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2.1 Equilibrium

• Framework of linear equilibrium
– (1) three steps:

– Modeling problem: to find K = ATCA
– Computing problem: to solve Ku = f
– (2) minimum principles: minimize the total potential energy

• Extension
– Nonlinear problem: when input becomes large
– Time-dependent problem: linear but dynamic
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Examples

• Steady state matrix equation: Ku =f
– A line of springs: the spring can be stretched or compressed
– Best solution of  Au = b: least squares regression in statistics
– A network with flows on the edges: driven by potential 

differences

• Dynamic problems: differential equation in time
– The springs are oscillating
– The circuit has inductors and capacitors and alternating 

current
– New measurements require us to update the statistics
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A Line of Springs (1)

fixed-fixed fixed-free free-free
A 4 x 3 3 x 3 2 x 3

ATCA (C=I) K3 H3 B3
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A Line of Springs (2)

• Properties of K = ATCA
– Tridiagonal
– Symmetric
– Positive definite
– Full matrix of K-1 with all positive entries

   
displacement elongation internal external

 force force

TA C Au e w f  

spring elasticity
Step 1 Difference in displacements Kinematic equation
Step 2 Hooke’s law Constitutive law
Step 3 Balance equation Static equation for equilibrium
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Minimum Principles
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2.2 Oscillation by Newton’s Law

• Finite differences with time steps t
– Explicit leapfrog method: short fast steps
– Implicit trapezoidal rule: larger slow steps

• Explicit finite differences
– Stability

• Implicit trapezoidal rule: (new+old)/2
– First order
– Second order

10 :  (eigenvalue problem)
tt tt

tt

F ma f Ku Mu Mu Ku f

f u M Ku
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Key Example (1)

• Forward Euler

• Backward Euler

1
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finite difference
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where to evaluate the right sides?
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Key Example (2)

• Trapezoidal method: centered at n+1/2

• Leapfrog method: explicit
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Explicit Finite Differences
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Trapezoidal Rule for Second Order Equation
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2.3 Least Squares

• Principle of least squares
– Minimizing the total squared error

– Projection of b onto the columns of A

: rectangular ( )
overdetermined

no solution
ˆ (best solution)

A m nAu b
u

 
 



   2 2Minimize 

ˆ has independent columns   (normal equation)
 has dependent columns  factorization

T
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E e b Au b Au b Au

A A Au A b
A QR
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Overdetermined system (m > n) Underdetermined system (m << n)
More equations than unknowns Fewer samples than unknowns
No solution Infinitely many solutions
Linear regression Gene expression analysis

Bioinformatics
Sparse sensing/compression

L2 norm: small is good L1 norm: a lot of zeros with a few 
nonzeros in the right position
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• Least squares by calculus: minimum
• Least squares by linear algebra: projection

– Aû is the point in the plane that is nearest to b

• Computational least squares: how to compute û?
– ATA: stability?
– A = QR

• Gram-Schmidt
• Householder

• Weighted least squares
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2.4 Graph Model

• Graph
– n nodes connected (or not) by m edges
– Tree: no closed loop (m = n1)

• Incidence matrix: A (m x n)
– Record of all connections in the graph: topology matrix
– Act as a difference matrix: Au (potential difference)

• n node vector u → m edge vector Au

• Graph Laplacian: ATA = (diagonal)  (off-diagonal)
• Weighted Laplacian: ATCA = (node weight)  (edge weight)
• Framework

– Three equations
– Two equations
– One equation
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Framework of Equilibrium

mechanics statistics networks
u displacement best parameters voltage at nodes
e=(b)Au elongations errors voltage drop
w=Ce Hooke’s law weight Ohm’s law
f=ATw force balance Projection (f=0) Kirchhoff

ATCAu=f ATCAû=ATCb ATCAu=ATCb-f
source external forces f observations b current f, voltage b
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2.6 Nonlinear Problems
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iteration Jacobian convergence

Newton’s method Jk = J(uk) quadratic

Modified Newton’s method
→ fixed point iteration

J0 = J(u0) linear    0 1k k kJ u u u g u   
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Variations on Newton’s Method

• Damped Newton: uk

• Continuation methods: homotopy method
• Inexact Newton

– Inner iteration for each uk stops early, Krylov subspaces

• Nonlinear conjugate gradients: direction, stepsize

• Quasi-Newton: approximate J
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2.7 Structures in Equilibrium

• Truss: m elastic bars, N pin joints 
– Do not bend (vs. beam): turn freely
– One-dimensional (vs. plate)
– Simple and straight (vs. shell)
– Unknown displacement in a plane: n = 2N  r

Stable unstable
n columns of A Independent

rank(A) = n
Dependent
rank(A) < n

solution to e = Au = 0 u = 0 (only solution)
disp→stretching

Nonzero solution
disp w/o stretching

ATw = f (force balance) Solve for every f Not solvable



Computational Engineering Framework - 19

• Two types of unstable trusses: singular matrix (ATCA) 
– Rigid motion: translate, rotate
– Mechanism: change of shape w/o any stretching, small 

displacements with first order

• m > n does not guarantee n independent columns of 
A and stability

• Construction of A
– Row: stretching of a bar
– Column: force balance at the nodes

• K = ATCA
– Kij = (row i of AT)(column j of CA)
– Stiffness matrix for bar i: ki = (column i of AT)ci(row i of A)

1

m

i
i

K k





