2.1 Equilibrium

* Framework of linear equilibrium
— (1) three steps:

.
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f =A'w=A"Ce= A'CA u

- — -
input K _output
(force) (stiffness) (displacement)

— Modeling problem: to find K = ATCA
— Computing problem: to solve Ku = f
— (2) minimum principles: minimize the total potential energy

« Extension
— Nonlinear problem: when input becomes large
— Time-dependent problem: linear but dynamic
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Examples

« Steady state matrix equation: Ku =f
— Aline of springs: the spring can be stretched or compressed
— Best solution of Au = b: least squares regression in statistics
— A network with flows on the edges: driven by potential
differences
* Dynamic problems: differential equation in time
— The springs are oscillating

— The circuit has inductors and capacitors and alternating
current

— New measurements require us to update the statistics
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A Line of Springs (1)
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A Line of Springs (2)

A C AT
u ——— e —— w —— f
L - P -~
displacement elongation internal external
force force
spring elasticity
Step 1 | Difference in displacements | Kinematic equation
Step 2 | Hooke'’s law Constitutive law
Step 3 | Balance equation Static equation for equilibrium
* Properties of K = ATCA when C =1,
— Tridiagonal K =A"A =L
. ble break up
— Symmetrlc appliaesosler:]gltheatics computational mathematics

— Positive definite
— Full matrix of K-! with all positive entries
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Minimum Principles

P(u)—; u"Ku—u f—E(u—K‘lf)TK(u—K‘lf)—lfTK‘lf

Minimize P(u) by solving d—P—O or VP=0 or E—0
du ou
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2.2 Oscillation by Newton’s Law

F=ma<s f -Ku=Mu; - Mu, +Ku=f

f =0:u, = M Ku (eigenvalue problem)

* Finite differences with time steps At
— Explicit leapfrog method: short fast steps
— Implicit trapezoidal rule: larger slow steps

« Explicit finite differences
— Stability
 Implicit trapezoidal rule: (new+old)/2

— First order
— Second order
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Key Example (1)

U = cost

u"+u=0- , .
V=U =-sInt

Exact solution travels around constant energy circle

}—>u2+v2 =1
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Key Example (2)

« Trapezoidal method: centered at n+1/2
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« Leapfrog method: explicit
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Explicit Finite Differences
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Trapezoidal Rule for Second Order Equation
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2.3 Least Squares

AU =D A: rectangular (m>n) no solution
overdetermined a (best SO|ution)

* Principle of least squares
— Minimizing the total squared error

Minimize E = || = [b— Au[* = (b— Au)" (b— Au)
A has independent columns — A" AG = ATb (normal equation)
A has dependent columns — QR factorization

— Projection of b onto the columns of A

Al=ple=b-p
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Overdetermined system (m > n)

Underdetermined system (m << n)

More equations than unknowns

Fewer samples than unknowns

No solution

Infinitely many solutions

Linear regression

Gene expression analysis
Bioinformatics
Sparse sensing/compression

L2 norm: small is good

L' norm: a lot of zeros with a few
nonzeros in the right position
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Least squares by calculus: minimum

Least squares by linear algebra: projection
— AU is the point in the plane that is nearest to b

Computational least squares: how to compute G?
— ATA: stability?
— A=QR

« Gram-Schmidt

« Householder

Weighted least squares
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2.4 Graph Model

 Graph

— n nodes connected (or not) by m edges

— Tree: no closed loop (m = n-1)

Incidence matrix: A (m x n)

— Record of all connections in the graph: topology matrix
— Act as a difference matrix: Au (potential difference)

* n node vector u — m edge vector Au

Graph Laplacian: ATA = (diagonal) — (off-diagonal)
Weighted Laplacian: ATCA = (node weight) — (edge weight)
Framework

— Three equations

— Two equations
— One equation
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Framework of Equilibrium

mechanics statistics networks
u displacement best parameters | voltage at nodes
e=(b—)Au | elongations errors voltage drop
w=Ce Hooke’s law weight Ohm’s law
f=ATw force balance Projection (f=0) | Kirchhoff

ATCAu=f ATCA(=ATCb ATCAu=ATCb-f
source external forces f | observations b current f, voltage b
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2.6 Nonlinear Problems

; auj soiman > 9(1) = 9(u”)+ 3 (u”)(u-u’)

iteration Jacobian | convergence
Newton’s method J(Uk)(uk+1‘uk):—9(uk) Jk=J(uk) | quadratic

Modified Newton’s method
J 0 k+1 Kk __ k JO — J 0 l
— fixed point iteration (u )(u y ) 9(“ ) (u°) Inear

I (07)(u" 0t =
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o(u) > ut =u -9 () g (u) =M (u)

) fixed point

/—\
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Variations on Newton’s Method

« Damped Newton: aAuK
Continuation methods: homotopy method

Inexact Newton
— Inner iteration for each Auk stops early, Krylov subspaces

Nonlinear conjugate gradients: direction, stepsize

K\ [k k-1
<dk =—g(uk)+,3dk_1 where ﬂ:(g(ik(lg)T gil )

\Uk+1 _ Uk +adk

Quasi-Newton: approximate J
(Jk‘1+update)(Au): g(uk)—g(uk‘l)
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2.7 Structures in Equilibrium

* Truss: m elastic bars, N pin joints
— Do not bend (vs. beam): turn freely
— One-dimensional (vs. plate)
— Simple and straight (vs. shell)
— Unknown displacement in a plane: n =2N —r

Stable unstable
n columns of A Independent Dependent
rank(A) = n rank(A) <n
solutiontoe =Au =0 |u =0 (only solution) | Nonzero solution
disp—stretching disp w/o stretching
A'w = f (force balance) | Solve for every f Not solvable
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« Two types of unstable trusses: singular matrix (ATCA)
— Rigid motion: translate, rotate

— Mechanism: change of shape w/o any stretching, small
displacements with first order

 m > n does not guarantee n independent columns of
A and stability

 (Construction of A
— Row: stretching of a bar
— Column: force balance at the nodes

.+ K=ATCA K=k
— K; = (row i of AT)(column j of CA) =
— Stiffness matrix for bar i: k; = (column i of AT)c(row i of A)
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