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suppose all springs are identical with ¢, =c¢
2 -1 0 L 3 2
K=A"CA=c|-1 2 -1 —>K‘1:4_ 2 4
0 1 2 ‘l1 2
3 2 1 W, 1.5mg
-1 2 1|/ W 0.5m
W=Ce =CAu=CAK*f =% ||| 0ome
4 -1 -2 1 W, -0.5mg
-1 -2 -3|-° w, | |-1.5mg
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7) In the fixed-fixed case with three equal masses and originally four equal springs with spring constant
equal to 1, we now weaken spring 2 so that cs — 0. Now, the K matrix becomes

[Cl + Co —Ca D |V]. D D -|
K = —Ca o3 + o3 —c3 =10 1 -1
0 —c3 o3+ e:.1J I"El -1 2 J
This matrix is still invertible because its determinant is 1. Sclving Ku = f = [1 1 l]T, we get u =

[1 3 E]T. To explain this answer physically, it is important to realize that by weaken spring 2, it splits

the problem into two decoupled problem. One problem is mass 1 hanging freely off spring 1. In this problem,
we expect for the displacement to be u; = 1 beeause there is a foree of 1 on the mass connected to a spring
with spring constant equal to 1. The second problem is a free-fixed problem with two identical masses and
two identical spring, but the problem is upside compared to the typical fixed-free spring-mass problem. So,
when us = 3 and uy = 2, it means that spring 4 is compressed hy 2 by the two masses above it and spring
3 is compressed by 1 by the one mass above it, which makes sense physically.
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2.2.5. (a) & Ju(t)]]® = 2(uiuf +uzul +uzul) = 2u; (cuz — bus) +2uz(aus —cuy ) +
Quug(buy — auy) = 0. Having 0 devivative, [|u(t)||® is constant, so |Ju(t)||* = [Ju(0)]>.

.
(b) For any n we have (A™)T = (AT)®, hence QT = (I +tA + %Az + %AS + ) =

2 ] T
I+tAT + %{ATF + ET{ATJS +...= € = e Hence QQT = eMe At =T,
where the last equality follows from the formal power series identity efe™ ™ = 1.
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6) The trapezoidal rule for »’ = Au is given by

At At
(I —TA:L;F 1=1{I+ —A)[
If AT = — A, then the trapezoidal rule will conserve the energy ||u||2. This can be proven by showing that
1Unsa1* = [|Un .
At Ad
Il —TAerH il +—A}L’

. - .
Upp1 —Un = TA[["J‘I-+| + ["n)

. - At
[{'r+|+E {['IT:-F[_L'I'H.}:': 1+er:l A{Er‘+l+L‘n}

At )

Un 1 Ungy + b — B - UL U, = 5 [(Unt1r + Un)TA(Up gy + Uy)|

At
Unyal|* = ||Unll* = ?l‘r/‘iv
where we let v = (U, + U,) and UT +1Un was canceled by UTU, ., since they are both equal scalars

and the order of the inner product d(){"b not matter. Likewise, v T Aw is a sealar and thus it is equal to its

transpose (v Av)? = o7 ATy, However, since AT = — A, this means that v7 Av = —»7 Av and the only way
that equality can be satisfied is if v Av = 0. Thus,

N At .
1Unsl* = |[Unl[* = 5" A0 =10

2 2
Una||” = |[Unl|
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2 2 2
1+iD 1-—+ih ‘ 1—h— 1—h—
A= 2 _ <> A=¢"=cos h+isin h—»cos h=—24 s h=cos™ 4
.h h2 h2 2
1-io 1+ 1+— 1+—
2 4 4 4
h2
1—
A% =e'®" = cos32h+isin32h =cos@d +isin & — @ = 32h =32cos™ 42
1+—
2z 2 .
h 25 — 0 ~0.1957, 4> =0.9809 + 0.1945i
1+i h
—_ 1+x 2 2 3 2 3
_ 2 T (1+x)(1+x+x +---):1+2x+2x +2X7 e B ) . h_ _3h_
/1_1 ih A=l+ih+i 2 * 22+ the lowest power of h that
2 the discrepancy occurs is three(h?)
ih e =1+ + '+ 3:+ h2 .3 3
A=eh— 28 o dtih+ iR i e
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Forward Euler:

”}—>un+f +V,,.7 = (U, +hV, ) +(V, —hU, )" =(1+h?)(U,2 +V,?)

=)
vz
UVn
1] I
-
D >

=3.3552

2
h=3—;r—>(1+h2)32

2z

(1+hz)T =1las h—>0

[=4]
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Backward Euler:
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2.3.3 QR experiment
V=fliplr(vander((0:49)/49))
A=V(,1:12)
b=co0s(0:.08:3.92)’

(1) ATA¥(ATb)

(2) R#W(Q'b)
(3) modified Gram-Schmidt
(4) Householder code

(5) A¥tb

6) ar

Method 5 should yield the most accurate solutions. Why?

2.3.4 Gram-Schmidt

1 2
8
g =7"=—|2
el T3
-17 b L =17
b, =a, (qlTaZ)ql 10 _>q2__2:_ 10
14 ol 36| 4,

2.3.5 Householder

2 Ja,] =3 -1 -0.41 3 135

a=2,r= 0 |w=a-r=[2|u=|08|>H=1-2uu"—>HA=0 -271
1 0 1 0.41 0 -0.35
1.35 1.35 0 0

a, =| -2.71},|a,| =|.|.r, =| 273 |,w, =a, -1, =| 0.02 |,u,=|0.06 |>H, =1-2u,u," - H,HA=Q*A=R

-0.35 0 -0.35 -1
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23.24

2.3/24 We would like to find the plane b{z,y) = € + Dx + Ey that gives the
best fit to the data b — 0,1,3,4 and (x,y) — (1,0),(0,1),(—1,0), (0, —1)
respectively. The normal equation AT A4 = ATh for a = (C, D, E)7 takes

the form
4 0 0 . 8
o 20 D 1=1 -3
oo 2 E -3

so that (¢, D, E) = (2, -3/2, -3/2) and we check that

B(0,0) = C = 2 = Av(D, 1, 3,4).
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2.4/7 The 3 x4 incidence matrix that corresponds to the network in question is

-1 0 0 1
A= 0o -1 0 1
o o0 -11

and it O = diag(cy, oo, c3) We compute

cy 0 0 —cq

. 0 ca 0 —

_ AT _ 2 2

K=A4'CA 0 0 o e
—C€]p —f3 —C3 €1+ cC2+c3

If we ground node 4 we form the reduced K.y by deleting the fourth
row and the fourth column from K, so that K.y = diag(ey, 2, c3) and
det Kiaq = cpeocs. Note that the unreduced K is singular, so det K = (!

249
1 -1 0 0 0
11 0 0 0
-1 2 -1 0 0
0o -1 1 0 0
A= —>AA=[0 -1 2 -1 0
00 -1 10
0 0 -1 2 -1
0 0 0 -11
0 0 0 -1 1
1 -1 0 0] 4321
-1 2 -1 0 3321
K=(A"A) = =T, >K*'=
rwced |0 1 2~ 2221
0 0 -1 2] 1111
1
eig(K) s {01206
g 2.3473
35321

detK =1
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2.4/1% (a) The only non-zero entries of the matrix AT A = D—W are its diagonal
entries and the off-diagonal ones that correspond to the presence of
edges. Thus,

# non-zero entries in ATA =0+ 2 x # of edges = 0+ 2 x 12 = 33

The number of the zero entries of AT A is then 92 — 33 = 48,
(b) D — diag(2,3,2,3,4,3,2,3,2).

(e} The four —1's in the middle row of —W correspond to the four other
nodes that the center node connects to.

2418

2.4/18 We want to solve Ku = f where K is the 8 = 8 reduced matrix for the
3 = 3 grid from the previous problem (as we ground node (3,3), we obtain
K by deleting the last row and column). The vector of current sources f
is the 8 x 1 vector whose first entry is 1 and all others are zero. Using
MATLAB we derive u(1,1) = u; = (K ~'f); = 1.5.

N=3;

B=toeplitz(|2 -1 zeros(1,N-2)]);
B(1,1)=1;

B(N,N)=1;
L=kron(B,eye(N))+kron(eye(N),B);
K=L(1:8,1:8)

f=[10000000]
inv(K)*transpose(f)

we get (1.5000, 1.0000, 0.7500, 1.0000, 0.7500, 0.5000, 0.7500, 0.5000). Therefore, u(1,1) =
1.5.
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Truss D has & rows and 8 columns in the matrix A, because there are m=8% bars., and n==8
unknowns in the structure.

The underlving physics of column 1 multiply displacement u 1s the distibution of small

displacement U;" to the elongation of each bar. as indicated in the following equation:

Au=e_ in which au; = €_» - S0 We just need to find out the contribution of M, to the

elongations of the 8 bars. then we can get the column 1.

Columnl=

5

T
> 2
[cos45° c0s90° cos135° 0 0 0 0 G]T{"? 0 2 000 0 {}}

Although A i1s 8 by 8. it has dependent columns. so there 1s nonzero solution to Al =0, and

ATw=0. Physically, if we remove any of the 8 bars out of the structure, then the stiffness matrix

A becomes 7 by &, and it has the same nonzero solution with the previous one.

The mechanism solution to . Au =0 is the truss rotates as whole around node 5.
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275 n-m = 2(5)-8 = 2 independent solutions (mechanisms) = the truss is unstable (not

positive definite) > ATA must be positive semidefinite since A has dependent columns

L
1 9
) ] (3)
* G EEE
[ R Bt
? llﬁ ;'— —_—— —_— . W
27.6

m =4 and n =6 — 2 mechanisms

There are m=4 bars and n=6 unknowns in truss F, so there should be n-m=2 mechanism motions
for it. We can find a solution to Al = (. however. the best method is using picture.

Mechamsm 1: Fix node 1. and the bar 2. 3 and 4 can move.

Mechamsm 2: Fix node 3, and the bar 1. 2, and 3 can move.

The two mechanisms are independent. so they gives two orthogonal solutions to _Au =0

Stable solution: we have to add at least 2 bars to make 1t stable, just connect any two non-adjacent
nodes in the five nodes (node 1, 2. 3 and the supports nodes).

Then the stiffness matrix A becomes singular and invertible, as 1t has independent columns. and it

. r
has only 1 solutionto 4" w= f .
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