^2} \begin{bmatrix} 1 + (h/2)^2 & h \\ -h & 1 - (h/2)^2 \end{bmatrix}}_{G_T} \begin{bmatrix} u_n \\ v_n \end{bmatrix} \rightarrow |\lambda| = 1$$

• Leapfrog method: explicit

$$\begin{aligned} u' &= \frac{u_{n+1} - u_n}{h} = v_n \\ v' &= \frac{v_{n+1} - v_n}{h} = -u_{n+1} = -\left(u_n + hv_n\right) \end{aligned} \rightarrow \begin{bmatrix} u_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & h \\ -h & 1 - h^2 \end{bmatrix} \begin{bmatrix} u_n \\ v_n \end{bmatrix} = G_L \begin{bmatrix} u_n \\ v_n \end{bmatrix} \rightarrow \left|\lambda\right| = 1 \text{ if } h \le 2 \end{aligned}$$

Computational Engineering

Explicit Finite Differences

$$Mu'' + Ku = f \xrightarrow{\text{Leapfrog with } \frac{\Delta^2 u}{(\Delta t)^2}} M \xrightarrow{u_{n+1} - 2u_n + u_{n-1}} + Ku_n = f_n$$

$$Mu_{n+1} = \left[2 - (\Delta t)^2 K\right] u_n - Mu_{n-1} + (\Delta t)^2 f_n \text{: explicit}$$

$$u_0 = u(0), u'(0) = \frac{u_1 - u_0}{\Delta t} \rightarrow u_1 = u_0 + (\Delta t)u'(0), u_2 = \cdots$$

$$Mu'' + Ku = f \xrightarrow{\text{first order}} \begin{cases} Mv' + Ku = f \\ u' = v \end{cases} \rightarrow \begin{cases} M\left(\frac{v_{n+1/2} - v_{n-1/2}}{\Delta t}\right) + Ku_n = f_n \\ \frac{u_{n+1} - u_n}{\Delta t} = v_{n+1/2} \end{cases}$$

$$\frac{\frac{u_{n+1} - u_n}{\Delta t} = v_{n+1/2}}{\frac{u_n - u_{n-1}}{\Delta t} = v_{n-1/2}} \rightarrow u_{n+1} - 2u_n + u_{n-1} = \Delta t \left(v_{n+1/2} - v_{n-1/2} \right)$$

Computational Engineering

Trapezoidal Rule for Second Order Equation

$$\begin{split} Mu'' + Ku &= 0 \xrightarrow{\text{first order}} \begin{cases} Mv' + Ku &= f \\ u' &= v \end{cases} \stackrel{\left\{ M \left(\frac{v_{n+1} - v_n}{\Delta t} \right) + K \left(\frac{u_{n+1} + u_n}{2} \right) \right\} = 0 \\ \frac{u_{n+1} - u_n}{\Delta t} &= \frac{v_{n+1} + v_n}{2} \end{cases} \\ v_{n+1} - v_n &= -(\Delta t) M^{-1} K \left(\frac{u_{n+1} + u_n}{2} \right) \\ u_{n+1} - u_n &= (\Delta t) \left(\frac{v_{n+1} + v_n}{2} \right) \end{cases} \stackrel{\left\{ J \left[\frac{(\Delta t) M^{-1} K}{2} \right] - \frac{(\Delta t) M^{-1} K}{2} \\ - \frac{(\Delta t) I}{2} & I \end{bmatrix} \right] \begin{bmatrix} v_{n+1} \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} I & -\frac{(\Delta t) M^{-1} K}{2} \\ \frac{(\Delta t) I}{2} & I \end{bmatrix} \begin{bmatrix} v_n \\ u_n \end{bmatrix} \\ \stackrel{\left\{ \Delta t \right\}}{\left[\frac{(\Delta t)^2 M^{-1} K}{4} \right]} \\ 0 & I + \frac{(\Delta t)^2 M^{-1} K}{4} \end{bmatrix} \begin{bmatrix} v_{n+1} \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} I & -\frac{(\Delta t) M^{-1} K}{2} \\ \frac{(\Delta t) I}{2} & I \end{bmatrix} \begin{bmatrix} v_n \\ u_n \end{bmatrix} \end{split}$$

2.3 Least Squares

$$Au = b \xrightarrow[\text{overdetermined}]{\text{Network}} \begin{cases} \text{no solution} \\ \hat{u} \text{ (best solution)} \end{cases}$$

- Principle of least squares
 - Minimizing the total squared error

Minimize $E = ||e||^2 = ||b - Au||^2 = (b - Au)^T (b - Au)$ $\begin{cases}
A \text{ has independent columns} \to A^T A \hat{u} = A^T b \text{ (normal equation)} \\
A \text{ has dependent columns} \to QR \text{ factorization}
\end{cases}$

- Projection of b onto the columns of A

$$A\hat{u} = p \perp e = b - p$$

Overdetermined system (m > n)	Underdetermined system (m << n)
More equations than unknowns	Fewer samples than unknowns
No solution	Infinitely many solutions
Linear regression	Gene expression analysis
	Bioinformatics
	Sparse sensing/compression
L ² norm: small is good	L ¹ norm: a lot of zeros with a few nonzeros in the right position

- Least squares by calculus: minimum
- Least squares by linear algebra: projection
 - Aû is the point in the plane that is nearest to b
- Computational least squares: how to compute û?
 - $A^{T}A$: stability?
 - -A = QR
 - Gram-Schmidt
 - Householder
- Weighted least squares

2.4 Graph Model

- Graph
 - *n* nodes connected (or not) by *m* edges
 - Tree: no closed loop (m = n-1)
- Incidence matrix: A (m x n)
 - Record of all connections in the graph: topology matrix
 - Act as a difference matrix: Au (potential difference)
 - n node vector u → m edge vector Au
- Graph Laplacian: A^TA = (diagonal) (off-diagonal)
- Weighted Laplacian: A^TCA = (node weight) (edge weight)
- Framework
 - Three equations
 - Two equations
 - One equation

Framework of Equilibrium

	mechanics	statistics	networks
u	displacement	best parameters	voltage at nodes
e=(b–)Au	elongations	errors	voltage drop
w=Ce	Hooke's law	weight	Ohm's law
f=A [⊤] w	force balance	Projection (f=0)	Kirchhoff
	A [⊤] CAu=f	A ^T CAû=A ^T Cb	A [⊤] CAu=A [⊤] Cb-f
source	external forces f	observations b	current f, voltage b

2.6 Nonlinear Problems

$$\begin{cases} g_1(u_1, \dots, u_n) = 0 \\ \vdots \\ g_n(u_1, \dots, u_n) = 0 \end{cases} \rightarrow J_{ij} = \left[\frac{\partial g_i}{\partial u_j} \right] \xrightarrow{\text{linear}} g(u) \approx g(u^0) + J(u^0)(u - u^0) \\ g(u^{k+1}) \approx g(u^k) + J(u^k)(u^{k+1} - u^k) = 0 \end{cases}$$

	iteration	Jacobian	convergence
Newton's method	$J(u^{k})(u^{k+1}-u^{k}) = -g(u^{k})$	$J^k = J(u^k)$	quadratic
Modified Newton's method \rightarrow fixed point iteration	$J(u^0)(u^{k+1}-u^k) = -g(u^k)$	$J^0=J(u^0)$	linear

$$J\left(u^{0}\right)\left(u^{k+1}-u^{k}\right) = -g\left(u^{k}\right) \rightarrow u^{k+1} = u^{k} - J\left(u^{0}\right)^{-1} g\left(u^{k}\right) = H\left(u^{k}\right)$$
$$\xrightarrow{u^{k} \rightarrow u^{*}} \rightarrow u^{*} = H\left(u^{*}\right): \text{ fixed point}$$
error: $u^{*} - u^{k+1} = H\left(u^{*}\right) - H\left(u^{k}\right) \approx H'\left(u^{k}\right)\left(u^{*} - u^{k}\right) \rightarrow e^{k+1} \approx ce^{k}$

Computational Engineering

Framework - 16

Variations on Newton's Method

- Damped Newton: $\alpha \Delta u^k$
- Continuation methods: homotopy method
- Inexact Newton
 - Inner iteration for each Δu^k stops early, Krylov subspaces
- Nonlinear conjugate gradients: direction, stepsize

$$\begin{cases} d^{k} = -g\left(u^{k}\right) + \beta d^{k-1} \text{ where } \beta = \frac{\left(g^{k}\right)^{T} \left(g^{k} - g^{k-1}\right)}{\left(g^{k-1}\right)^{T} g^{k-1}} \\ u^{k+1} = u^{k} + \alpha d^{k} \end{cases}$$

• Quasi-Newton: approximate J

$$(J^{k-1} + \text{update})(\Delta u) = g(u^k) - g(u^{k-1})$$

2.7 Structures in Equilibrium

- Truss: *m* elastic bars, *N* pin joints
 - Do not bend (vs. beam): turn freely
 - One-dimensional (vs. plate)
 - Simple and straight (vs. shell)
 - Unknown displacement in a plane: n = 2N r

	Stable	unstable
n columns of A	Independent	Dependent
	rank(A) = n	rank(A) < n
solution to $e = Au = 0$	u = 0 (only solution)	Nonzero solution
	disp→stretching	disp w/o stretching
A ^T w = f (force balance)	Solve for every f	Not solvable

- Two types of unstable trusses: singular matrix (A^TCA)
 - Rigid motion: translate, rotate
 - Mechanism: change of shape w/o any stretching, small displacements with first order
- *m* > *n* does not guarantee *n* independent columns of A and stability
- Construction of A
 - Row: stretching of a bar
 - Column: force balance at the nodes

- K_{ij} = (row *i* of A^T)(column *j* of CA)

- Stiffness matrix for bar *i*: $k_i = (\text{column } i \text{ of } A^T)c_i(\text{row } i \text{ of } A)$