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PARTIAL DIFFERENTIAL
EQUATIONS

PT8.1 MOTIVATION

Given a function u that depends on both x and y, the partial derivative of u with respect to
x at an arbitrary point (x, y) is defined as

∂u

∂x
= lim

�x→0

u(x + �x, y) − u(x, y)

�x
(PT8.1)

Similarly, the partial derivative with respect to y is defined as

∂u

∂y
= lim

�y→0

u(x, y + �y) − u(x, y)

�y
(PT8.2)

An equation involving partial derivatives of an unknown function of two or more indepen-
dent variables is called a partial differential equation, or PDE. For example,

∂2u

∂x2
+ 2xy

∂2u

∂y2
+ u = 1 (PT8.3)

∂3u

∂x2∂y
+ x

∂2u

∂y2
+ 8u = 5y (PT8.4)

(
∂2u

∂x2

)3

+ 6
∂3u

∂x∂y2
= x (PT8.5)

∂2u

∂x2
+ xu

∂u

∂y
= x (PT8.6)

The order of a PDE is that of the highest-order partial derivative appearing in the equation.
For example, Eqs. (PT8.3) and (PT8.4) are second- and third-order, respectively.

A partial differential equation is said to be linear if it is linear in the unknown function
and all its derivatives, with coefficients depending only on the independent variables. For
example, Eqs. (PT8.3) and (PT8.4) are linear, whereas Eqs. (PT8.5) and (PT8.6) are not.

Because of their widespread application in engineering, our treatment of PDEs will
focus on linear, second-order equations. For two independent variables, such equations can
be expressed in the following general form:

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D = 0 (PT8.7)

where A, B, and C are functions of x and y and D is a function of x, y, u, ∂u/∂x , and ∂u/∂y.
Depending on the values of the coefficients of the second-derivative terms—A, B, C—
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Eq. (PT8.7) can be classified into one of three categories (Table PT8.1). This classification,
which is based on the method of characteristics (for example, see Vichnevetsky, 1981, or
Lapidus and Pinder, 1981), is useful because each category relates to specific and distinct
engineering problem contexts that demand special solution techniques. It should be noted
that for cases where A, B, and C depend on x and y, the equation may actually fall into a dif-
ferent category, depending on the location in the domain for which the equation holds. For
simplicity, we will limit the present discussion to PDEs that remain exclusively in one of
the categories.

PT8.1.1 PDEs and Engineering Practice

Each of the categories of partial differential equations in Table PT8.1 conforms to specific
kinds of engineering problems. The initial sections of the following chapters will be de-
voted to deriving each type of equation for a particular engineering problem context. For
the time being, we will discuss their general properties and applications and show how they
can be employed in different physical contexts.

Elliptic equations are typically used to characterize steady-state systems. As in the
Laplace equation in Table PT8.1, this is indicated by the absence of a time derivative.
Thus, these equations are typically employed to determine the steady-state distribution of
an unknown in two spatial dimensions.

A simple example is the heated plate in Fig. PT8.1a. For this case, the boundaries of
the plate are held at different temperatures. Because heat flows from regions of high to low
temperature, the boundary conditions set up a potential that leads to heat flow from the hot
to the cool boundaries. If sufficient time elapses, such a system will eventually reach the
stable or steady-state distribution of temperature depicted in Fig. PT8.1a. The Laplace
equation, along with appropriate boundary conditions, provides a means to determine this
distribution. By analogy, the same approach can be employed to tackle other problems in-
volving potentials, such as seepage of water under a dam (Fig. PT8.1b) or the distribution
of an electric field (Fig. PT8.1c).

844 PARTIAL DIFFERENTIAL EQUATIONS

TABLE PT8.1 Categories into which linear, second-order partial differential equations in
two variables can be classified.

B2 � 4AC Category Example

< 0 Elliptic Laplace equation (steady state with two spatial dimensions)

+ = 0

= 0 Parabolic Heat conduction equation (time variable with one spatial
dimension)

= k′

> 0 Hyperbolic Wave equation (time variable with one spatial dimension)

= ∂2y
�
∂t2

1
�
c2

∂2y
�
∂x2

∂2T
�
∂x2

∂T
�
∂t

∂2T
�
∂y2

∂2T
�
∂x2
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In contrast to the elliptic category, parabolic equations determine how an unknown
varies in both space and time. This is manifested by the presence of both spatial and
temporal derivatives in the heat conduction equation from Table PT8.1. Such cases are
referred to as propagation problems because the solution “propagates,’’ or changes, in
time.

A simple example is a long, thin rod that is insulated everywhere except at its end
(Fig. PT8.2a). The insulation is employed to avoid complications due to heat loss along the
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Conductor

Dam

Flow line

Impermeable rock

Equipotential
line

Hot

Cool

CoolHot

(a) (b) (c)

FIGURE PT8.1
Three steady-state distribution problems that can be characterized by elliptic PDEs. (a) Tempera-
ture distribution on a heated plate, (b) seepage of water under a dam, and (c) the electric
field near the point of a conductor.

T

x

(a)

(b)

CoolHot

t = 3�t

t = 2�tt = �tt = 0

FIGURE PT8.2
(a) A long, thin rod that is
insulated everywhere but at its
end. The dynamics of the one-
dimensional distribution of
temperature along the rod’s
length can be described by a
parabolic PDE. (b) The solution,
consisting of distributions
corresponding to the state of the
rod at various times.
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rod’s length. As was the case for the heated plate in Fig. PT8.1a, the ends of the rod are set
at fixed temperatures. However, in contrast to Fig. PT8.1a, the rod’s thinness allows us to
assume that heat is distributed evenly over its cross section—that is, laterally. Consequently,
lateral heat flow is not an issue, and the problem reduces to studying the conduction of heat
along the rod’s longitudinal axis. Rather than focusing on the steady-state distribution in
two spatial dimensions, the problem shifts to determining how the one-dimensional spatial
distribution changes as a function of time (Fig. PT8.2b). Thus, the solution consists of a
series of spatial distributions corresponding to the state of the rod at various times. Using an
analogy from photography, the elliptic case yields a portrait of a system’s stable state,
whereas the parabolic case provides a motion picture of how it changes from one state to an-
other. As with the other types of PDEs described herein, parabolic equations can be used to
characterize a wide variety of other engineering problem contexts by analogy.

The final class of PDEs, the hyperbolic category, also deals with propagation prob-
lems. However, an important distinction manifested by the wave equation in Table PT8.1 is
that the unknown is characterized by a second derivative with respect to time. As a conse-
quence, the solution oscillates.

The vibrating string in Fig. PT8.3 is a simple physical model that can be described
with the wave equation. The solution consists of a number of characteristic states with
which the string oscillates. A variety of engineering systems such as vibrations of rods and
beams, motion of fluid waves, and transmission of sound and electrical signals can be char-
acterized by this model.

PT8.1.2 Precomputer Methods for Solving PDEs

Prior to the advent of digital computers, engineers relied on analytical or exact solutions of
partial differential equations. Aside from the simplest cases, these solutions often required
a great deal of effort and mathematical sophistication. In addition, many physical systems
could not be solved directly but had to be simplified using linearizations, simple geomet-
ric representations, and other idealizations. Although these solutions are elegant and
yield insight, they are limited with respect to how faithfully they represent real systems—
especially those that are highly nonlinear and irregularly shaped.

PT8.2 ORIENTATION

Before we proceed to the numerical methods for solving partial differential equations,
some orientation might be helpful. The following material is intended to provide you with
an overview of the material discussed in Part Eight. In addition, we have formulated ob-
jectives to focus your studies in the subject area.
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FIGURE PT8.3
A taut string vibrating at a low
amplitude is a simple physical
system that can be character-
ized by a hyperbolic PDE.

cha01064_p08.qxd  3/25/09  1:33 PM  Page 846



PT8.2.1 Scope and Preview

Figure PT8.4 provides an overview of Part Eight. Two broad categories of numerical meth-
ods will be discussed in this part of this book. Finite-difference approaches, which are cov-
ered in Chaps. 29 and 30, are based on approximating the solution at a finite number of
points. In contrast, finite-element methods, which are covered in Chap. 31, approximate
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FIGURE PT8.4
Schematic representation of the organization of material in Part Eight: Partial Differential Equations.
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the solution in pieces, or “elements.” Various parameters are adjusted until these approxi-
mations conform to the underlying differential equation in an optimal sense.

Chapter 29 is devoted to finite-difference solutions of elliptic equations. Before
launching into the methods, we derive the Laplace equation for the physical problem con-
text of the temperature distribution for a heated plate. Then, a standard solution approach,
the Liebmann method, is described. We will illustrate how this approach is used to compute
the distribution of the primary scalar variable, temperature, as well as a secondary vector
variable, heat flux. The final section of the chapter deals with boundary conditions. This
material includes procedures to handle different types of conditions as well as irregular
boundaries.

In Chap. 30, we turn to finite-difference solutions of parabolic equations. As with the
discussion of elliptic equations, we first provide an introduction to a physical problem con-
text, the heat-conduction equation for a one-dimensional rod. Then we introduce both ex-
plicit and implicit algorithms for solving this equation. This is followed by an efficient and
reliable implicit method—the Crank-Nicolson technique. Finally, we describe a particu-
larly effective approach for solving two-dimensional parabolic equations—the alternating-
direction implicit, or ADI, method.

Note that, because they are somewhat beyond the scope of this book, we have chosen
to omit hyperbolic equations. The epilogue of this part of the book contains references re-
lated to this type of PDE.

In Chap. 31, we turn to the other major approach for solving PDEs—the finite-element
method. Because it is so fundamentally different from the finite-difference approach, we
devote the initial section of the chapter to a general overview. Then we show how the
finite-element method is used to compute the steady-state temperature distribution of a
heated rod. Finally, we provide an introduction to some of the issues involved in extending
such an analysis to two-dimensional problem contexts.

Chapter 32 is devoted to applications from all fields of engineering. Finally, a short re-
view section is included at the end of Part Eight. This epilogue summarizes important in-
formation related to PDEs. This material includes a discussion of trade-offs that are rele-
vant to their implementation in engineering practice. The epilogue also includes references
for advanced topics.

PT8.2.2 Goals and Objectives

Study Objectives. After completing Part Eight, you should have greatly enhanced your
capability to confront and solve partial differential equations. General study goals should
include mastering the techniques, having the capability to assess the reliability of the an-
swers, and being able to choose the “best’’ method (or methods) for any particular problem.
In addition to these general objectives, the specific study objectives in Table PT8.2 should
be mastered.

Computer Objectives. Computer algorithms can be developed for many of the methods
in Part Eight. For example, you may find it instructive to develop a general program to sim-
ulate the steady-state distribution of temperature on a heated plate. Further, you might want
to develop programs to implement both the simple explicit and the Crank-Nicolson meth-
ods for solving parabolic PDEs in one spatial dimension.

848 PARTIAL DIFFERENTIAL EQUATIONS
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PT8.2 ORIENTATION 849

TABLE PT8.2 Specific study objectives for Part Eight.

1. Recognize the difference between elliptic, parabolic, and hyperbolic PDEs.
2. Understand the fundamental difference between finite-difference and finite-element approaches.
3. Recognize that the Liebmann method is equivalent to the Gauss-Seidel approach for solving

simultaneous linear algebraic equations.
4. Know how to determine secondary variables for two-dimensional field problems.
5. Recognize the distinction between Dirichlet and derivative boundary conditions.
6. Understand how to use weighting factors to incorporate irregular boundaries into a finite-difference

scheme for PDEs.
7. Understand how to implement the control-volume approach for implementing numerical solutions

of PDEs.
8. Know the difference between convergence and stability of parabolic PDEs.
9. Understand the difference between explicit and implicit schemes for solving parabolic PDEs.

10. Recognize how the stability criteria for explicit methods detract from their utility for solving
parabolic PDEs.

11. Know how to interpret computational molecules.
12. Recognize how the ADI approach achieves high efficiency in solving parabolic equations in two

spatial dimensions.
13. Understand the difference between the direct method and the method of weighted residuals for deriving

element equations.
14. Know how to implement Galerkin’s method.
15. Understand the benefits of integration by parts during the derivation of element equations; in particular,

recognize the implications of lowering the highest derivative from a second to a first derivative.

Finally, one of your most important goals should be to master several of the general-
purpose software packages that are widely available. In particular, you should become
adept at using these tools to implement numerical methods for engineering problem
solving.
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29C H A P T E R 29

850

Finite Difference: Elliptic 
Equations

Elliptic equations in engineering are typically used to characterize steady-state, boundary-
value problems. Before demonstrating how they can be solved, we will illustrate how a
simple case—the Laplace equation—is derived from a physical problem context.

29.1 THE LAPLACE EQUATION

As mentioned in the introduction to this part of the book, the Laplace equation can be used
to model a variety of problems involving the potential of an unknown variable. Because of
its simplicity and general relevance to most areas of engineering, we will use a heated plate
as our fundamental context for deriving and solving this elliptic PDE. Homework problems
and engineering applications (Chap. 32) will be employed to illustrate the applicability of
the model to other engineering problem contexts.

Figure 29.1 shows an element on the face of a thin rectangular plate of thickness �z.
The plate is insulated everywhere but at its edges, where the temperature can be set at a
prescribed level. The insulation and the thinness of the plate mean that heat transfer is lim-
ited to the x and y dimensions. At steady state, the flow of heat into the element over a unit
time period �t must equal the flow out, as in

q(x)�y �z �t + q(y) �x �z �t = q(x + �x) �y �z �t

+ q(y + �y)�x �z �t (29.1)

where q(x) and q(y) = the heat fluxes at x and y, respectively [cal/(cm2 · s)]. Dividing by �z
and �t and collecting terms yields

[q(x) − q(x + �x)]�y + [q(y) − q(y + �y)]�x = 0

Multiplying the first term by �x/�x and the second by �y/�y gives

q(x) − q(x + �x)

�x
�x �y + q(y) − q(y + �y)

�y
�y �x = 0 (29.2)

Dividing by �x �y and taking the limit results in

−∂q

∂x
− ∂q

∂y
= 0 (29.3)

where the partial derivatives result from the definitions in Eqs. (PT7.1) and (PT7.2).
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29.1 THE LAPLACE EQUATION 851

�z

�x

�y

q(y)

q(x) q(x + �x)

q(y + �y)

y

x

FIGURE 29.1
A thin plate of thickness �z. An element is shown about which a heat balance is taken.

Equation (29.3) is a partial differential equation that is an expression of the conserva-
tion of energy for the plate. However, unless heat fluxes are specified at the plate’s edges,
it cannot be solved. Because temperature boundary conditions are given, Eq. (29.3) must
be reformulated in terms of temperature. The link between flux and temperature is pro-
vided by Fourier’s law of heat conduction, which can be represented as

qi = −kρC
∂T

∂i
(29.4)

where qi = heat flux in the direction of the i dimension [cal/(cm2 · s)], k = coefficient of
thermal diffusivity (cm2/s), ρ = density of the material (g/cm3), C = heat capacity of the
material [cal/(g · �C)], and T = temperature (�C), which is defined as

T = H

ρCV

where H = heat (cal) and V = volume (cm3). Sometimes the term in front of the differen-
tial in Eq. (29.3) is treated as a single term,

k ′ = kρC (29.5)

where k′ is referred to as the coefficient of thermal conductivity [cal/(s · cm · �C)]. In either
case, both k and k′ are parameters that reflect how well the material conducts heat.

Fourier’s law is sometimes referred to as a constitutive equation. It is given this label
because it provides a mechanism that defines the system’s internal interactions. Inspection
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of Eq. (29.4) indicates that Fourier’s law specifies that heat flux perpendicular to the i axis
is proportional to the gradient or slope of temperature in the i direction. The negative sign
ensures that a positive flux in the direction of i results from a negative slope from high to
low temperature (Fig. 29.2). Substituting Eq. (29.4) into Eq. (29.3) results in

∂2T

∂x2
+ ∂2T

∂y2
= 0 (29.6)

which is the Laplace equation. Note that for the case where there are sources or sinks of
heat within the two-dimensional domain, the equation can be represented as

∂2T

∂x2
+ ∂2T

∂y2
= f(x, y) (29.7)

where f (x, y) is a function describing the sources or sinks of heat. Equation (29.7) is re-
ferred to as the Poisson equation.

29.2 SOLUTION TECHNIQUE

The numerical solution of elliptic PDEs such as the Laplace equation proceeds in the
reverse manner of the derivation of Eq. (29.6) from the preceding section. Recall that the
derivation of Eq. (29.6) employed a balance around a discrete element to yield an algebraic
difference equation characterizing heat flux for a plate. Taking the limit turned this differ-
ence equation into a differential equation [Eq. (29.3)].

For the numerical solution, finite-difference representations based on treating the plate
as a grid of discrete points (Fig. 29.3) are substituted for the partial derivatives in Eq. (29.6).
As described next, the PDE is transformed into an algebraic difference equation.
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T

i

(b)(a)

Direction of
heat flow

T

i

Direction of
heat flow

�T
�i

� 0

�T
�i

� 0

FIGURE 29.2
Graphical depiction of a temperature gradient. Because heat moves ”downhill” from high to low
temperature, the flow in (a) is from left to right in the positive i direction. However, due to the ori-
entation of Cartesian coordinates, the slope is negative for this case. Thus, a negative gradient
leads to a positive flow. This is the origin of the minus sign in Fourier’s law of heat conduction.
The reverse case is depicted in (b), where the positive gradient leads to a negative heat flow
from right to left.
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29.2.1 The Laplacian Difference Equation

Central differences based on the grid scheme from Fig. 29.3 are (recall Fig. 23.3)

∂2T

∂x2
= Ti+1, j − 2Ti, j + Ti−1, j

�x2

and

∂2T

∂y2
= Ti, j+1 − 2Ti, j + Ti, j−1

�y2

which have errors of O[�(x)2] and O[�(y)2], respectively. Substituting these expressions
into Eq. (29.6) gives

Ti+1, j − 2Ti, j + Ti−1, j

�x2
+ Ti, j+1 − 2Ti, j + Ti, j−1

�y2
= 0

For the square grid in Fig. 29.3, �x = �y, and by collection of terms, the equation becomes

Ti+1, j + Ti−1, j + Ti, j+1 + Ti, j−1 − 4Ti, j = 0 (29.8)

This relationship, which holds for all interior points on the plate, is referred to as the Lapla-
cian difference equation.

In addition, boundary conditions along the edges of the plate must be specified to ob-
tain a unique solution. The simplest case is where the temperature at the boundary is set at
a fixed value. This is called a Dirichlet boundary condition. Such is the case for Fig. 29.4,
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i – 1, j i + 1, j
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FIGURE 29.3
A grid used for the finite-difference solution of elliptic PDEs in two independent variables such as
the Laplace equation.
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where the edges are held at constant temperatures. For the case illustrated in Fig. 29.4, a
balance for node (1, 1) is, according to Eq. (29.8),

T21 + T01 + T12 + T10 − 4T11 = 0 (29.9)

However, T01 = 75 and T10 = 0, and therefore, Eq. (29.9) can be expressed as

−4T11 + T12 + T21 = −75

Similar equations can be developed for the other interior points. The result is the fol-
lowing set of nine simultaneous equations with nine unknowns:

4T11 −T21 −T12 = 75

−T11 +4T21 −T31 −T22 = 0

−T21 +4T31 −T32 = 50

−T11 +4T12 −T22 −T13 = 75

−T21 −T12 +4T22 −T32 −T23 = 0

−T31 −T22 +4T32 −T33 = 50

−T12 +4T13 −T23 = 175

−T22 −T13 +4T23 −T33 = 100

−T32 −T23 +4T33 = 150

(29.10)

29.2.2 The Liebmann Method

Most numerical solutions of the Laplace equation involve systems that are much larger
than Eq. (29.10). For example, a 10-by-10 grid involves 100 linear algebraic equations.
Solution techniques for these types of equations were discussed in Part Three.
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(1, 3) (2, 3) (3, 3)

(1, 2) (2, 2) (3, 2)

(1, 1) (2, 1) (3, 1)

100�C

0�C

75�C 50�C

FIGURE 29.4
A heated plate where boundary temperatures are held at constant levels. This case is called a
Dirichlet boundary condition.
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Notice that there are a maximum of five unknown terms per line in Eq. (29.10). For
larger-sized grids, this means that a significant number of the terms will be zero. When ap-
plied to such sparse systems, full-matrix elimination methods waste great amounts of com-
puter memory storing these zeros. For this reason, approximate methods provide a viable
approach for obtaining solutions for elliptical equations. The most commonly employed
approach is Gauss-Seidel, which when applied to PDEs is also referred to as Liebmann’s
method. In this technique, Eq. (29.8) is expressed as

Ti, j = Ti+1, j + Ti−1, j + Ti, j+1 + Ti, j−1

4
(29.11)

and solved iteratively for j = 1 to n and i = 1 to m. Because Eq. (29.8) is diagonally dom-
inant, this procedure will eventually converge on a stable solution (recall Sec. 11.2.1).
Overrelaxation is sometimes employed to accelerate the rate of convergence by applying
the following formula after each iteration:

T new
i, j = λT new

i, j + (1 − λ)T old
i, j (29.12)

where T new
i, j and T old

i, j are the values of Ti, j from the present and the previous iteration, re-
spectively, and λ is a weighting factor that is set between 1 and 2.

As with the conventional Gauss-Seidel method, the iterations are repeated until the ab-
solute values of all the percent relative errors (εa)i, j fall below a prespecified stopping cri-
terion εs .These percent relative errors are estimated by

|(εa)i, j | =
∣∣∣∣∣T new

i, j − T old
i, j

T new
i, j

∣∣∣∣∣100% (29.13)

EXAMPLE 29.1 Temperature of a Heated Plate with Fixed Boundary Conditions

Problem Statement. Use Liebmann’s method (Gauss-Seidel) to solve for the tempera-
ture of the heated plate in Fig. 29.4. Employ overrelaxation with a value of 1.5 for the
weighting factor and iterate to εs = 1%.

Solution. Equation (29.11) at i = 1, j = 1 is

T11 = 0 + 75 + 0 + 0

4
= 18.75

and applying overrelaxation yields

T11 = 1.5(18.75) + (1 − 1.5)0 = 28.125

For i = 2, j = 1,

T21 = 0 + 28.125 + 0 + 0

4
= 7.03125

T21 = 1.5(7.03125) + (1 − 1.5)0 = 10.54688

For i = 3, j = 1,

T31 = 50 + 10.54688 + 0 + 0

4
= 15.13672

29.2 SOLUTION TECHNIQUE 855
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T31 = 1.5(15.13672) + (1 − 1.5)0 = 22.70508

The computation is repeated for the other rows to give

T12 = 38.67188 T22 = 18.45703 T32 = 34.18579

T13 = 80.12696 T23 = 74.46900 T33 = 96.99554

Because all the Ti, j’s are initially zero, all εa’s for the first iteration will be 100%.
For the second iteration the results are

T11 = 32.51953 T21 = 22.35718 T31 = 28.60108

T12 = 57.95288 T22 = 61.63333 T32 = 71.86833

T13 = 75.21973 T23 = 87.95872 T33 = 67.68736

The error for T1,1 can be estimated as [Eq. (29.13)]

|(εa)1,1| =
∣∣∣∣32.51953 − 28.12500

32.51953

∣∣∣∣100% = 13.5%

Because this value is above the stopping criterion of 1%, the computation is continued. The
ninth iteration gives the result

T11 = 43.00061 T21 = 33.29755 T31 = 33.88506

T12 = 63.21152 T22 = 56.11238 T32 = 52.33999

T13 = 78.58718 T23 = 76.06402 T33 = 69.71050

where the maximum error is 0.71%.
Figure 29.5 shows the results. As expected, a gradient is established as heat flows from

high to low temperatures.
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FIGURE 29.5
Temperature distribution for a heated plate subject to fixed boundary conditions.
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29.2.3 Secondary Variables

Because its distribution is described by the Laplace equation, temperature is considered to
be the primary variable in the heated-plate problem. For this case, as well as for other prob-
lems involving PDEs, secondary variables may also be of interest. As a matter of fact, in
certain engineering contexts, the secondary variable may actually be more important.

For the heated plate, a secondary variable is the rate of heat flux across the plate’s sur-
face. This quantity can be computed from Fourier’s law. Central finite-difference approxi-
mations for the first derivatives (recall Fig. 23.3) can be substituted into Eq. (29.4) to give
the following values for heat flux in the x and y dimensions:

qx = −k ′ Ti+1, j − Ti−1, j

2 �x
(29.14)

and

qx = −k ′ Ti, j+1 − Ti, j−1

2 �y
(29.15)

The resultant heat flux can be computed from these two quantities by

qn =
√

q2
x + q2

y (29.16)

where the direction of qn is given by

θ = tan−1

(
qy

qx

)
(29.17)

for qx > 0 and

θ = tan−1

(
qy

qx

)
+ π (29.18)

for qx < 0. Recall that the angle can be expressed in degrees by multiplying it by 180◦/π.
If qx = 0, θ is π/2 (90�) or 3π/2 (270�), depending on whether qy is positive or negative,
respectively.

EXAMPLE 29.2 Flux Distribution for a Heated Plate

Problem Statement. Employ the results of Example 29.1 to determine the distribution of
heat flux for the heated plate from Fig. 29.4. Assume that the plate is 40 × 40 cm and is
made out of aluminum [k′ = 0.49 cal/(s · cm · ◦C)].

Solution. For i = j = 1, Eq. (29.14) can be used to compute

qx = −0.49
cal

s · cm · ◦C

(33.29755 − 75)◦C

2(10 cm)
= 1.022 cal/(cm2 · s)

and [Eq. (29.15)]

qy = −0.49
cal

s · cm · ◦C

(63.21152 − 0)◦C

2(10 cm)
= −1.549 cal/(cm2 · s)
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The resultant flux can be computed with Eq. (29.16):

qn =
√

(1.022)2 + (−1.549)2 = 1.856 cal/(cm2 ·s)

and the angle of its trajectory by Eq. (29.17)

θ = tan−1

(−1.549

1.022

)
= −0.98758 × 180◦

π
= −56.584◦

Thus, at this point, the heat flux is directed down and to the right. Values at the other grid
points can be computed; the results are displayed in Fig. 29.6.

29.3 BOUNDARY CONDITIONS

Because it is free of complicating factors, the rectangular plate with fixed boundary condi-
tions has been an ideal context for showing how elliptic PDEs can be solved numerically.
We will now elaborate on other issues that will expand our capabilities to address more re-
alistic problems. These involve boundaries at which the derivative is specified and bound-
aries that are irregularly shaped.

29.3.1 Derivative Boundary Conditions

The fixed or Dirichlet boundary condition discussed to this point is but one of several types
that are used with partial differential equations. A common alternative is the case where the
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100�C

0�C

75�C 50�C

FIGURE 29.6
Heat flux for a plate subject to fixed boundary temperatures. Note that the lengths of the arrows
are proportional to the magnitude of the flux.
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derivative is given. This is commonly referred to as a Neumann boundary condition. For the
heated-plate problem, this amounts to specifying the heat flux rather than the temperature at
the boundary. One example is the situation where the edge is insulated. In this case, the
derivative is zero. This conclusion is drawn directly from Eq. (29.4) because insulating a
boundary means that the heat flux (and consequently the gradient) must be zero. Another
example would be where heat is lost across the edge by predictable mechanisms such as
radiation or convection.

Figure 29.7 depicts a node (0, j) at the left edge of a heated plate. Applying Eq. (29.8)
at the point gives

T1, j + T−1, j + T0, j+1 + T0, j−1 − 4T0, j = 0 (29.19)

Notice that an imaginary point (−1, j) lying outside the plate is required for this equation.
Although this exterior fictitious point might seem to represent a problem, it actually serves
as the vehicle for incorporating the derivative boundary condition into the problem. This is
done by representing the first derivative in the x dimension at (0, j) by the finite divided
difference

∂T

∂x
∼= T1, j − T−1, j

2 �x

which can be solved for

T−1, j = T1, j − 2 �x
∂T

∂x

Now we have a relationship for T−l, j that actually includes the derivative. It can be substi-
tuted into Eq. (29.19) to give

2T1, j − 2 �x
∂T

∂x
+ T0, j+1 + T0, j−1 − 4T0, j = 0 (29.20)

Thus, we have incorporated the derivative into the balance.
Similar relationships can be developed for derivative boundary conditions at the other

edges. The following example shows how this is done for the heated plate.

EXAMPLE 29.3 Heated Plate with an Insulated Edge

Problem Statement. Repeat the same problem as in Example 29.1, but with the lower
edge insulated.

Solution. The general equation to characterize a derivative at the lower edge (that is, at
j = 0) of a heated plate is

Ti+1,0 + Ti−1,0 + 2Ti,1 − 2 �y
∂T

∂y
− 4Ti,0 = 0

For an insulated edge, the derivative is zero and the equation becomes

Ti+1,0 + Ti−1,0 + 2Ti,1 − 4Ti,0 = 0
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T0, j + 1

T0, j – 1

T–1, j T0, j T1, j

FIGURE 29.7
A boundary node (0, j) on the
left edge of a heated plate.
To approximate the derivative
normal to the edge (that is, the
x derivative), an imaginary
point (−1, j) is located a
distance �x beyond the edge.
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The simultaneous equations for temperature distribution on the plate in Fig. 29.4 with an
insulated lower edge can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 −2
−1 4 −1 −2

−1 4 −2
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1
−1 4 −1

−1 −1 4 −1
−1 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T10

T20

T30

T11

T21

T31

T12

T22

T32

T13

T23

T33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

75
0
50
75
0
50
75
0
50
175
100
150

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Note that because of the derivative boundary condition, the matrix is increased to 12 × 12
in contrast to the 9 × 9 system in Eq. (29.10) to account for the three unknown tempera-
tures along the plate’s lower edge. These equations can be solved for

T10 = 71.91 T20 = 67.01 T30 = 59.54

T11 = 72.81 T21 = 68.31 T31 = 60.57

T12 = 76.01 T22 = 72.84 T32 = 64.42

T13 = 83.41 T23 = 82.63 T33 = 74.26
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75

75

75

75

50

50

50

50

100 100 100

83.4 82.6 74.3

76.0 72.8 64.4

72.8 68.3 60.6

71.9 67.0 59.5

Insulated

FIGURE 29.8
Temperature and flux distribution for a heated plate subject to fixed boundary conditions except
for an insulated lower edge.
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These results and computed fluxes (for the same parameters as in Example 29.2) are
displayed in Fig. 29.8. Note that, because the lower edge is insulated, the plate’s tempera-
ture is higher than for Fig. 29.5, where the bottom edge temperature is fixed at zero. In
addition, the heat flow (in contrast to Fig. 29.6) is now deflected to the right and moves par-
allel to the insulated wall.

29.3.2 Irregular Boundaries

Although the rectangular plate from Fig. 29.4 has served well to illustrate the fundamental
aspects of solving elliptic PDEs, many engineering problems do not exhibit such an ideal-
ized geometry. For example, a great many systems have irregular boundaries (Fig. 29.9).

Figure 29.9 is a system that can serve to illustrate how nonrectangular boundaries can
be handled. As depicted, the plate’s lower left boundary is circular. Notice that we have af-
fixed parameters—α1, α2, β1, β2—to each of the lengths surrounding the node. Of course,
for the plate depicted in Fig. 29.9, α2 = β2 = 1. However, we will retain these parameters
throughout the following derivation so that the resulting equation is generally applicable to
any irregular boundary—not just one on the lower left-hand corner of a heated plate. The
first derivatives in the x dimension can be approximated as(

∂T

∂x

)
i−1,i

∼= Ti, j − Ti−1, j

α1 �x
(29.21)

and (
∂T

∂x

)
i,i+1

∼= Ti+1, j − Ti, j

α2 �x
(29.22)
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�2 �y

�1 �y

�1 �x �2 �x

FIGURE 29.9
A grid for a heated plate with an irregularly shaped boundary. Note how weighting
coefficients are used to account for the nonuniform spacing in the vicinity of the
nonrectangular boundary.
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The second derivatives can be developed from these first derivatives. For the x dimension,
the second derivative is

∂2T

∂x2
= ∂

∂x

(
∂T

∂x

)
=

(
∂T

∂x

)
i,i+1

−
(

∂T

∂x

)
i−1,i

α1 �x + α2 �x

2

(29.23)

Substituting Eqs. (29.21) and (29.22) into (29.23) gives

∂2T

∂x2
= 2

Ti−1, j − Ti, j

α1 �x
− Ti+1, j − Ti, j

α2 �x
α1 �x + α2 �x

Collecting terms yields

∂2T

∂x2
= 2

�x2

[
Ti−1, j − Ti, j

α1(α1 + α2)
+ Ti+1, j − Ti, j

α2(α1 + α2)

]

A similar equation can be developed in the y dimension:

∂2T

∂y2
= 2

�y2

[
Ti, j−1 − Ti, j

β1(β1 + β2)
+ Ti, j+1 − Ti, j

β2(β1 + β2)

]

Substituting these equations in Eq. (29.6) yields

2

�x2

[
Ti−1, j − Ti, j

α1(α1 + α2)
+ Ti+1, j − Ti, j

α2(α1 + α2)

]

+ 2

�y2

[
Ti, j−1 − Ti, j

β1(β1 + β2)
+ Ti, j+1 − Ti, j

β2(β1 + β2)

]
= 0 (29.24)

As illustrated in the following example, Eq. (29.24) can be applied to any node that lies
adjacent to an irregular, Dirichlet-type boundary.

EXAMPLE 29.4 Heated Plate with an Irregular Boundary

Problem Statement. Repeat the same problem as in Example 29.1, but with the lower
edge as depicted in Fig. 29.9.

Solution. For the case in Fig. 29.9, �x = �y, α1 = β1 = 0.732, and α2 = β2 = 1. Sub-
stituting these values into Eq. (29.24) yields the following balance for node (1, 1):

0.788675(T01 − T11) + 0.57735(T21 − T11)

+ 0.788675(T10 − T11) + 0.57735(T12 − T11) = 0

Collecting terms, we can express this equation as

−4T11 + 0.8453T21 + 0.8453T12 = −1.1547T01 − 1.1547T10
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The simultaneous equations for temperature distribution on the plate in Fig. 29.9 with a
lower-edge boundary temperature of 75 can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −0.845 −0.845
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T11

T21

T31

T12

T22

T32

T13

T23

T33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

173.2
75
125
75
0
50
175
100
150

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

These equations can be solved for

T11 = 74.98 T21 = 72.76 T31 = 66.07

T12 = 77.23 T22 = 75.00 T32 = 66.52

T13 = 83.93 T23 = 83.48 T33 = 75.00

These results along with the computed fluxes are displayed in Fig. 29.10. Note that the
fluxes are computed in the same fashion as in Sec. 29.2.3, with the exception that (α1 + α2)
and (β1 + β2) are substituted for the 2’s in the denominators of Eqs. (29.14) and (29.15),
respectively. Section 32.3 illustrates how this is done.
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83.93 83.48 75.00
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100�C

75�C
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FIGURE 29.10
Temperature and flux distribution for a heated plate with a circular boundary.
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Derivative conditions for irregularly shaped boundaries are more difficult to formu-
late. Figure 29.11 shows a point near an irregular boundary where the normal derivative is
specified.

The normal derivative at node 3 can be approximated by the gradient between nodes
1 and 7,

∂T

∂η

∣∣∣∣
3

= T1 − T7

L17
(29.25)

When θ is less than 45� as shown, the distance from node 7 to 8 is �x tan θ, and linear in-
terpolation can be used to estimate

T7 = T8 + (T6 − T8)
�x tan θ

�y

The length L17 is equal to �x/cos θ. This length, along with the approximation for T7, can
be substituted into Eq. (29.25) to give

T1 =
(

�x

cos θ

)
∂T

∂η

∣∣∣∣
3

+ T6
�x tan θ

�y
+ T8

(
1 − �x tan θ

�y

)
(29.26)

Such an equation provides a means for incorporating the normal gradient into the
finite-difference approach. For cases where θ is greater than 45�, a different equation would
be used. The determination of this formula will be left as a homework exercise.

29.4 THE CONTROL-VOLUME APPROACH

To summarize, the finite-difference or Taylor series approach divides the continuum into
nodes (Fig. 29.12a). The underlying partial differential equation is written for each of these
nodes. Finite-difference approximations are then substituted for the derivatives to convert
the equations to an algebraic form.
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FIGURE 29.11
A curved boundary where the normal gradient is specified.
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Such an approach is quite simple and straightforward for orthogonal (that is, rectan-
gular) grids and constant coefficients. However, the approach becomes a more difficult
endeavor for derivative conditions on irregularly shaped boundaries.

Figure 29.13 is an example of a system where additional difficulties arise. This plate is
made of two different materials and has unequal grid spacing. In addition, half of its top
edge is subject to convective heat transfer, whereas half is insulated. Developing equations
for node (4, 2) would require some additional derivation beyond the approaches developed
to this point.
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(a) Pointwise, finite-difference
approach

(b) Control-volume
approach

FIGURE 29.12
Two different perspectives for developing approximate solutions of PDEs: (a) finite-difference and
(b) control volume.

Convection
Insulated

In
su

la
te

d

(4, 2)

h
h/2

h

(1, 1)

Material A Material B

�z

FIGURE 29.13
A heated plate with unequal grid spacing, two materials, and mixed boundary conditions.
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The control-volume approach (also called the volume-integral approach) offers an al-
ternative way to numerically approximate PDEs that is especially useful for cases such as
Fig. 29.13. As in Fig. 29.12b, the approach resembles the point-wise approach in that
points are determined across the domain. However, rather than approximating the PDE at
a point, the approximation is applied to a volume surrounding the point. For an orthogonal
grid, the volume is formed by the perpendicular lines through the midpoint of each line
joining adjacent nodes. A heat balance can then be developed for each volume in a fashion
similar to Eq. (29.1).

As an example, we will apply the control-volume approach to node (4, 2). First, the
volume is defined by bisecting the lines joining the nodes. As in Fig. 29.14, the volume has
conductive heat transfer through its left, right, and lower boundaries and convective heat
transfer through half of its upper boundary. Notice that the transfer through the lower
boundary involves both materials.

A steady-state heat balance for the volume can be written in qualitative terms as

0 =
(

left-side

conduction

)
−

(
right-side

conduction

)
+

(
lower conduction

material “a”

)

+
(

lower conduction

material “b”

)
−

(
upper

convection

)
(29.27)

Now the conduction flux rate can be represented by the finite-difference version of
Fourier’s law. For example, for the left-side conduction gain, it would be

q = −k ′
a

T42 − T41

h

where q has units of cal/cm2/s. This flux rate must be then multiplied by the area across
which it enters (�z × h/2) to give the rate of heat entering the volume per unit time,

Q = −k ′
a

T42 − T41

h

h

2
�z

where Q has units of cal/s.
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h/2

h/2 h/4

4, 1 4, 2 4, 3

3, 2

FIGURE 29.14
A control volume for node (4, 2) with arrows indicating heat transfer through the boundaries.
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The heat flux due to convection can be formulated as

q = hc(Ta − T42)

where hc = a heat convection coefficient [cal/(s · cm2 · �C)] and Ta = the air temperature
(�C). Again, multiplication by the proper area yields the rate of heat flow per time,

Q = hc(Ta − T42)
h

4
�z

The other transfers can be developed in a similar fashion and substituted into Eq. (29.27)
to yield

0 = −k ′
a

T42 − T41

h

h

2
�z + k ′

b

T43 − T42

h/2

h

2
�z

(left-side conduction) (right-side conduction)

−k ′
a

T42 − T32

h

h

2
�z − k ′

b

T42 − T32

h

h

4
�z + hc(Ta − T42)

h

4
�z(

lower conduction

material “a”

)(
lower conduction

material “b”

)
(upper convection)

Parameter values can then be substituted to yield the final heat balance equation. For exam-
ple, if �z = 0.5 cm, h = 10 cm, k ′

a = 0.3 cal/(s · cm · �C), k ′
b = 0.5 cal/(s · cm · �C), and

hc = 0.1 cal/(s · cm2 · �C), the equation becomes

0.5875T42 − 0.075T41 − 0.25T43 − 0.1375T32 = 2.5

To make the equation comparable to the standard Laplacian, this equation can be multi-
plied by 4/0.5875 so that the coefficient of the base node has a coefficient of 4,

4T42 − 0.510638T41 − 1.702128T43 − 0.93617T32 = 17.02128

For the standard cases covered to this point, the control-volume and pointwise finite-
difference approaches yield identical results. For example, for node (1, 1) in Fig. 29.13, the
balance would be

0 = −k ′
a

T11 − T01

h
h �z + k ′

a

T21 − T11

h
h �z − k ′

a

T11 − T10

h
h �z + k′

a

T12 − T11

h
h �z

which simplifies to the standard Laplacian,

0 = 4T11 − T01 − T21 − T12 − T10

We will look at other standard cases (for example, the derivative boundary condition) and
explore the control-volume approach in additional detail in the problems at the end of this
chapter.

29.5 SOFTWARE TO SOLVE ELLIPTIC EQUATIONS

Modifying a computer program to include derivative boundary conditions for rectangular
systems is a relatively straightforward task. It merely involves ensuring that additional
equations are generated to characterize the boundary nodes at which the derivatives are
specified. In addition, the code must be modified so that these equations incorporate the
derivative as seen in Eq. (29.20).
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29.1 Use Liebmann’s method to solve for the temperature of the
square heated plate in Fig. 29.4, but with the upper boundary
condition increased to 150°C and the left boundary insulated. Use a
relaxation factor of 1.2 and iterate to εs = 1%.
29.2 Use Liebmann’s method to solve for the temperature of the
square heated plate in Fig. 29.4, but with the upper boundary con-

dition increased to 120°C and the left boundary decreased to 60°C.
Use a relaxation factor of 1.2 and iterate to εs = 1%.
29.3 Compute the fluxes for Prob. 29.2 using the parameters from
Example 29.3.
29.4 Repeat Example 29.1, but use 49 interior nodes (that is, �x =
�y = 5 cm).
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Developing general software to characterize systems with irregular boundaries is a
much more difficult proposition. For example, a fairly involved algorithm would be re-
quired to model the simple gasket depicted in Fig. 29.15. This would involve two major
modifications. First, a scheme would have to be developed to conveniently input the con-
figuration of the nodes and to identify which were at the boundary. Second, an algorithm
would be required to generate the proper simultaneous equations on the basis of the input
information. The net result is that general software for solving elliptic (and for that matter,
all) PDEs is relatively complicated.

One method used to simplify such efforts is to require a very fine grid. For such cases,
it is often assumed that the closest node serves as the boundary point. In this way, the analy-
sis does not have to consider the weighting parameters from Sec. 29.3.2. Although this in-
troduces some error, the use of a sufficiently fine mesh can make the resulting discrepancy
negligible. However, this involves a trade-off due to the computational burden introduced
by the increased number of simultaneous equations.

As a consequence of these considerations, numerical analysts have developed alterna-
tive approaches that differ radically from finite-difference methods. Although these finite-
element methods are more conceptually difficult, they can much more easily accommodate
irregular boundaries. We will turn to these methods in Chap. 31. Before doing this, how-
ever, we will first describe finite-difference approaches for another category of PDEs—
parabolic equations.

FIGURE 29.15
A finite-difference grid superim-
posed on an irregularly shaped
gasket.

PROBLEMS
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temperature and flux. Test the program by duplicating the results of
Examples 29.1 and 29.2.
29.14 Employ the program from Prob. 29.13 to solve Probs. 29.2
and 29.3.
29.15 Employ the program from Prob 29.13 to solve Prob. 29.4.
29.16 Use the control-volume approach and derive the node equa-
tion for node (2, 2) in Fig. 29.13 and include a heat source at this
point. Use the following values for the constants: �z = 0.25 cm,
h = 10 cm, kA = 0.25 W/cm · C, and kB = 0.45 W/cm · C. The heat
source comes only from material A at the rate of = 6 W/cm3.
29.17 Calculate heat flux (W/cm2) for node (2, 2) in Fig. 29.13
using finite-difference approximations for the temperature gradients
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29.5 Repeat Prob. 29.4, but for the case where the lower edge is
insulated.
29.6 Repeat Examples 29.1 and 29.3, but for the case where the flux
at the lower edge is directed downward with a value of 2 cal/cm2 · s.
29.7 Repeat Example 29.4 for the case where both the lower left
and the upper right corners are rounded in the same fashion as the
lower left corner of Fig. 29.9. Note that all boundary temperatures
on the upper and right sides are fixed at 100°C and all on the lower
and left sides are fixed at 50°C.
29.8 With the exception of the boundary conditions, the plate in
Fig. P29.8 has the exact same characteristics as the plate used in
Examples 23.1 through 23.4. Simulate both the temperatures and
fluxes for the plate.
29.9 Write equations for the darkened nodes in the grid in
Fig. P29.9. Note that all units are cgs. The coefficient of thermal
conductivity for the plate is 0.75 cal/(s · cm · °C), the convection
coefficient is hc = 0.015 cal/(cm2 · C · s), and the thickness of the
plate is 0.5 cm.
29.10 Write equations for the darkened nodes in the grid in
Fig. P29.10. Note that all units are cgs. The convection coeffi-
cient is hc = 0.01 cal/(cm2 · C · s) and the thickness of the plate is
2 cm.
29.11 Apply the control volume approach to develop the equation
for node (0, j) in Fig. 29.7.
29.12 Derive an equation like Eq. (29.26) for the case where θ is
greater than 45° for Fig. 29.11.
29.13 Develop a user-friendly computer program to implement
Liebmann’s method for a rectangular plate with Dirichlet boundary
conditions. Design the program so that it can compute both
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at this node. Calculate the flux in the horizontal direction in mate-
rials A and B, and determine if these two fluxes should be equal.
Also, calculate the vertical flux in materials A and B. Should these
two fluxes be equal? Use the following values for the constants:
�z = 0.5 cm, h = 10 cm, kA = 0.25 W/cm · C, kB = 0.45 W/cm · C,
and nodal temperatures: T22 = 51.6°C, T21 = 74.2°C, T23 = 45.3°C,
T32 = 38.6°C, and T12 = 87.4°C.
29.18 Compute the temperature distribution for the L-shaped plate
in Fig. P29.18.
29.19 The Poisson equation can be written in three dimensions as 

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= f (x, y, z)

Solve for the distribution of temperature within a unit (1 × 1) cube
with zero boundary conditions and f = −10. Employ �x = �y =
�z = 1�6.

870 FINITE DIFFERENCE: ELLIPTIC EQUATIONS
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871

30C H A P T E R 30

Finite Difference: Parabolic
Equations

Chapter 29 dealt with steady-state PDEs. We now turn to the parabolic equations that are
employed to characterize time-variable problems. In the latter part of this chapter, we will
illustrate how this is done in two spatial dimensions for the heated plate. Before doing this,
we will first show how the simpler one-dimensional case is approached.

30.1 THE HEAT-CONDUCTION EQUATION

In a fashion similar to the derivation of the Laplace equation [Eq. (29.6)], conservation of
heat can be used to develop a heat balance for the differential element in the long, thin
insulated rod shown in Fig. 30.1. However, rather than examine the steady-state case, the
present balance also considers the amount of heat stored in the element over a unit time pe-
riod �t. Thus, the balance is in the form, inputs − outputs = storage, or

q(x) �y �z �t − q(x + �x) �y �z �t = �x �y �zρC �T

Dividing by the volume of the element (= �x �y �z) and �t gives

q(x) − q(x + �x)

�x
= ρC

�T

�t

Taking the limit yields

−∂q

∂x
= ρC

∂T

∂t

FIGURE 30.1
A thin rod, insulated at all points except at its ends.

CoolHot
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872 FINITE DIFFERENCE: PARABOLIC EQUATIONS

Substituting Fourier’s law of heat conduction [Eq. (29.4)] results in

k
∂2T

∂x2
= ∂T

∂t
(30.1)

which is the heat-conduction equation.
Just as with elliptic PDEs, parabolic equations can be solved by substituting finite di-

vided differences for the partial derivatives. However, in contrast to elliptic PDEs, we must
now consider changes in time as well as in space. Whereas elliptic equations were bounded
in all relevant dimensions, parabolic PDEs are temporally open-ended (Fig. 30.2). Because
of their time-variable nature, solutions to these equations involve a number of new issues,
notably stability. This, as well as other aspects of parabolic PDEs, will be examined in
the following sections as we present two fundamental solution approaches—explicit and
implicit schemes.

30.2 EXPLICIT METHODS

The heat-conduction equation requires approximations for the second derivative in space
and the first derivative in time. The former is represented in the same fashion as for the
Laplace equation by a centered finite-divided difference:

∂2T

∂x2
= T l

i+1 − 2T l
i + T l

i−1

�x2
(30.2)

FIGURE 30.2
A grid used for the finite-difference solution of parabolic PDEs in two independent variables such
as the heat-conduction equation. Note how, in contrast to Fig. 29.3, this grid is open-ended in
the temporal dimension.
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which has an error (recall Fig. 23.3) of O[(�x)2]. Notice the slight change in notation of the
superscripts is used to denote time. This is done so that a second subscript can be used
to designate a second spatial dimension when the approach is expanded to two spatial
dimensions.

A forward finite-divided difference is used to approximate the time derivative

∂T

∂t
= T l+1

i − T l
i

�t
(30.3)

which has an error (recall Fig. 23.1) of O(�t).
Substituting Eqs. (30.2) and (30.3) into Eq. (30.1) yields

k
T l

i+1 − 2T l
i + T l

i−1

(�x)2
= T l+1

i − T l
i

�t
(30.4)

which can be solved for

T l+1
i = T l

i + λ
(
T l

i+1 − 2T l
i + T l

i−1

)
(30.5)

where λ = k �t/(�x)2.
This equation can be written for all the interior nodes on the rod. It then provides an

explicit means to compute values at each node for a future time based on the present val-
ues at the node and its neighbors. Notice that this approach is actually a manifestation of
Euler’s method for solving systems of ODEs. That is, if we know the temperature distri-
bution as a function of position at an initial time, we can compute the distribution at a fu-
ture time based on Eq. (30.5).

A computational molecule for the explicit method is depicted in Fig. 30.3, showing the
nodes that constitute the spatial and temporal approximations. This molecule can be con-
trasted with others in this chapter to illustrate the differences between approaches.

30.2 EXPLICIT METHODS 873

FIGURE 30.3
A computational molecule for the explicit form.
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874 FINITE DIFFERENCE: PARABOLIC EQUATIONS

EXAMPLE 30.1 Explicit Solution of the One-Dimensional Heat-Conduction Equation

Problem Statement. Use the explicit method to solve for the temperature distribution of a
long, thin rod with a length of 10 cm and the following values: k′= 0.49 cal/(s · cm · �C),
�x = 2 cm, and �t = 0.1 s. At t = 0, the temperature of the rod is zero and the boundary
conditions are fixed for all times at T(0) = 100�C and T(10) = 50�C. Note that the rod is alu-
minum with C = 0.2174 cal/(g · �C) and ρ = 2.7 g/cm3. Therefore, k = 0.49/(2.7 · 0.2174) =
0.835 cm2/s and λ = 0.835(0.1)/(2)2 = 0.020875.

Solution. Applying Eq. (30.5) gives the following value at t = 0.1 s for the node at
x = 2 cm:

T 1
1 = 0 + 0.020875[0 − 2(0) + 100] = 2.0875

At the other interior points, x = 4, 6, and 8 cm, the results are

T 1
2 = 0 + 0.020875[0 − 2(0) + 0] = 0

T 1
3 = 0 + 0.020875[0 − 2(0) + 0] = 0

T 1
4 = 0 + 0.020875[50 − 2(0) + 0] = 1.0438

At t = 0.2 s, the values at the four interior nodes are computed as

T 2
1 = 2.0875 + 0.020875[0 − 2(2.0875) + 100] = 4.0878

T 2
2 = 0 + 0.020875[0 − 2(0) + 2.0875] = 0.043577

T 2
3 = 0 + 0.020875[1.0438 − 2(0) + 0] = 0.021788

T 2
4 = 1.0438 + 0.020875[50 − 2(1.0438) + 0] = 2.0439

The computation is continued, and the results at 3-s intervals are depicted in Fig. 30.4. The
general rise in temperature with time indicates that the computation captures the diffusion
of heat from the boundaries into the bar.

FIGURE 30.4
Temperature distribution in a long, thin rod as computed with the explicit method described in
Sec. 30.2.
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30.2.1 Convergence and Stability

Convergence means that as �x and �t approach zero, the results of the finite-difference
technique approach the true solution. Stability means that errors at any stage of the compu-
tation are not amplified but are attenuated as the computation progresses. It can be shown
(Carnahan et al., 1969) that the explicit method is both convergent and stable if λ ≤ 1/2, or

�t ≤ 1

2

�x2

k
(30.6)

In addition, it should be noted that setting λ ≤ 1/2 could result in a solution in which errors do
not grow, but oscillate. Setting λ ≤ 1/4 ensures that the solution will not oscillate. It is also
known that setting λ = 1/6 tends to minimize truncation error (Carnahan et al., 1969).

Figure 30.5 is an example of instability caused by violating Eq. (30.6). This plot is for
the same case as in Example 30.1 but with λ = 0.735, which is considerably greater than
0.5. As in Fig. 30.5, the solution undergoes progressively increasing oscillations. This sit-
uation will continue to deteriorate as the computation continues.

Although satisfaction of Eq. (30.6) will alleviate the instabilities of the sort manifested
in Fig. 30.5, it also places a strong limitation on the explicit method. For example, suppose
that �x is halved to improve the approximation of the spatial second derivative. According
to Eq. (30.6), the time step must be quartered to maintain convergence and stability. Thus,
to perform comparable computations, the time steps must be increased by a factor of 4.
Furthermore, the computation for each of these time steps will take twice as long because
halving �x doubles the total number of nodes for which equations must be written. Conse-
quently, for the one-dimensional case, halving �x results in an eightfold increase in the
number of calculations. Thus, the computational burden may be large to attain acceptable
accuracy. As will be described shortly, other techniques are available that do not suffer
from such severe limitations.

30.2.2 Derivative Boundary Conditions

As was the case for elliptic PDEs (recall Sec. 29.3.1), derivative boundary conditions can
be readily incorporated into parabolic equations. For a one-dimensional rod, this necessi-
tates adding two equations to characterize the heat balance at the end nodes. For example,
the node at the left end (i = 0) would be represented by

T l+1
0 = T l

0 + λ
(
T l

1 − 2T l
0 + T l

−1

)
Thus, an imaginary point is introduced at i = −1 (recall Fig. 29.7). However, as with the
elliptic case, this point provides a vehicle for incorporating the derivative boundary condi-
tion into the analysis. Problem 30.2 at the end of the chapter deals with this exercise.

30.2.3 Higher-Order Temporal Approximations

The general idea of reexpressing the PDE as a system of ODEs is sometimes called the
method of lines. Obviously, one way to improve on the Euler approach used above would
be to employ a more accurate integration scheme for solving the ODEs. For example, the
Heun method can be employed to obtain second-order temporal accuracy. An example of

30.2 EXPLICIT METHODS 875
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876 FINITE DIFFERENCE: PARABOLIC EQUATIONS

this approach is called MacCormack’s method. This and other improved explicit methods
are discussed elsewhere (for example, Hoffman, 1992).

30.3 A SIMPLE IMPLICIT METHOD

As noted previously, explicit finite-difference formulations have problems related to sta-
bility. In addition, as depicted in Fig. 30.6, they exclude information that has a bearing on
the solution. Implicit methods overcome both these difficulties at the expense of somewhat
more complicated algorithms.

FIGURE 30.5
An illustration of instability. Solution of Example 30.1 but with λ = 0.735.
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The fundamental difference between explicit and implicit approximations is depicted
in Fig. 30.7. For the explicit form, we approximate the spatial derivative at time level l
(Fig. 30.7a). Recall that when we substituted this approximation into the partial differen-
tial equation, we obtained a difference equation (30.4) with a single unknown T l+1

i . Thus,
we can solve “explicitly” for this unknown as in Eq. (30.5).

In implicit methods, the spatial derivative is approximated at an advanced time level
l + 1. For example, the second derivative would be approximated by (Fig. 30.7b)

∂2T

∂x2
∼= T l+1

i+1 − 2T l+1
i + T l+1

i−1

(�x)2 (30.7)

which is second-order accurate. When this relationship is substituted into the original PDE,
the resulting difference equation contains several unknowns. Thus, it cannot be solved

30.3 A SIMPLE IMPLICIT METHOD 877

FIGURE 30.6
Representation of the effect
of other nodes on the finite-
difference approximation at
node (i, I) using an explicit
finite-difference scheme. The
shaded nodes have an influ-
ence on (i, I), whereas the un-
shaded nodes, which in reality
affect (i, I), are excluded.
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878 FINITE DIFFERENCE: PARABOLIC EQUATIONS

explicitly by simple algebraic rearrangement as was done in going from Eq. (30.4) to
(30.5). Instead, the entire system of equations must be solved simultaneously. This is pos-
sible because, along with the boundary conditions, the implicit formulations result in a set
of linear algebraic equations with the same number of unknowns. Thus, the method re-
duces to the solution of a set of simultaneous equations at each point in time.

To illustrate how this is done, substitute Eqs. (30.3) and (30.7) into Eq. (30.1) to give

k
T l+1

i+1 − 2T l+1
i + T l+1

i−1

(�x)2
= T l+1

i − T l
i

�t

which can be expressed as

−λT l+1
i−1 + (1 + 2λ)T l+1

i − λT l+1
i+1 = T l

i (30.8)

where λ = k �t/(�x)2. This equation applies to all but the first and the last interior nodes,
which must be modified to reflect the boundary conditions. For the case where the temper-
ature levels at the ends of the rod are given, the boundary condition at the left end of the
rod (i = 0) can be expressed as

T l+1
0 = f0(t

l+1) (30.9)

where f0(t l+1) = a function describing how the boundary temperature changes with time.
Substituting Eq. (30.9) into Eq. (30.8) gives the difference equation for the first interior
node (i = 1):

(1 + 2λ)T l+1
1 − λT l+1

2 = T l
1 + λ f0(t

l+1) (30.10)

Similarly, for the last interior node (i = m),

−λT l+1
m−1 + (1 + 2λ)T l+1

m = T l
m + λ fm+1(t

l+1) (30.11)

where fm+1(t l+1) describes the specified temperature changes at the right end of the rod
(i = m + 1).

When Eqs. (30.8), (30.10), and (30.11) are written for all the interior nodes, the result-
ing set of m linear algebraic equations has m unknowns. In addition, the method has the
added bonus that the system is tridiagonal. Thus, we can utilize the extremely efficient
solution algorithms (recall Sec. 11.1.1) that are available for tridiagonal systems.

EXAMPLE 30.2 Simple Implicit Solution of the Heat-Conduction Equation

Problem Statement. Use the simple implicit finite-difference approximation to solve the
same problem as in Example 30.1.

Solution. For the rod from Example 30.1, λ = 0.020875. Therefore, at t = 0, Eq. (30.10)
can be written for the first interior node as

1.04175T 1
1 − 0.020875T 1

2 = 0 + 0.020875(100)

or

1.04175T 1
1 − 0.020875T 1

2 = 2.0875
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In a similar fashion, Eqs. (30.8) and (30.11) can be applied to the other interior nodes. This
leads to the following set of simultaneous equations:⎡

⎢⎢⎢⎣
1.04175 −0.020875

−0.020875 1.04175 −0.020875
−0.020875 1.04175 −0.020875

−0.020875 1.04175

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1
1

T 1
2

T 1
3

T 1
4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.0875
0
0

1.04375

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

which can be solved for the temperature at t = 0.1 s:

T 1
1 = 2.0047

T 1
2 = 0.0406

T 1
3 = 0.0209

T 1
4 = 1.0023

Notice how in contrast to Example 30.1, all the points have changed from the initial con-
dition during the first time step.

To solve for the temperatures at t = 0.2, the right-hand-side vector must be modified
to account for the results of the first step, as in⎧⎪⎪⎨

⎪⎪⎩
4.09215
0.04059
0.02090
2.04069

⎫⎪⎪⎬
⎪⎪⎭

The simultaneous equations can then be solved for the temperatures at t = 0.2 s:

T 2
1 = 3.9305

T 2
2 = 0.1190

T 2
3 = 0.0618

T 2
4 = 1.9653

Whereas the implicit method described is stable and convergent, it has the defect that
the temporal difference approximation is first-order accurate, whereas the spatial differ-
ence approximation is second-order accurate (Fig. 30.8). In the next section we present an
alternative implicit method that remedies the situation.

Before proceeding, it should be mentioned that, although the simple implicit method
is unconditionally stable, there is an accuracy limit to the use of large time steps. Conse-
quently, it is not that much more efficient than the explicit approaches for most time-
variable problems.

Where it does shine is for steady-state problems. Recall from Chap. 29 that a form of
Gauss-Seidel (Liebmann’s method) can be used to obtain steady-state solutions for elliptic
equations. An alternative approach would be to run a time-variable solution until it reached
a steady state. In such cases, because inaccurate intermediate results are not an issue,
implicit methods allow you to employ larger time steps, and hence, can generate steady-
state results in an efficient manner.
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880 FINITE DIFFERENCE: PARABOLIC EQUATIONS

30.4 THE CRANK-NICOLSON METHOD

The Crank-Nicolson method provides an alternative implicit scheme that is second-order
accurate in both space and time. To provide this accuracy, difference approximations are
developed at the midpoint of the time increment (Fig. 30.9). To do this, the temporal first
derivative can be approximated at t l+1/2 by

∂T

∂t
∼= T l+1

i − T l
i

�t
(30.12)

The second derivative in space can be determined at the midpoint by averaging the differ-
ence approximations at the beginning (t l) and at the end (t l+1) of the time increment

∂2T

∂x2
∼= 1

2

[
T l

i+1 − 2T l
i + T l

i−1

(�x)2
+ T l+1

i+1 − 2T l+1
i + T l+1

i−1

(�x)2

]
(30.13)

FIGURE 30.8
A computational molecule for
the simple implicit method.

Grid point involved in time difference

Grid point involved in space difference

xi – 1 xi xi + 1

t l 

t l + 1

FIGURE 30.9
A computational molecule for
the Crank-Nicolson method.
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Substituting Eqs. (30.12) and (30.13) into Eq. (30.1) and collecting terms gives

−λT l+1
i−1 + 2(1 + λ)T l+1

i − λT l+1
i+1 = λT l

i−1 + 2(1 − λ)T l
i + λT l

i+1 (30.14)

where λ = k �t/(�x)2. As was the case with the simple implicit approach, boundary con-
ditions of T l+1

0 = f0(t l+1) and T l+1
m+1 = fm+1(t l+1) can be prescribed to derive versions of

Eq. (30.14) for the first and the last interior nodes. For the first interior node

2(1 + λ)T l+1
1 − λT l+1

2 = λ f0(t
l) + 2(1 − λ)T l

1 + λT l
2 + λ f0(t

l+1) (30.15)

and for the last interior node,

−λT l+1
m−1 + 2(1 + λ)T l+1

m = λ fm+1(t
l) + 2(1 − λ)T l

m + λT l
m−1 + λ fm+1(t

l+1)

(30.16)

Although Eqs. (30.14) through (30.16) are slightly more complicated than Eqs. (30.8),
(30.10), and (30.11), they are also tridiagonal and, therefore, efficient to solve.

EXAMPLE 30.3 Crank-Nicolson Solution to the Heat-Conduction Equation

Problem Statement. Use the Crank-Nicolson method to solve the same problem as in
Examples 30.1 and 30.2.

Solution. Equations (30.14) through (30.16) can be employed to generate the following
tridiagonal set of equations:⎡

⎢⎢⎢⎣
2.04175 −0.020875

−0.020875 2.04175 −0.020875
−0.020875 2.04175 −0.020875

−0.020875 2.04175

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1
1

T 1
2

T 1
3

T 1
4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4.175
0
0

2.0875

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

which can be solved for the temperatures at t = 0.1 s:

T 1
1 = 2.0450

T 1
2 = 0.0210

T 1
3 = 0.0107

T 1
4 = 1.0225

To solve for the temperatures at t = 0.2 s, the right-hand-side vector must be changed to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8.1801
0.0841
0.0427
4.0901

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The simultaneous equations can then be solved for

T 2
1 = 4.0073

T 2
2 = 0.0826

T 2
3 = 0.0422

T 2
4 = 2.0036
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882 FINITE DIFFERENCE: PARABOLIC EQUATIONS

30.4.1 Comparison of One-Dimensional Methods

Equation (30.1) can be solved analytically. For example, a solution is available for the case
where the rod’s temperature is initially at zero. At t = 0, the boundary condition at x = L is
instantaneously increased to a constant level of T while T(0) is held at zero. For this case,
the temperature can be computed by

T = T

[
x

L
+

∞∑
n=0

2

nπ
(−1)n sin

(nx

L

)
exp

(−n2π2kt

L2

)]
(30.17)

where L = total length of the rod. This equation can be employed to compute the evolution
of the temperature distribution for each boundary condition. Then, the total solution can be
determined by superposition.

EXAMPLE 30.4 Comparison of Analytical and Numerical Solutions

Problem Statement. Compare the analytical solution from Eq. (30.17) with numerical
results obtained with the explicit, simple implicit, and Crank-Nicolson techniques. Perform
the comparison for the rod employed in Examples 30.1, 30.2, and 30.3.

Solution. Recall from the previous examples that k = 0.835 cm2/s, L = 10 cm, and
�x = 2 cm. For this case, Eq. (30.17) can be used to predict that the temperature at
x = 2 cm, and t = 10 s would equal 64.8018. Table 30.1 presents numerical predictions of
T(2, 10). Notice that a range of time steps are employed. These results indicate a number
of properties of the numerical methods. First, it can be seen that the explicit method is
unstable for high values of λ. This instability is not manifested by either implicit approach.
Second, the Crank-Nicolson method converges more rapidly as λ is decreased and pro-
vides moderately accurate results even when λ is relatively high. These outcomes are as
expected because Crank-Nicolson is second-order accurate with respect to both indepen-
dent variables. Finally, notice that as λ decreases, the methods seem to be converging on a
value of 64.73 that is different than the analytical result of 64.80. This should not be sur-
prising because a fixed value of �x = 2 is used to characterize the x dimension. If both �x
and �t were decreased as λ was decreased (that is, more spatial segments were used), the
numerical solution would more closely approach the analytical result.

TABLE 30.1 Comparison of three methods of solving a parabolic PDE: the heated rod.
The results shown are for temperature at t =10 s at x = 2 cm for the rod from
Examples 30.1 through 30.3. Note that the analytical solution is 
T(2, 10) = 64.8018.

�t � Explicit Implicit Crank-Nicolson

10 2.0875 208.75 53.01 79.77
5 1.04375 −9.13 58.49 64.79
2 0.4175 67.12 62.22 64.87
1 0.20875 65.91 63.49 64.77
0.5 0.104375 65.33 64.12 64.74
0.2 0.04175 64.97 64.49 64.73
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The Crank-Nicolson method is often used for solving linear parabolic PDEs in one
spatial dimension. Its advantages become even more pronounced for more complicated
applications such as those involving unequally spaced meshes. Such nonuniform spacing
is often advantageous where we have foreknowledge that the solution varies rapidly in
local portions of the system. Further discussion of such applications and the Crank-Nicolson
method in general can be found elsewhere (Ferziger, 1981; Lapidus and Pinder, 1981;
Hoffman 1992).

30.5 PARABOLIC EQUATIONS IN TWO SPATIAL DIMENSIONS

The heat-conduction equation can be applied to more than one spatial dimension. For two
dimensions, its form is

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)
(30.18)

One application of this equation is to model the temperature distribution on the face of a
heated plate. However, rather than characterizing its steady-state distribution, as was done
in Chap. 29, Eq. (30.18) provides a means to compute the plate’s temperature distribution
as it changes in time.

30.5.1 Standard Explicit and Implicit Schemes

An explicit solution can be obtained by substituting finite-difference approximations of the
form of Eqs. (30.2) and (30.3) into Eq. (30.18). However, as with the one-dimensional
case, this approach is limited by a stringent stability criterion. For the two-dimensional
case, the criterion is

�t ≤ 1

8

(�x)2 + (�y)2

k

Thus, for a uniform grid (�x = �y), λ = k �t/(�x)2 must be less than or equal to 1/4.
Consequently, halving the step size results in a fourfold increase in the number of nodes
and a 16-fold increase in computational effort.

As was the case with one-dimensional systems, implicit techniques offer alternatives
that guarantee stability. However, the direct application of implicit methods such as the
Crank-Nicolson technique leads to the solution of m × n simultaneous equations. Addi-
tionally, when written for two or three spatial dimensions, these equations lose the valuable
property of being tridiagonal. Thus, matrix storage and computation time can become
exorbitantly large. The method described in the next section offers one way around this
dilemma.

30.5.2 The ADI Scheme

The alternating-direction implicit, or ADI, scheme provides a means for solving para-
bolic equations in two spatial dimensions using tridiagonal matrices. To do this, each time

30.5 PARABOLIC EQUATIONS IN TWO SPATIAL DIMENSIONS 883
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884 FINITE DIFFERENCE: PARABOLIC EQUATIONS

increment is executed in two steps (Fig. 30.10). For the first step, Eq. (30.18) is approxi-
mated by

T l+1/2
i, j − T l

i, j

�t/2
= k

[
T l

i+1, j − 2T l
i, j + T l

i−1, j

(�x)2
+ T l+1/2

i, j+1 − 2T l+1/2
i, j + T l+1/2

i, j−1

(�y)2

]
(30.19)

Thus, the approximation of ∂2T/∂x2 is written explicitly—that is, at the base point tl where
values of temperature are known. Consequently, only the three temperature terms in the ap-
proximation of ∂2T/∂y2 are unknown. For the case of a square grid (�y = �x), this equa-
tion can be expressed as

−λT l+1/2
i, j−1 + 2(1 + λ)T l+1/2

i, j − λT l+1/2
i, j+1 = λT l

i−1, j + 2(1 − λ)T l
i, j + λT l

i+1, j

(30.20)

which, when written for the system, results in a tridiagonal set of simultaneous equations.
For the second step from t l+1/2 to t l+1, Eq. (30.18) is approximated by

T l+1
i, j − T l+1/2

i, j

�t/2
= k

[
T l+1

i+1, j − 2T l+1
i, j + T l+1

i−1, j

(�x)2
+ T l+1/2

i, j+1 − 2T l+1/2
i, j + T l+1/2

i, j−1

(�y)2

]

(30.21)

In contrast to Eq. (30.19), the approximation of ∂2T/∂x2 is now implicit. Thus, the bias
introduced by Eq. (30.19) will be partially corrected. For a square grid, Eq. (30.21) can be
written as

−λT l+1
i−1, j + 2(1 + λ)T l+1

i, j − λT l+1
i+1, j = λT l+1/2

i, j−1 + 2(1 − λ)T l+1/2
i, j + λT l+1/2

i, j+1

(30.22)

Again, when written for a two-dimensional grid, the equation results in a tridiagonal system
(Fig. 30.11). As in the following example, this leads to an efficient numerical solution.

FIGURE 30.10
The two half-steps used in imple-
menting the alternating-direction
implicit scheme for solving para-
bolic equations in two spatial
dimensions.

yj + 1

yj – 1
xi – 1 xi xi + 1

t l + 1

t l + 1/2

t l

xi – 1 xi xi + 1

yj

yj + 1

yj – 1

yj

Explicit
Implicit

(a) First half-step (b) Second half-step
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EXAMPLE 30.5 ADI Method

Problem Statement. Use the ADI method to solve for the temperature of the plate in
Examples 29.1 and 29.2. At t = 0, assume that the temperature of the plate is zero and the
boundary temperatures are instantaneously brought to the levels shown in Fig. 29.4. Em-
ploy a time step of 10 s. Recall from Example 30.1 that the coefficient of thermal diffusiv-
ity for aluminum is k = 0.835 cm2/s.

Solution. A value of �x = 10 cm was employed to characterize the 40 × 40-cm plate
from Examples 29.1 and 29.2. Therefore, λ = 0.835(10)/(10)2 = 0.0835. For the first step
to t = 5 (Fig. 30.11a), Eq. (30.20) is applied to nodes (1, 1), (1, 2), and (1, 3) to yield the
following tridiagonal equations:⎡

⎣ 2.167 −0.0835
−0.0835 2.167 −0.0835

−0.0835 2.167

⎤
⎦

⎧⎨
⎩

T1,1

T1,2

T1,3

⎫⎬
⎭ =

⎧⎨
⎩

6.2625
6.2625

14.6125

⎫⎬
⎭

which can be solved for

T1,1 = 3.01597 T1,2 = 3.2708 T1,3 = 6.8692

In a similar fashion, tridiagonal equations can be developed and solved for

T2,1 = 0.1274 T2,2 = 0.2900 T2,3 = 4.1291

and

T3,1 = 2.0181 T3,2 = 2.2477 T3,3 = 6.0256

For the second step to t = 10 (Fig. 30.11b), Eq. (30.22) is applied to nodes (1, 1), (2, 1),
and (3, 1) to yield⎡

⎣ 2.167 −0.0835
−0.0835 2.167 −0.0835

−0.0835 2.167

⎤
⎦

⎧⎨
⎩

T1,1

T2,1

T3,1

⎫⎬
⎭ =

⎧⎨
⎩

12.0639
0.2577
8.0619

⎫⎬
⎭

FIGURE 30.11
The ADI method only results in
tridiagonal equations if it is ap-
plied along the dimension that
is implicit. Thus, on the first step
(a), it is applied along the y di-
mension and, on the second
step (b), along the x dimension.
These “alternating directions”
are the root of the method’s
name.

(a) First direction (b) Second direction

i = 1 i = 1i = 2 i = 2

j = 3

j = 2

j = 1

i = 3 i = 3

y

x
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which can be solved for

T1,1 = 5.5855 T2,1 = 0.4782 T3,1 = 3.7388

Tridiagonal equations for the other rows can be developed and solved for

T1,2 = 6.1683 T2,2 = 0.8238 T3,2 = 4.2359

and

T1,3 = 13.1120 T2,3 = 8.3207 T3,3 = 11.3606

The computation can be repeated, and the results for t = 100, 200, and 300 s are de-
picted in Fig. 30.12a through c, respectively. As expected, the temperature of the plate
rises. After a sufficient time elapses, the temperature will approach the steady-state distri-
bution of Fig. 29.5.

The ADI method is but one of a group of techniques called splitting methods. Some of
these represent efforts to circumvent shortcomings of ADI. Discussion of other splitting
methods as well as more information on ADI can be found elsewhere (Ferziger, 1981;
Lapidus and Pinder, 1981).

30.1 Repeat Example 30.1, but use the midpoint method to gener-
ate your solution.
30.2 Repeat Example 30.1, but for the case where the rod is ini-
tially at 50°C and the derivative at x = 0 is equal to 1 and at x = 10
is equal to 0. Interpret your results.
30.3 (a) Repeat Example 30.1, but for a time step of �t = 0.05 s.
Compute results to t = 0.2. (b) In addition, perform the same com-
putation with the Heun method (without iteration of the corrector)

with a much smaller step size of �t = 0.001 s. Assuming that the
results of (b) are a valid approximation of the true solution, deter-
mine percent relative errors for the results obtained in Example
30.1 as well as for part (a).
30.4 Repeat Example 30.2, but for the case where the derivative at
x = 10 is equal to zero.
30.5 Repeat Example 30.3, but for �x = 1 cm.
30.6 Repeat Example 30.5, but for the plate described in Prob. 29.2.

PROBLEMS

FIGURE 30.12
Solution for the heated plate from Example 30.5 at (a) t = 100 s, (b) t = 200 s, and 
(c) t = 300 s.

28.56 14.57 20.73

41.09 27.20 31.94

60.76 52.57 53.02

(a) t = 100 s

37.40 25.72 28.69

55.26 45.32 44.86

72.82 68.17 64.12

(b) t = 200 s

40.82 30.43 31.96

60.30 52.25 49.67

76.54 73.29 67.68

(c) t = 300 s
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30.7 The advection-diffusion equation is used to compute the dis-
tribution of concentration along the length of a rectangular chemi-
cal reactor (see Sec. 32.1),

∂c

∂t
= D

∂2c

∂x2
− U

∂c

∂x
− kc

where c = concentration (mg/m3), t = time (min), D = a diffusion
coefficient (m2/min), x = distance along the tank’s longitudinal
axis (m) where x = 0 at the tank’s inlet, U = velocity in the x di-
rection (m/min), and k = a reaction rate (min−1) whereby the chem-
ical decays to another form. Develop an explicit scheme to solve
this equation numerically. Test it for k = 0.15, D = 100, and U = 1
for a tank of length 10 m. Use a �x = 1 m, and a step size �t =
0.005. Assume that the inflow concentration is 100 and that the ini-
tial concentration in the tank is zero. Perform the simulation from
t = 0 to 100 and plot the final resulting concentrations versus x.
30.8 Develop a user-friendly computer program for the simple ex-
plicit method from Sec. 30.2. Test it by duplicating Example 30.1.
30.9 Modify the program in Prob. 30.8 so that it employs either
Dirichlet or derivative boundary conditions. Test it by solving
Prob. 30.2.
30.10 Develop a user-friendly computer program to implement
the simple implicit scheme from Sec. 30.3. Test it by duplicating
Example 30.2.
30.11 Develop a user-friendly computer program to implement
the Crank-Nicolson method from Sec. 30.4. Test it by duplicating
Example 30.3.
30.12 Develop a user-friendly computer program for the ADI
method described in Sec. 30.5. Test it by duplicating Example 30.5.
30.13 The nondimensional form for the transient heat conduction
in an insulated rod (Eq. 30.1) can be written as

∂2u

∂ x̄2
= ∂u

∂ t̄

where nondimensional space, time, and temperature are defined as

x̄ = x

L
t̄ = T

(ρC L2/k)
u = T − To

TL − To

where L = the rod length, k = thermal conductivity of the rod ma-
terial, ρ = density, C = specific heat, To = temperature at x = 0,
and TL = temperature at x = L. This makes for the following
boundary and initial conditions:

Boundary conditions u (0, t�) � 0 u (1, t�) � 0
Initial conditions u (x�, 0) � 0 0 � x� � 1

Solve this nondimensional equation for the temperature distribu-
tion using finite-difference methods and a second-order accurate
Crank-Nicolson formulation to integrate in time. Write a computer
program to obtain the solution. Increase the value of �t̄ by 10% for

each time step to more quickly obtain the steady-state solution, and
select values of �x̄ and �t̄ for good accuracy. Plot the nondimen-
sional temperature versus nondimensional length for various values
of nondimensional times.
30.14 The problem of transient radial heat flow in a circular rod in
nondimensional form is described by

∂2u

∂r̄2
+ 1

r̄

∂u

∂r̄
= ∂u

∂ t̄

Boundary conditions u (1, t�) � 1 (0, t�) � 0

Initial conditions u (x�, 0) � 0 0 � x� � 1

Solve the nondimensional transient radial heat-conduction equa-
tion in a circular rod for the temperature distribution at various
times as the rod temperature approaches steady state. Use second-
order accurate finite-difference analogues for the derivatives with a
Crank-Nicolson formulation. Write a computer program for the so-
lution. Select values of �r̄ and �t̄ for good accuracy. Plot the tem-
perature u versus radius r̄ for various times t̄ .
30.15 Solve the following PDE:

∂2u

∂x2
+ b

∂u

∂x
= ∂u

∂t

Boundary conditions u (0, t ) � 0 u (1, t ) � 0
Initial conditions u (x, 0) � 0 0 � x � 1

Use second-order accurate finite-difference analogues for the deriv-
atives with a Crank-Nicolson formulation to integrate in time. Write
a computer program for the solution. Increase the value of �t by
10% for each time step to more quickly obtain the steady-state solu-
tion, and select values of �x and �t for good accuracy. Plot u versus
x for various values of t. Solve for values of b = 4, 2, 0, −2, −4.
30.16 Determine the temperatures along a 1-m horizontal rod de-
scribed by the heat-conduction equation (Eq. 30.1). Assume that
the right boundary is insulated and that the left boundary (x = 0) is
represented by

−k′ ∂T

∂x

∣∣∣∣
x=0

= h (Ta − T0)

where k′ = coefficient of thermal conductivity (W/m · °C), h =
convective heat transfer coefficient (W/m2 · °C), Ta = ambient
temperature (°C), and T0 = temperature of the rod at x = 0 (°C).
Solve for temperature as a function of time using a spatial step of
�x = 1 cm and the following parameter values: k = 2 × 10–5 m2/s,
k′ = 10 W/m · °C, h = 25 W/m2 · °C, and Ta = 50 °C. Assume that
the initial temperature of the rod is zero.

∂u
�
∂t�
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888

Finite-Element Method

To this juncture, we have employed finite-difference methods to solve partial differential
equations. In these methods, the solution domain is divided into a grid of discrete points
or nodes (Fig. 31.1b). The PDE is then written for each node and its derivatives replaced by
finite-divided differences. Although such “pointwise” approximation is conceptually easy to
understand, it has a number of shortcomings. In particular, it becomes harder to apply for sys-
tems with irregular geometry, unusual boundary conditions, or heterogenous composition.

The finite-element method provides an alternative that is better suited for such systems.
In contrast to finite-difference techniques, the finite-element method divides the solution
domain into simply shaped regions, or “elements” (Fig. 31.1c). An approximate solution for

FIGURE 31.1
(a) A gasket with irregular geometry and nonhomogeneous composition. (b) Such a system is very
difficult to model with a finite-difference approach. This is due to the fact that complicated approx-
imations are required at the boundaries of the system and at the boundaries between regions of
differing composition. (c) A finite-element discretization is much better suited for such systems.

Material A

Material B

Material C

(a) (b) (c)
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the PDE can be developed for each of these elements. The total solution is then generated by
linking together, or “assembling,” the individual solutions taking care to ensure continuity
at the interelement boundaries. Thus, the PDE is satisfied in a piecewise fashion.

As in Fig. 31.1c, the use of elements, rather than a rectangular grid, provides a much
better approximation for irregularly shaped systems. Further, values of the unknown can be
generated continuously across the entire solution domain rather than at isolated points.

Because a comprehensive description is beyond the scope of this book, this chapter
provides a general introduction to the finite-element method. Our primary objective is to
make you comfortable with the approach and cognizant of its capabilities. In this spirit, the
following section is devoted to a general overview of the steps involved in a typical finite-
element solution of a problem. This is followed by a simple example: a steady-state, one-
dimensional heated rod. Although this example does not involve PDEs, it allows us to
develop and demonstrate major aspects of the finite-element approach unencumbered by
complicating factors. We can then discuss some issues involved in employing the finite-
element method for PDEs.

31.1 THE GENERAL APPROACH

Although the particulars will vary, the implementation of the finite-element approach usu-
ally follows a standard step-by-step procedure. The following provides a brief overview of
each of these steps. The application of these steps to engineering problem contexts will be
developed in subsequent sections.

31.1.1 Discretization

This step involves dividing the solution domain into finite elements. Figure 31.2 provides
examples of elements employed in one, two, and three dimensions. The points of intersec-
tion of the lines that make up the sides of the elements are referred to as nodes and the sides
themselves are called nodal lines or planes.

31.1.2 Element Equations

The next step is to develop equations to approximate the solution for each element. This in-
volves two steps. First, we must choose an appropriate function with unknown coefficients
that will be used to approximate the solution. Second, we evaluate the coefficients so that
the function approximates the solution in an optimal fashion.

Choice of Approximation Functions. Because they are easy to manipulate mathemati-
cally, polynomials are often employed for this purpose. For the one-dimensional case, the
simplest alternative is a first-order polynomial or straight line,

u(x) = a0 + a1x (31.1)

where u (x) = the dependent variable, a0 and a1 = constants, and x = the independent vari-
able. This function must pass through the values of u (x) at the end points of the element at
x1 and x2. Therefore,

u1 = a0 + a1x1

u2 = a0 + a1x2

31.1 THE GENERAL APPROACH 889
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FIGURE 31.2
Examples of elements employed in (a) one, (b) two, and (c) three dimensions.

Line element

(a) One-dimensional

Nodal line

Node

Triangular
element

Quadrilateral
element

(b) Two-dimensional

Hexahedron
element

Nodal plane

(c) Three-dimensional

where u1 = u(x1) and u2 = u(x2). These equations can be solved using Cramer’s rule for

a0 = u1x2 − u2x1

x2 − x1
a1 = u2 − u1

x2 − x1

These results can then be substituted into Eq. (31.1) which, after collection of terms, can be
written as

u = N1u1 + N2u2 (31.2)

where

N1 = x2 − x

x2 − x1
(31.3)

and

N2 = x − x1

x2 − x1
(31.4)

Equation (31.2) is called an approximation, or shape, function, and N1 and N2 are called
interpolation functions. Close inspection reveals that Eq. (31.2) is, in fact, the Lagrange
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first-order interpolating polynomial. It provides a means to predict intermediate values
(that is, to interpolate) between given values u1 and u2 at the nodes.

Figure 31.3 shows the shape function along with the corresponding interpolation func-
tions. Notice that the sum of the interpolation functions is equal to one.

In addition, the fact that we are dealing with linear equations facilitates operations
such as differentiation and integration. Such manipulations will be important in later sec-
tions. The derivative of Eq. (31.2) is

du

dx
= dN1

dx
u1 + dN2

dx
u2 (31.5)

According to Eqs. (31.3) and (31.4), the derivatives of the N’s can be calculated as

dN1

dx
= − 1

x2 − x1

dN2

dx
= 1

x2 − x1
(31.6)

and, therefore, the derivative of u is

du

dx
= 1

x2 − x1
(−u1 + u2) (31.7)

In other words, it is a divided difference representing the slope of the straight line connect-
ing the nodes.

The integral can be expressed as

∫ x2

x1

u dx =
∫ x2

x1

N1u1 + N2u2 dx

Each term on the right-hand side is merely the integral of a right triangle with base x2 – x1

and height u. That is,∫ x2

x1

Nu dx = 1

2
(x2 − x1)u

Thus, the entire integral is∫ x2

x1

u dx = u1 + u2

2
(x2 − x1) (31.8)

In other words, it is simply the trapezoidal rule.

Obtaining an Optimal Fit of the Function to the Solution. Once the interpolation func-
tion is chosen, the equation governing the behavior of the element must be developed. This
equation represents a fit of the function to the solution of the underlying differential equa-
tion. Several methods are available for this purpose. Among the most common are the
direct approach, the method of weighted residuals, and the variational approach. The
outcome of all of these methods is analogous to curve fitting. However, instead of fitting
functions to data, these methods specify relationships between the unknowns in Eq. (31.2)
that satisfy the underlying PDE in an optimal fashion.
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FIGURE 31.3
(b) A linear approximation or
shape function for (a) a line
element. The corresponding
interpolation functions are
shown in (c) and (d ).

Node 1 Node 2

u1

u2

x1 x2

N1

N2

u

1

1

(a)

(b)

(c)

(d)
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Mathematically, the resulting element equations will often consist of a set of linear
algebraic equations that can be expressed in matrix form,

[k]{u} = {F} (31.9)

where [k] = an element property or stiffness matrix, {u} = a column vector of unknowns at
the nodes, and {F} = a column vector reflecting the effect of any external influences ap-
plied at the nodes. Note that, in some cases, the equations can be nonlinear. However, for
the elementary examples described herein, and for many practical problems, the systems
are linear.

31.1.3 Assembly

After the individual element equations are derived, they must be linked together or assem-
bled to characterize the unified behavior of the entire system. The assembly process is gov-
erned by the concept of continuity. That is, the solutions for contiguous elements are
matched so that the unknown values (and sometimes the derivatives) at their common
nodes are equivalent. Thus, the total solution will be continuous.

When all the individual versions of Eq. (31.9) are finally assembled, the entire system
is expressed in matrix form as

[K ]{u′} = {F ′} (31.10)

where [K ] = the assemblage property matrix and {u′} and {F ′} = column vectors for un-
knowns and external forces that are marked with primes to denote that they are an assem-
blage of the vectors {u} and {F} from the individual elements.

31.1.4 Boundary Conditions

Before Eq. (31.10) can be solved, it must be modified to account for the system’s bound-
ary conditions. These adjustments result in

[k̄]{u′} = {F̄ ′} (31.11)

where the overbars signify that the boundary conditions have been incorporated.

31.1.5 Solution

Solutions of Eq. (31.11) can be obtained with techniques described previously in Part
Three, such as LU decomposition. In many cases, the elements can be configured so that
the resulting equations are banded. Thus, the highly efficient solution schemes available
for such systems can be employed.

31.1.6 Postprocessing

Upon obtaining a solution, it can be displayed in tabular form or graphically. In addition,
secondary variables can be determined and displayed.

Although the preceding steps are very general, they are common to most implementa-
tions of the finite-element approach. In the following section, we illustrate how they can be
applied to obtain numerical results for a simple physical system—a heated rod.
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31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION

Figure 31.4 shows a system that can be modeled by a one-dimensional form of Poisson’s
equation

d2T

dx2
= − f(x) (31.12)

where f(x) = a function defining a heat source along the rod and where the ends of the rod
are held at fixed temperatures,

T(0, t) = T1

and

T(L , t) = T2

Notice that this is not a partial differential equation but rather is a boundary-value
ODE. This simple model is used because it will allow us to introduce the finite-element ap-
proach without some of the complications involved in, for example, a two-dimensional
PDE.

EXAMPLE 31.1 Analytical Solution for a Heated Rod

Problem Statement. Solve Eq. (31.12) for a 10-cm rod with boundary conditions of
T(0, t) = 40 and T(10, t) = 200 and a uniform heat source of f (x) = 10.

Solution. The equation to be solved is

d2T

dx2
= −10

31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION 893

FIGURE 31.4
(a) A long, thin rod subject to fixed boundary conditions and a continuous heat source along its
axis. (b) The finite-element representation consisting of four equal-length elements and five nodes.
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894 FINITE-ELEMENT METHOD

Assume a solution of the form

T = ax2 + bx + c

which can be differentiated twice to give T ′′ = 2a. Substituting this result into the differ-
ential equation gives a = −5. The boundary conditions can be used to evaluate the re-
maining coefficients. For the first condition at x = 0,

40 = −5(0)2 + b(0) + c

or c = 40. Similarly, for the second condition,

200 = −5(10)2 + b(10) + 40

which can be solved for b = 66. Therefore, the final solution is

T = −5x2 + 66x + 40

The results are plotted in Fig. 31.5.

31.2.1 Discretization

A simple configuration to model the system is a series of equal-length elements (Fig. 31.4b).
Thus, the system is treated as four equal-length elements and five nodes.

FIGURE 31.5
The temperature distribution along a heated rod subject to a uniform heat source and held at
fixed end temperatures.
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31.2.2 Element Equations

An individual element is shown in Fig. 31.6a. The distribution of temperature for the ele-
ment can be represented by the approximation function

T̃ = N1T1 + N2T2 (31.13)

where N1 and N2 = linear interpolation functions specified by Eqs. (31.3) and (31.4), re-
spectively. Thus, as depicted in Fig. 31.6b, the approximation function amounts to a linear
interpolation between the two nodal temperatures.

As noted in Sec. 31.1, there are a variety of approaches for developing the element
equation. In this section, we employ two of these. First, a direct approach will be used for
the simple case where f(x) = 0. Then, because of its general applicability in engineering,
we will devote most of the section to the method of weighted residuals.

The Direct Approach. For the case where f (x) = 0, a direct method can be employed to
generate the element equations. The relationship between heat flux and temperature gradi-
ent can be represented by Fourier’s law:

q = −k ′ dT

dx

where q = flux [cal/(cm2 · s)] and k′ = the coefficient of thermal conductivity
[cal/(s · cm · �C)]. If a linear approximation function is used to characterize the element’s
temperature, the heat flow into the element through node 1 can be represented by

q1 = k ′ T1 − T2

x2 − x1

where q1 is heat flux at node 1. Similarly, for node 2,

q2 = k ′ T2 − T1

x2 − x1

These two equations express the relationship of the element’s internal temperature distri-
bution (as reflected by the nodal temperatures) to the heat flux at its ends. As such, they
constitute our desired element equations. They can be simplified further by recognizing
that Fourier’s law can be used to couch the end fluxes themselves in terms of the tempera-
ture gradients at the boundaries. That is,

q1 = −k ′ dT(x1)

dx
q2 = k ′ dT(x2)

dx

which can be substituted into the element equations to give

1

x2 − x1

[
1 −1

−1 1

]{
T1

T2

}
=

⎧⎪⎪⎨
⎪⎪⎩

−dT(x1)

dx
dT(x2)

dx

⎫⎪⎪⎬
⎪⎪⎭ (31.14)

Notice that Eq. (31.14) has been cast in the format of Eq. (31.9). Thus, we have suc-
ceeded in generating a matrix equation that describes the behavior of a typical element in
our system.
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FIGURE 31.6
(a) An individual element.
(b) The approximation function
used to characterize the
temperature distribution along
the element.
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896 FINITE-ELEMENT METHOD

The direct approach has great intuitive appeal. Additionally, in areas such as mechan-
ics, it can be employed to solve meaningful problems. However, in other contexts, it is
often difficult or impossible to derive finite-element equations directly. Consequently, as
described next, more general mathematical techniques are available.

The Method of Weighted Residuals. The differential equation (31.12) can be reex-
pressed as

0 = d2T

dx2
+ f(x)

The approximate solution [Eq. (31.13)] can be substituted into this equation. Because
Eq. (31.13) is not the exact solution, the left side of the resulting equation will not be zero
but will equal a residual,

R = d2T̃

dx2
+ f(x) (31.15)

The method of weighted residuals (MWR) consists of finding a minimum for the resid-
ual according to the general formula∫

D
RWi dD = 0 i = 1, 2, . . . , m (31.16)

where D = the solution domain and the Wi = linearly independent weighting functions.
At this point, there are a variety of choices that could be made for the weighting func-

tion (Box 31.1). The most common approach for the finite-element method is to employ the
interpolation functions Ni as the weighting functions. When these are substituted into
Eq. (31.16), the result is referred to as Galerkin’s method,∫

D
RNi dD = 0 i = 1, 2, . . . , m

For our one-dimensional rod, Eq. (31.15) can be substituted into this formulation to give∫ x2

x1

[
d2T̃

dx2
+ f(x)

]
Ni dx i = 1, 2

which can be reexpressed as∫ x2

x1

d2T̃

dx2
Ni (x) dx = −

∫ x2

x1

f(x)Ni (x) dx i = 1, 2 (31.17)

At this point, a number of mathematical manipulations will be applied to simplify and
evaluate Eq. (31.17). Among the most important is the simplification of the left-hand side
using integration by parts. Recall from calculus that this operation can be expressed gener-
ally as∫ b

a
u dv = uv|ba −

∫ b

a
v du
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If u and v are chosen properly, the new integral on the right-hand side will be easier to eval-
uate than the original one on the left-hand side. This can be done for the term on the left-
hand side of Eq. (31.17) by choosing Ni (x) as u and (d2T/dx2) dx as dv to yield

∫ x2

x1

Ni (x)
d2T̃

dx2
dx = Ni (x)

dT̃

dx

∣∣∣∣
x2

x1

−
∫ x2

x1

dT̃

dx

d Ni

dx
dx i = 1, 2 (31.18)

Thus, we have taken the significant step of lowering the highest-order term in the formula-
tion from a second to a first derivative.

Next, we can evaluate the individual terms that we have created in Eq. (31.18). For
i = 1, the first term on the right-hand side of Eq. (31.18) can be evaluated as

N1(x)
dT̃

dx

∣∣∣∣
x2

x1

= N1(x2)
dT̃(x2)

dx
− N1(x1)

dT̃(x1)

dx

However, recall from Fig. 31.3 that N1(x2) = 0 and N1(x1) = 1, and therefore,

N1(x)
dT̃

dx

∣∣∣∣
x2

x1

= −dT̃ (x1)

dx
(31.19)
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Box 31.1 Alternative Residual Schemes for the MWR

Several choices can be made for the weighting functions of
Eq. (31.16). Each represents an alternative approach for the MWR.

In the collocation approach, we choose as many locations as
there are unknown coefficients. Then, the coefficients are adjusted
until the residual vanishes at each of these locations. Consequently,
the approximating function will yield perfect results at the chosen
locations but will have a nonzero residual elsewhere. Thus, it is
akin to the interpolation methods in Chap. 18. Note that collocation
amounts to using the weighting function

W = δ(x − xi ) for i = 1, 2, . . . , n

where n = the number of unknown coefficients and δ(x − xi) = the
Dirac delta function that vanishes everywhere but at x = xi, where
it equals 1.

In the subdomain method, the interval is divided into as many
segments, or “subdomains,” as there are unknown coefficients.
Then, the coefficients are adjusted until the average value of the
residual is zero in each subdomain. Thus, for each subdomain, the
weighting function is equal to 1 and Eq. (31.16) is∫ xi

xi−1

R dx = 0 for i = 1, 2, . . . , n

where xi−1 and xi are the bounds of the subdomain.

For the least-squares case, the coefficients are adjusted so as
to minimize the integral of the square of the residual. Thus, the
weighting functions are

Wi = ∂R

∂ai

which can be substituted into Eq. (31.16) to give∫
D

R
∂R

∂ai
dD = 0 i = 1, 2, . . . , n

or

∂

∂ai

∫
D

R2 dD = 0 i = 1, 2, . . . , n

Comparison of the formulation with those of Chap. 17 shows that
this is the continuous form of regression.

Galerkin’s method employs the interpolation functions Ni as
weighting functions. Recall that these functions always sum to 1 at
any position in an element. For many problem contexts, Galerkin’s
method yields the same results as are obtained by variational meth-
ods. Consequently, it is the most commonly employed version of
MWR used in finite-element analysis.
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898 FINITE-ELEMENT METHOD

Similarly, for i = 2,

N2(x)
dT̃

dx

∣∣∣∣
x2

x1

= dT̃ (x2)

dx
(31.20)

Thus, the first term on the right-hand side of Eq. (31.18) represents the natural boundary
conditions at the ends of the elements.

Now, before proceeding let us regroup by substituting our results back into the origi-
nal equation. Substituting Eqs. (31.18) through (31.20) into Eq. (31.17) and rearranging
gives for i = 1,

∫ x2

x1

dT̃

dx

d N1

dx
dx = −dT̃(x1)

dx
+

∫ x2

x1

f(x)N1(x) dx (31.21)

and for i = 2,∫ x2

x1

dT̃

dx

d N2

dx
dx = dT̃(x2)

dx
+

∫ x2

x1

f(x)N2(x) dx (31.22)

Notice that the integration by parts has led to two important outcomes. First, it has in-
corporated the boundary conditions directly into the element equations. Second, it has low-
ered the highest-order evaluation from a second to a first derivative. This latter outcome
yields the significant result that the approximation functions need to preserve continuity of
value but not slope at the nodes.

Also notice that we can now begin to ascribe some physical significance to the indi-
vidual terms we have derived. On the right-hand side of each equation, the first term rep-
resents one of the element’s boundary conditions and the second is the effect of the sys-
tem’s forcing function—in the present case, the heat source f (x). As will now become
evident, the left-hand side embodies the internal mechanisms that govern the element’s
temperature distribution. That is, in terms of the finite-element method, the left-hand side
will become the element property matrix.

To see this, let us concentrate on the terms on the left-hand side. For i = 1, the term is∫ x2

x1

dT̃

dx

d N1

dx
dx (31.23)

Recall from Sec. 31.1.2 that the linear nature of the shape function makes differentiation
and integration simple. Substituting Eqs. (31.6) and (31.7) into Eq. (31.23) gives∫ x2

x1

T1 − T2

(x2 − x1)2
dx = 1

x2 − x1
(T1 − T2) (31.24)

Similar substitutions for i = 2 [Eq. (31.22)] yield∫ x2

x1

−T1 + T2

(x2 − x1)2
dx = 1

x2 − x1
(−T1 + T2) (31.25)

Comparison with Eq. (31.14) shows that these are similar to the relationships that were
developed with the direct method using Fourier’s law. This can be made even clearer by
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31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION 899

reexpressing Eqs. (31.24) and (31.25) in matrix form as

1

x2 − x1

[
1 −1

−1 1

]{
T1

T2

}

Substituting this result into Eqs. (31.21) and (31.22) and expressing the result in ma-
trix form gives the final version of the element equations

1

x2 − x1

[
1 −1

−1 1

]
{T }︸ ︷︷ ︸

Element stiffness matrix

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dT(x1)

dx
dT(x2)

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭︸ ︷︷ ︸

Boundary
condition

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x2

x1

f(x)N1(x) dx

∫ x2

x1

f(x)N2(x) dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭︸ ︷︷ ︸

External effects

(31.26)

Note that aside from the direct and the weighted residual methods, the element equa-
tions can also be derived using variational calculus (for example, see Allaire, 1985). For the
present case, this approach yields equations that are identical to those derived above.

EXAMPLE 31.2 Element Equation for a Heated Rod

Problem Statement. Employ Eq. (31.26) to develop the element equations for a 10-cm
rod with boundary conditions of T(0, t) = 40 and T(10, t) = 200 and a uniform heat source
of f (x) = 10. Employ four equal-size elements of length = 2.5 cm.

Solution. The heat source term in the first row of Eq. (31.26) can be evaluated by substi-
tuting Eq. (31.3) and integrating to give∫ 2.5

0
10

2.5 − x

2.5
dx = 12.5

Similarly, Eq. (31.4) can be substituted into the heat source term of the second row of
Eq. (31.26), which can also be integrated to yield∫ 2.5

0
10

x − 0

2.5
dx = 12.5

These results along with the other parameter values can be substituted into Eq. (31.26) to
give

0.4T1 − 0.4T2 = −dT

dx
(x1) + 12.5

and

−0.4T1 + 0.4T2 = dT

dx
(x2) + 12.5

31.2.3 Assembly

Before the element equations are assembled, a global numbering scheme must be estab-
lished to specify the system’s topology or spatial layout. As in Table 31.1, this defines the

cha01064_ch31.qxd  3/25/09  3:09 PM  Page 899



900 FINITE-ELEMENT METHOD

0.4 −0.4 0 0 0
−0.4 0.4 + 0.4 −0.4 0 0

0 − 0.4 0.4 0 0
0 0 0 0 0
0 0 0 0 0

FIGURE 31.7
The assembly of the equations for the total system.

0.4 −0.4 0 0 0
−0.4 0.8 −0.4 0 0

0 −0.4 0.8 −0.4 0
0 0 −0.4 0.4 + 0.4 −0.4
0 0 0 − 0.4 0.4

−dT (x1)�dx + 12.5
dT (x2)�dx + 12.5

0
0
0

T1
T2
0
0
0

(a)

(b)

(c)

(d)

(e)

=� �
�
�

T1
T2
T3
0
0

��
T1
T2
T3
T4
0

��
T1
T2
T3
T4
T5

��
T1
T2
T3
T4
T5

��

�
−dT (x1)�dx + 12.5

12.5 + 12.5
dT (x3)�dx + 12.5

0
0

= ��
−dT (x1)�dx + 12.5

25
12.5 + 12.5

dT (x4)�dx + 12.5
0

= ��
−dT (x1)�dx + 12.5

25
25

12.5 + 12.5
dT (x5)�dx + 12.5

= ��
−dT (x1)�dx + 12.5

25
25
25

dT(x5)�dx + 12.5

= ��

��
�

��
��
��

0.4 −0.4 0 0 0
−0.4 0.4 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.4 −0.4 0 0 0
−0.4 0.8 −0.4 0 0

0 −0.4 0.8 −0.4 0
0 0 −0.4 0.8 −0.4
0 0 0 −0.4 0.4

0.4 −0.4 0 0 0
−0.4 0.8 −0.4 0 0

0 −0.4 0.4 + 0.4 −0.4 0
0 0 − 0.4 0.4 0
0 0 0 0 0

TABLE 31.1 The system topology for the finite-element segmentation scheme from
Fig. 31.4b.

Node Numbers

Element Local Global

1 1 1
2 2

2 1 2
2 3

3 1 3
2 4

4 1 4
2 5
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connectivity of the element mesh. Because the present case is one-dimensional, the num-
bering scheme might seem so predictable that it is trivial. However, for two- and three-
dimensional problems it offers the only means to specify which nodes belong to which
elements.

Once the topology is specified, the element equation (31.26) can be written for each
element using the global coordinates. Then they can be added one at a time to assemble the
total system matrix (note that this process is explored further in Sec. 32.4). The process is
depicted in Fig. 31.7.

31.2.4 Boundary Conditions

Notice that, as the equations are assembled, the internal boundary conditions cancel. Thus,
the final result for {F} in Fig. 31.7e has boundary conditions for only the first and the last
nodes. Because T1 and T5 are given, these natural boundary conditions at the ends of the
bar, dT (x1)/dx and dT (x5)/dx , represent unknowns. Therefore, the equations can be re-
expressed as

dT

dx
(x1) −0.4T2 = −3.5

0.8T2 −0.4T3 = 41
−0.4T2 +0.8T3 −0.4T4 = 25

−0.4T3 +0.8T4 = 105

−0.4T4 −dT

dx
(x5) = −67.5

(31.27)

31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION 901

FIGURE 31.8
Results of applying the finite-element approach to a heated bar. The exact solution is also shown.
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902 FINITE-ELEMENT METHOD

31.2.5 Solution

Equation (31.27) can be solved for

dT

dx
(x1) = 66 T2 = 173.75 T3 = 245

T4 = 253.75
dT

dx
(x5) = −34

31.2.6 Postprocessing

The results can be displayed graphically. Figure 31.8 shows the finite-element results along
with the exact solution. Notice that the finite-element calculation captures the overall trend
of the exact solution and, in fact, provides an exact match at the nodes. However, a discrep-
ancy exists in the interior of each element due to the linear nature of the shape functions.

31.3 TWO-DIMENSIONAL PROBLEMS

Although the mathematical “bookkeeping” increases markedly, the extension of the finite-
element approach to two dimensions is conceptually similar to the one-dimensional appli-
cations discussed to this point. It thus follows the same steps as were outlined in Sec. 31.1.

31.3.1 Discretization

A variety of simple elements such as triangles or quadrilaterals are usually employed for
the finite-element mesh in two dimensions. In the present discussion, we will limit our-
selves to triangular elements of the type depicted in Fig. 31.9.

31.3.2 Element Equations

Just as for the one-dimensional case, the next step is to develop an equation to approximate
the solution for the element. For a triangular element, the simplest approach is the linear
polynomial [compare with Eq. (31.1)]

u(x, y) = a0 + a1,1x + a1,2 y (31.28)

FIGURE 31.9
A triangular element.

y
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31.3 TWO-DIMENSIONAL PROBLEMS 903

where u(x, y) = the dependent variable, the a’s = coefficients, and x and y = independent
variables. This function must pass through the values of u(x, y) at the triangle’s nodes
(x1, y1), (x2, y2), and (x3, y3). Therefore,

u1(x, y) = a0 + a1,1x1 + a1,2 y1

u2(x, y) = a0 + a1,1x2 + a1,2 y2

u3(x, y) = a0 + a1,1x3 + a1,2 y3

or in matrix form,⎡
⎣ 1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦

⎧⎨
⎩

a0

a1,1

a1,2

⎫⎬
⎭ =

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭

which can be solved for

a0 = 1

2Ae
[u1(x2 y3 − x3 y2) + u2(x3 y1 − x1 y3) + u3(x1 y2 − x2 y1)] (31.29)

a1,1 = 1

2Ae
[u1(y2 − y3) + u2(y3 − y1) + u3(y1 − y2)] (31.30)

a1,2 = 1

2Ae
[u1(x3 − x2) + u2(x1 − x3) + u3(x2 − x1)] (31.31)

where Ae is the area of the triangular element,

Ae = 1

2
[(x2 y3 − x3 y2) + (x3 y1 − x1 y3) + (x1 y2 − x2 y1)]

Equations (31.29) through (31.31) can be substituted into Eq. (31.28). After a collec-
tion of terms, the result can be expressed as

u = N1u1 + N2u2 + N3u3 (31.32)

where

N1 = 1

2Ae
[(x2 y3 − x3 y2) + (y2 − y3)x + (x3 − x2)y]

N2 = 1

2Ae
[(x3 y1 − x1 y3) + (y3 − y1)x + (x1 − x3)y]

N3 = 1

2Ae
[(x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y]

Equation (31.32) provides a means to predict intermediate values for the element on
the basis of the values at its nodes. Figure 31.10 shows the shape function along with the
corresponding interpolation functions. Notice that the sum of the interpolation functions is
always equal to 1.

As with the one-dimensional case, various methods are available for developing ele-
ment equations based on the underlying PDE and the approximating functions. The result-
ing equations are considerably more complicated than Eq. (31.26). However, because the
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FIGURE 31.10
(a) A linear approximation function for a triangular element. The corresponding interpolation
functions are shown in (b) through (d ).
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approximating functions are usually lower-order polynomials like Eq. (31.28), the terms of
the final element matrix will consist of lower-order polynomials and constants.

31.3.3 Boundary Conditions and Assembly

The incorporation of boundary conditions and the assembly of the system matrix also
become more complicated when the finite-element technique is applied to two- and three-
dimensional problems. However, as with the derivation of the element matrix, the difficulty
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FIGURE 31.11
A numbering scheme for the nodes and elements of a finite-element approximation of the heated
plate that was previously characterized by finite differences in Chap. 29.
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FIGURE 31.12
The temperature distribution of a heated plate as calculated with a finite-element method.
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relates to the mechanics of the process rather than to conceptual complexity. For example,
the establishment of the system topology which was trivial for the one-dimensional case be-
comes a matter of great importance in two and three dimensions. In particular, the choice of
a numbering scheme will dictate the bandedness of the resulting system matrix and hence
the efficiency with which it can be solved. Figure 31.11 shows a scheme that was developed
for the heated plate formerly solved by finite-difference methods in Chap. 29.

31.3.4 Solution and Postprocessing

Although the mechanics are complicated, the system matrix is merely a set of n simulta-
neous equations that can be used to solve for the values of the dependent variable at the n
nodes. Figure 31.12 shows a solution that corresponds to the finite-difference solution from
Fig. 29.5.

31.4 SOLVING PDES WITH SOFTWARE PACKAGES

Software packages have some capabilities for directly solving PDEs. However, as
described in the following sections, many of the solutions are limited to simple problems.
This is particularly true of two- and three-dimensional cases. For these situations, generic
packages (that is, ones not expressly developed to solve PDEs such as finite-element pack-
ages) are often limited to simple rectangular domains.

Although this might seem limiting, simple applications can be of great utility in a ped-
agogical sense. This is particularly true when the packages’ visualization tools are used to
display calculation results.

31.4.1 Excel

Although Excel does not have the direct capability to solve PDEs, it is a nice environment
to develop simple solutions of elliptic PDEs. For example, the orthogonal layout of the
spreadsheet cells (Fig. 31.13b) is directly analogous to the grid used in Chap. 29 to model
the heated plate (Fig. 31.13a).

FIGURE 31.13
The analogy between (a) a rec-
tangular grid and (b) the cells of
a spreadsheet.
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As in Fig. 31.13b, the Dirichlet boundary conditions can first be entered along the
periphery of the cell block. The formula for the Liebmann method can be implemented by
entering Eq. (29.12) in one of the cells in the interior (like cell B2 in Fig. 31.13b). Thus, the
value for the cell can be computed as a function of its adjacent cells. Then the cell can be
copied to the other interior cells. Because of the relative nature of the Excel copy com-
mand, all the other cells will properly be dependent on their adjacent cells.

Once you have copied the formula, you will probably get an error message: Cannot
resolve circular references. You can rectify this by going to the T(ools) menu and select-
ing O(ptions). Then select the Calculation tab and check the Iteration box. This will
allow the spreadsheet to recalculate (the default is 100 iterations) and solve Liebmann’s
method iteratively. After this occurs, strike the F9 key to manually recalculate the sheet
until the answers do not vary. This means that the solution has converged.

Once the problem has been solved, Excel’s graphics tools can be used to visualize the
results. An example is shown in Fig. 31.14a. For this case, we have

Used a finer grid
Made the lower boundary insulated
Added a heat source of 150 to the middle of the plate (cell E5).

31.4 SOLVING PDES WITH SOFTWARE PACKAGES 907

FIGURE 31.14
(a) Excel solution of the Poisson
equation for a plate with an
insulated lower edge and a
heat source. A (b) “topographic
map” and (c) a 3-D display of
the temperatures.
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Wizard. Figure 31.14b and c show 3-D surface plots. The y orientation of these are normally
the reverse of the spreadsheet. Thus, the top high-temperature edge (100) would normally
be displayed at the bottom of the plot. We reversed the y values on our sheet prior to plot-
ting so that the graphs would be consistent with the spreadsheet.

Notice how the graphs help you visualize what is going on. Heat flows down from the
source toward the boundaries, forming a mountainlike shape. Heat also flows from the
high-temperature boundary down to the two side edges. Notice how the heat flows prefer-
entially toward the lower-temperature edge (50). Finally, notice how the temperature gra-
dient in the y dimension goes to zero at the lower insulated edge (∂T/∂y → 0).

31.4.2 MATLAB

Although the standard MATLAB software package does not presently have great capabili-
ties for solving PDEs, M-files and functions can certainly be developed for this purpose. In
addition, its display capabilities are very nice, particularly for visualization of 2-D spatial
problems.

To illustrate this capability, we first set up the Excel spreadsheet in Fig. 31.14a. These
results can be saved as a text (Tab delimited) file with a name like plate.txt. This file can
then be moved to the MATLAB directory.

Once in MATLAB, the file can be loaded by typing

>> load plate.txt

Next, the gradients can be simply calculated as

>> [px,py]=gradient(plate);

Note that this is the simplest method to compute gradients using default values of dx =
dy = 1. Therefore, the directions and relative magnitudes will be correct.

Finally, a series of commands can be used to develop the plot. The command
contour develops a contour plot of the data. The command clabel adds contour
labels to the plot. Finally, quiver takes the gradient data and adds it to the plot
as arrows,

>> cs=contour(plate);clabel(cs);hold on
>> quiver(–px,–py);hold off

Note that the minus signs are added because of the minus sign in Fourier’s law
[Eq. (29.4)]. As see in Fig. 31.15, the resulting plot provides an excellent representation
of the solution.

Note that any file in the proper format can be entered into MATLAB and displayed in
this way. This sharing of files between tools is becoming commonplace. In addition, files
can be created in one location on one tool, transmitted over the internet to another location,
where the file might be displayed with another tool. This is one of the exciting aspects of
modern numerical applications.
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31.4.3 Mathcad

Mathcad has two functions that can solve Poisson’s equation. You can use the relax func-
tion when you know the value of the unknown on all four sides of a square region. This
function solves a system of linear algebraic equations using Gauss-Seidel iteration with
overrelaxation to speed the rate of convergence. For the special case where there are inter-
nal sources or sinks, and the unknown function is zero on all four sides of the square, then
you can use the multigrid function, which is usually faster than relax. Both of these func-
tions return a square matrix where the location of the element in the matrix corresponds to
its location within the square region. The value of the element approximates the value of
the solution of Poisson’s equation at this point.

Figure 31.16 shows an example where a square plate contains heat sources while the
boundary is maintained at zero. The first step is to establish dimensions for the temperature
grid and the heat source matrix. The temperature grid has dimensions (R + 1) × (R + 1)
while the heat source matrix is R × R. For example, a 3 × 3 temperature grid has 4 (2 × 2)
possible heat sources. In this case, we establish a 33 × 33 temperature grid and a 32 × 32
heat source matrix. The Mathcad command MRR:= 0 (with R = 32) establishes the
dimensions of the source matrix and sets all the elements to zero. Next, the location and
strength of two heat sources are established. Finally, S is the resulting temperature
distribution as calculated by the multigrid function. The second argument of multigrid

31.4 SOLVING PDES WITH SOFTWARE PACKAGES 909

FIGURE 31.15
MATLAB-generated contour plots for the heated plate calculated with Excel (Fig. 31.14).
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is a parameter that controls the numerical accuracy. As suggested by Mathcad help, a value
of 2 generally gives a good approximation of the solution.

The temperature distribution can be displayed with surface, contour, or vector-field
plots. These plots can be placed anywhere on the worksheet by clicking to the desired
location. This places a red crosshair at that location. Then, use the Insert/Graph pull-down
menu to place an empty plot on the worksheet with placeholders for the expressions to be
graphed and for the ranges of variables. Simply type S in the placeholder on the z axis.
Mathcad does the rest to produce the graphs shown in Fig. 31.16. Once the graph has been
created, you can use the Format/Surface Plot and Format/Contour Plot pull-down menus to
change the color or add titles, labels, and other features.

FIGURE 31.16
Mathcad screen to determine the solution of an elliptic PDE.

31.1 Repeat Example 31.1, but for T(0, t) = 75 and T(10, t) = 150
and a uniform heat source of 15.
31.2 Repeat Example 31.2, but for boundary conditions of T(0, t) =
75 and T(10, t) = 150 and a heat source of 15.
31.3 Apply the results of Prob. 31.2 to compute the temperature
distribution for the entire rod using the finite-element approach.
31.4 Use Galerkin’s method to develop an element equation for a
steady-state version of the advection-diffusion equation described

in Prob. 30.7. Express the final result in the format of Eq. (31.26)
so that each term has a physical interpretation.
31.5 A version of the Poisson equation that occurs in mechanics is
the following model for the vertical deflection of a bar with a dis-
tributed load P(x):

Ac E
∂2u

∂x2
= P(x)

PROBLEMS
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F
T

W
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R
E
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where Ac = cross-sectional area, E = Young’s modulus, u = de-
flection, and x = distance measured along the bar’s length. If the
bar is rigidly fixed (u = 0) at both ends, use the finite-element
method to model its deflections for Ac = 0.1 m2, E = 200 ×
109 N/m2, L = 10 m, and P(x) = 1000 N/m. Employ a value of
�x = 2 m.
31.6 Develop a user-friendly program to model the steady-state
distribution of temperature in a rod with a constant heat source
using the finite-element method. Set up the program so that un-
equally spaced nodes may be used.
31.7 Use Excel to perform the same computation as in Fig. 31.14, but
insulate the right-hand edge and add a heat sink of −150 at cell C7.
31.8 Use MATLAB or Mathcad to develop a contour plot with flux
arrows for the Excel solution from Prob. 31.7.
31.9 Use Excel to model the temperature distribution of the slab
shown in Fig. P31.9. The slab is 0.02 m thick and has a thermal
conductivity of 3 W/(m · °C).

the rod has a fixed temperature gradient and the temperature is a
variable. The right end has a fixed temperature and the gradient is a
variable. The heat source f(x) has a constant value. Thus, the condi-
tions are

dT

∂x

∣∣∣∣
x=0

= 0.25◦C/m T |x=50 = 100◦C f(x) = 30 W/cm

Develop the nodal equations that must be solved for the tempera-
tures and temperature gradients at each of the six nodes. Assemble
the equations, insert the boundary conditions, and solve the result-
ing set for the unknowns.
31.12 Find the temperature distribution in a rod (Fig. P31.12) with
internal heat generation using the finite-element method. Derive
the element nodal equations using Fourier heat conduction.

qk = −k A
dT

∂x

and heat conservation relationships

∑
[qk + f(x)] = 0

PROBLEMS 911

100�C

50�C

75�C 25�C

2 m

0.6 m

1 m 0.4 m

–100 W/m2

Figure P31.9 

kA = 100 W/m ·�C

f(x) = 30 W/cm

50 cm

dT––
dx x=0

= 0.25�C/m

T x=50 = 100�Cx

Figure P31.11

kA = 50 W·m/�C

kA = 100 W·m/�C
f(x) = 30 W/cm

50 cm
Tx=0 = 100�C

x

Tx=50 = 50�C

Figure P31.12

31.10 Use MATLAB or Mathcad to develop a contour plot with
flux arrows for the Excel solution from Prob. 31.9.
31.11 Find the temperature distribution in a rod (Fig. P31.11) with
internal heat generation using the finite-element method. Derive
the element nodal equations using Fourier heat conduction

qk = −k A
dT

∂x

and heat conservation relationships∑
[qk + f(x)] = 0

where qk = heat flow (W), k = thermal conductivity (W/(m · °C)),
A = cross-sectional area (m2), and f(x) = heat source (W/cm). The
rod has a value of kA = 100 W m/°C. The rod is 50 cm long, the 
x-coordinate is zero at the left end, and positive to the right. Divide
the rod into 5 elements (6 nodes, each 10 cm long). The left end of
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where qk = heat flow (W), k = thermal conductivity (W/(m · °C)),
A = cross-sectional area (m2), and f(x) = heat source (W/cm). The
rod is 50 cm long, the x-coordinate is zero at the left end, and posi-
tive to the right. The rod is also linearly tapered with a value of
kA = 100 and 50 W m/°C at x = 0 and at x = 50, respectively.
Divide the rod into 5 elements (6 nodes, each 10 cm long). Both
ends of the rod have fixed temperatures. The heat source f(x) has a
constant value. Thus, the conditions are

T |x=0 = 100◦C T |x=50 = 50◦C f(x) = 30 W/cm

The tapered areas must be treated as if they were constant over the
length of an element. Therefore, average the kA values at each end
of the node and take that average as a constant over the node. De-
velop the nodal equations that must be solved for the temperatures
and temperature gradients at each of the six nodes. Assemble the
equations, insert the boundary conditions, and solve the resulting
set for the unknowns.
31.13 Use a software package to solve for the temperature distri-
bution of the L-shaped plate in Fig. P29.18. Display your results as
a contour plot with flux arrows.
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32C H A P T E R 32

Case Studies: Partial
Differential Equations

The purpose of this chapter is to apply the methods from Part Eight to practical engineer-
ing problems. In Sec. 32.1, a parabolic PDE is used to compute the time-variable distribu-
tion of a chemical along the longitudinal axes of a rectangular reactor. This example illus-
trates how the instability of a solution can be due to the nature of the PDE rather than to
properties of the numerical method.

Sections 32.2 and 32.3 involve applications of the Poisson and Laplace equations to
civil and electrical engineering problems, respectively. Among other things, this will allow
you to see similarities as well as differences between field problems in these areas of engi-
neering. In addition, they can be contrasted with the heated-plate problem that has served
as our prototype system in this part of the book. Section 32.2 deals with the deflection of a
square plate, whereas Sec. 32.3 is devoted to computing the voltage distribution and charge
flux for a two-dimensional surface with a curved edge.

Section 32.4 presents a finite-element analysis as applied to a series of springs. This
application is closer in spirit to finite-element applications in mechanics and structures than
was the temperature field problem used to illustrate the approach in Chap. 31.

32.1 ONE-DIMENSIONAL MASS BALANCE OF A REACTOR
(CHEMICAL/BIO ENGINEERING)

Background. Chemical engineers make extensive use of idealized reactors in their de-
sign work. In Secs. 12.1 and 28.1, we focused on single or coupled well-mixed reactors.
These are examples of lumped-parameter systems (recall Sec. PT3.1.2).

FIGURE 32.1
An elongated reactor with a
single entry and exit point.
A mass balance is developed
around a finite segment along
the tank’s longitudinal axis in
order to derive a differential
equation for the concentration. �x

x = 0 x = L
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Figure 32.1 depicts an elongated reactor with a single entry and exit point. This reac-
tor can be characterized as a distributed-parameter system. If it is assumed that the chemi-
cal being modeled is subject to first-order decay1 and the tank is well-mixed vertically and
laterally, a mass balance can be performed on a finite segment of length �x, as in

V
�c

�t
= Qc(x)︸ ︷︷ ︸

Flow in

− Q

[
c(x) + ∂c(x)

∂x
�x

]
︸ ︷︷ ︸

Flow out

− DAc
∂c(x)

∂x︸ ︷︷ ︸
Dispersion in

+ DAc

[
∂c(x)

∂x
+ ∂

∂x

∂c(x)

∂x
�x

]
︸ ︷︷ ︸

Dispersion out

− kV c︸︷︷︸
Decay reaction

(32.1)

where V = volume (m3), Q = flow rate (m3/h), c is concentration (moles/m3), D is a dis-
persion coefficient (m2/h), Ac is the tank’s cross-sectional area (m2), and k is the first-order
decay coefficient (h−1). Note that the dispersion terms are based on Fick’s first law,

Flux = −D
∂c

∂x
(32.2)

which is directly analogous to Fourier’s law for heat conduction [recall Eq. (29.4)]. It spec-
ifies that turbulent mixing tends to move mass from regions of high to low concentration.
The parameter D, therefore, reflects the magnitude of turbulent mixing.

If �x and �t are allowed to approach zero, Eq. (32.1) becomes

∂c

∂t
= D

∂2c

∂x2
− U

∂c

∂x
− kc (32.3)

where U = Q/Ac is the velocity of the water flowing through the tank. The mass balance
for Fig. 32.1 is, therefore, now expressed as a parabolic partial differential equation.
Equation (32.3) is sometimes referred to as the advection-dispersion equation with first-
order reaction. At steady state, it is reduced to a second-order ODE,

0 = D
d 2c

dx2
− U

d 2c

dx
− kc (32.4)

Prior to t = 0, the tank is filled with water that is devoid of the chemical. At t = 0, the
chemical is injected into the reactor’s inflow at a constant level of cin. Thus, the following
boundary conditions hold:

Qcin = Qc0 − DAc
∂c0

∂x

and

c′(L , t) = 0

The second condition specifies that the chemical leaves the reactor purely as a function of
flow through the outlet pipe. That is, it is assumed that dispersion in the reactor does not

1That is, the chemical decays at a rate that is linearly proportional to how much chemical is present.
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affect the exit rate. Under these conditions, use numerical methods to solve Eq. (32.4) for
the steady-state levels in the reactor. Note that this is an ODE boundary-value problem.
Then solve Eq. (32.3) to characterize the transient response—that is, how the levels change
in time as the system approaches the steady state. This application involves a PDE.

Solution. A steady-state solution can be developed by substituting centered finite differ-
ences for the first and the second derivatives in Eq. (32.4) to give

0 = D
ci+1 − 2ci + ci−1

�x2
− U

ci+1 − ci−1

2�x
− kci

Collecting terms gives

−
(

D

U�x
+ 1

2

)
ci−1 +

(
2D

U�x
+ k �x

U

)
c0 −

(
D

U�x
− 1

2

)
ci+1 = 0 (32.5)

This equation can be written for each of the system’s nodes. At the reactor’s ends, this
process introduces nodes that lie outside the system. For example, at the inlet node (i = 0),

−
(

D

U�x
+ 1

2

)
c−1 +

(
2D

U�x
+ k �x

U

)
c0 −

(
D

U�x
− 1

2

)
c1 = 0 (32.6)

The c−1 can be removed by invoking the first boundary condition. At the inlet, the
following mass balance must hold:

Qcin = Qc0 − DAc
∂c0

∂x

where c0 = concentration at x = 0. Thus, this boundary condition specifies that the amount
of chemical carried into the tank by advection through the pipe must be equal to the amount
carried away from the inlet by both advection and turbulent dispersion in the tank. A finite
divided difference can be substituted for the derivative

Qcin = Qc0 − D Ac
c1 − c−1

2�x

which can be solved for

c−1 = c1 + 2�xU

D
cin − 2�xU

D
c0

which can be substituted into Eq. (32.6) to give(
2D

U�x
+ k �x

U
+ 2 + �xU

D

)
c0 −

(
2D

U�x

)
c1 =

(
2 + �xU

D

)
cin (32.7)

A similar exercise can be performed for the outlet, where the original difference
equation is

−
(

D

U�x
+ 1

2

)
cn−1 +

(
2D

U�x
+ k �x

U

)
cn −

(
D

U�x
− 1

2

)
cn+1 = 0 (32.8)

32.1 ONE-DIMENSIONAL MASS BALANCE OF A REACTOR 915
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916 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

The boundary condition at the outlet is

Qcn − DAc
dcn

dx
= Qcn

As with the inlet, a divided difference can be used to approximate the derivative.

Qcn − DAc
cn+1 − cn−1

2�x
= Qcn (32.9)

Inspection of this equation leads us to conclude that cn+1 = cn−1. In other words, the slope
at the outlet must be zero for Eq. (32.9) to hold. Substituting this result into Eq. (32.8) and
simplifying gives

−
(

2D

U�x

)
cn−1 +

(
2D

U�x
+ k �x

U

)
cn = 0 (32.10)

Equations (32.5), (32.7), and (32.10) now form a system of n tridiagonal equations
with n unknowns. For example, if D = 2, U = 1, �x = 2.5, k = 0.2, and cin = 100, the
system is⎡

⎢⎢⎢⎢⎣
5.35 −1.6
−1.3 2.1 −0.3

−1.3 2.1 −0.3
−1.3 2.1 −0.3

−1.6 2.1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0

c1

c2

c3

c4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

325
0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

which can be solved for

c0 = 76.44 c1 = 52.47 c2 = 36.06

c3 = 25.05 c4 = 19.09

These results are plotted in Fig. 32.2. As expected, the concentration decreases due to the
decay reaction as the chemical flows through the tank. In addition to the above computa-
tion, Fig. 32.2 shows another case with D = 4. Notice how increasing the turbulent mixing
tends to flatten the curve.

FIGURE 32.2
Concentration versus distance
along the longitudinal axis of a
rectangular reactor for a
chemical that decays with first-
order kinetics.

c

20

40
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In contrast, if dispersion is decreased, the curve would become steeper as mixing became
less important relative to advection and decay. It should be noted that if dispersion is de-
creased too much, the computation will become subject to numerical errors. This type of error
is referred to as static instability to contrast it with the dynamic instability due to too large a
time step during a dynamic computation. The criterion to avoid this static instability is

�x ≤ 2D

U

Thus, the criterion becomes more stringent (lower �x) for cases where advection domi-
nates over dispersion.

Aside from steady-state computations, numerical methods can be used to generate
time-variable solutions of Eq. (32.3). Figure 32.3 shows results for D = 2, U = 1, �x = 2.5,
k = 0.2, and cin = 100, where the concentration in the tank is 0 at time zero. As expected,
the immediate impact is near the inlet. With time, the solution eventually approaches the
steady-state level.

It should be noted that in such dynamic calculations, the time step is constrained by a
stability criterion expressed as (Chapra, 1997)

�t ≤ (�x)2

2D + k(�x)2

Thus, the reaction term acts to make the time step smaller.

32.2 DEFLECTIONS OF A PLATE
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. A square plate with simply supported edges is subject to an areal load q
(Fig. 32.4). The deflection in the z dimension can be determined by solving the elliptic PDE
(see Carnahan, Luther, and Wilkes, 1969)

∂4z

∂x4
+ 2

∂4z

∂x2∂y2
+ ∂4z

∂y4
= q

D
(32.11)
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FIGURE 32.3
Concentration versus distance
at different times during the
buildup of chemical in a
reactor.
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918 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

subject to the boundary conditions that, at the edges, the deflection and slope normal to the
boundary are zero. The parameter D is the flexural rigidity,

D = E �z3

12(1 − σ 2)
(32.12)

where E = the modulus of elasticity, �z = the plate’s thickness, and σ = Poisson’s ratio.
If a new variable is defined as

u = ∂2z

∂x2
+ ∂2z

∂y2

Eq. (32.11) can be reexpressed as

∂2u

∂x2
+ ∂2u

∂y2
= q

D
(32.13)

Therefore, the problem reduces to successively solving two Poisson equations. First, 
Eq. (32.13) can be solved for u subject to the boundary condition that u = 0 at the edges.
Then, the results can be employed in conjunction with

∂2z

∂x2
+ ∂2z

∂y2
= u (32.14)

to solve for z subject to the condition that z = 0 at the edges.
Develop a computer program to determine the deflections for a square plate subject to

a constant areal load. Test the program for a plate with 2-m-long edges, q = 33.6 kN/m2,
σ = 0.3, �z = 10−2 m, and E = 2 × 1011 Pa. Employ �x = �y = 0.5 m for your test run.

Solution. Finite-divided differences can be substituted into Eq. (32.13) to give

ui+1, j − 2ui, j + ui−1, j

�x2
+ ui, j+1 − 2ui, j + ui, j−1

�y2
= q

D
(32.15)

Equation (32.12) can be used to compute D = 1.832 × 104 N/m. This result, along with the
other system parameters, can be substituted into Eq. (32.15) to give

ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j = 0.458

FIGURE 32.4
A simply supported square plate
subject to an areal load.

y

z

x

�z
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This equation can be written for all the nodes with the boundaries set at u = 0. The result-
ing equations are⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 1
1 −4 1 1

1 −4 1
1 −4 1 1

1 1 −4 1 1
1 1 −4 1

1 −4 1
1 1 −4 1

1 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.458
0.458
0.458
0.458
0.458
0.458
0.458
0.458
0.458

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which can be solved for

u1,1 = −0.315 u1,2 = −0.401 u1,3 = −0.315

u2,1 = −0.401 u2,2 = −0.515 u2,3 = −0.401

u3,1 = −0.315 u3,2 = −0.401 u3,3 = −0.315

These results in turn can be substituted into Eq. (32.14), which can be written in finite-
difference form and solved for

z1,1 = 0.063 z1,2 = 0.086 z1,3 = 0.063

z2,1 = 0.086 z2,2 = 0.118 z2,3 = 0.086

z3,1 = 0.063 z3,2 = 0.086 z3,3 = 0.063

32.3 TWO-DIMENSIONAL ELECTROSTATIC FIELD PROBLEMS
(ELECTRICAL ENGINEERING)

Background. Just as Fourier’s law and the heat balance can be employed to characterize
temperature distribution, analogous relationships are available to model field problems in
other areas of engineering. For example, electrical engineers use a similar approach when
modeling electrostatic fields.

Under a number of simplifying assumptions, an analog of Fourier’s law can be repre-
sented in one-dimensional form as

D = −ε
dV

dx

where D is called the electric flux density vector, ε = permittivity of the material, and V =
electrostatic potential.

Similarly, a Poisson equation for electrostatic fields can be represented in two dimen-
sions as

∂2V

∂x2
+ ∂2V

∂y2
= −ρv

ε
(32.16)

where ρv = volumetric charge density.
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920 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

Finally, for regions containing no free charge (that is ρv = 0), Eq. (32.16) reduces to a
Laplace equation,

∂2V

∂x2
+ ∂2V

∂y2
= 0 (32.17)

Employ numerical methods to solve Eq. (32.17) for the situation depicted in Fig. 32.5.
Compute both the values for V and for D if ε = 2.

Solution. Using the approach outlined in Sec. 29.3.2, Eq. (29.24) can be written for node
(1, 1) as

2

�x2

[
V1,1 − V0,1

α1(α1 + α2)
+ V1,1 − V2,1

α2(α1 + α2)

]
+ 2

�y2

[
V1,1 − V0,1

β1(β1 + β2)
+ V1,1 − V2,1

β2(β1 + β2)

]
= 0

According to the geometry depicted in Fig. 32.5, �x = 3, �y = 2, β1 = β2 = α2 = 1, and
α1 = 0.94281. Substituting these values yields

0.12132V1,1 − 121.32 + 0.11438V1,1 − 0.11438V2,1 + 0.25V1,1

+ 0.25V1,1 − 0.25V1,2 = 0

Collecting terms gives

0.73570V1,1 − 0.11438V2,1 − 0.25V1,2 = 121.32

FIGURE 32.5
(a) A two-dimensional system with a voltage of 1000 along the circular boundary and a voltage
of 0 along the base. (b) The nodal numbering scheme.

(a)

(b)
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A similar approach can be applied to the remaining interior nodes. The resulting
simultaneous equations can be expressed in matrix form as⎡

⎢⎢⎢⎢⎢⎢⎣

0.73570 −0.11438 −0.25000
−0.11111 0.72222 −0.11111 −0.25000

−0.11438 0.73570 −0.25000
−0.31288 1.28888 −0.14907

−0.25000 −0.11111 0.72222 −0.11111
−0.31288 −0.14907 1.28888

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V1,1

V2,1

V3,1

V1,2

V2,2

V3,2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

121.32
0

121.32
826.92

250
826.92

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

which can be solved for

V1,1 = 521.19 V2,1 = 421.85 V3,1 = 521.19

V1,2 = 855.47 V2,2 = 755.40 V3,2 = 855.47

These results are depicted in Fig. 32.6a.
To compute the flux (recall Sec. 29.2.3), Eqs. (29.14) and (29.15) must be modi-

fied to account for the irregular boundaries. For the present example, the modifications
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FIGURE 32.6
The results of solving the
Laplace equation with correc-
tion factors for the irregular
boundaries. (a) Potential and
(b) flux.
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922 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

result in

Dx = −ε
Vi+1, j − Vi−1, j

(α1 + α2)�x

and

Dy = −ε
Vi, j+1 − Vi, j−1

(β1 + β2)�y

For node (1, 1), these formulas can be used to compute the x and y components of the flux

Dx = −2
421.85 − 1000

(0.94281 + 1)3
= 198.4

and

Dy = −2
855.47 − 0

(1 + 1)2
= −427.7

which in turn can be used to calculate the electric flux density vector

D =
√

198.42 + (−427.7)2 = 471.5

with a direction of

θ = tan−1

(−427.7

198.4

)
= −65.1◦

The results for the other nodes are

Node Dx Dy D �

2, 1 0.0 −377.7 377.7 −90
3, 1 −198.4 −427.7 471.5 245.1
1, 2 109.4 −299.6 281.9 −69.1
2, 2 0.0 −289.1 289.1 −90.1
3, 2 −109.4 −299.6 318.6 249.9

The fluxes are displayed in Fig. 32.6b.

32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS
(MECHANICAL/AEROSPACE ENGINEERING)

Background. Figure 32.7 shows a series of interconnected springs. One end is fixed to a
wall, whereas the other is subject to a constant force F. Using the step-by-step procedure
outlined in Chap. 31, a finite-element approach can be employed to determine the dis-
placements of the springs.

Solution.

Discretization. The way to partition this system is obviously to treat each spring as an
element. Thus, the system consists of four elements and five nodes (Fig. 32.7b).
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Element equations. Because this system is so simple, its element equations can be writ-
ten directly without recourse to mathematical approximations. This is an example of the
direct approach for deriving elements.

Figure 32.8 shows an individual element. The relationship between force F and dis-
placement x can be represented mathematically by Hooke’s law:

F = kx

where k = the spring constant, which can be interpreted as the force required to cause a
unit displacement. If a force F1 is applied at node 1, the following force balance must hold:

F = k(x1 − x2)

where x1 = displacement of node 1 from its equilibrium position and x2 = displacement of
node 2 from its equilibrium position. Thus, x2 − x1 represents how much the spring is elon-
gated or compressed relative to equilibrium (Fig. 32.8).

This equation can also be written as

F1 = kx1 − kx2

For a stationary system, a force balance also necessitates that F1 = −F2 and, therefore,

F2 = −kx1 + kx2

32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS 923

FIGURE 32.7
(a) A series of interconnected
springs. One end is fixed to a
wall, whereas the other is
subject to a constant force F.
(b) The finite-element
representation. Each spring
represents an element. There-
fore, the system consists of four
elements and five nodes.
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1 2 3 4

Force

(a)

(b)

Node
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FIGURE 32.8
A free-body diagram of a
spring system.
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F1 F2

0 x1 x2
x

cha01064_ch32.qxd  3/25/09  1:21 PM  Page 923



924 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

These two simultaneous equations specify the behavior of the element in response to
prescribed forces. They can be written in matrix form as[

k −k
−k k

]{
x1

x2

}
=

{
F1

F2

}
or

[k]{x} = {F} (32.18)

where the matrix [k] is the element property matrix. For this case, it is also referred to as the
element stiffness matrix. Notice that Eq. (32.18) has been cast in the format of Eq. (31.9).
Thus, we have succeeded in generating a matrix equation that describes the behavior of a
typical element in our system.

Before proceeding to the next step—the assembly of the total solution—we will intro-
duce some notation. The elements of [k] and {F} are conventionally superscripted and sub-
scripted, as in[

k(e)
11 −k(e)

12

−k(e)
21 k(e)

22

]{
x1

x2

}
=

{
F (e)

1

F (e)
2

}

where the superscript (e) designates that these are the element equations. The k’s are also
subscripted as kij to denote their location in the ith row and jth column of the matrix. For
the present case, they can also be physically interpreted as representing the force required
at node i to induce a unit displacement at node j.

Assembly. Before the element equations are assembled, all the elements and nodes must
be numbered. This global numbering scheme specifies a system configuration or topology
(note that the present case uses a scheme identical to Table 31.1). That is, it documents
which nodes belong to which element. Once the topology is specified, the equations for
each element can be written with reference to the global coordinates.

The element equations can then be added one at a time to assemble the total system.
The final result can be expressed in matrix form as [recall Eq. (31.10)]

[k]{x ′} = {F ′}
where

[k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(1)
11 −k(1)

12

−k(1)
21 k(1)

22 + k(2)
11 −k(2)

12

−k(2)
21 k(2)

22 + k(3)
11 −k(3)

12

−k(3)
21 k(3)

22 + k(4)
11 −k(4)

12

−k(4)
21 k(4)

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32.19)

and

{F ′} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (1)
1
0
0
0

F (4)
2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS 925

and {x ′} and {F ′} are the expanded displacement and force vectors, respectively. Notice
that, as the equations were assembled, the internal forces cancel. Thus, the final result for
{F ′} has zeros for all but the first and last nodes.

Before proceeding to the next step, we must comment on the structure of the assem-
blage property matrix [Eq. (32.19)]. Notice that the matrix is tridiagonal. This is a direct
result of the particular global numbering scheme that was chosen (Table 31.1) prior to as-
semblage. Although it is not very important in the present context, the attainment of such a
banded, sparse system can be a decided advantage for more complicated problem settings.
This is due to the efficient schemes that are available for solving such systems.

Boundary Conditions. The present system is subject to a single boundary condition,
x1 = 0. Introduction of this condition and applying the global renumbering scheme reduces
the system to (k ′s = 1)⎡

⎢⎢⎣
2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x2

x3

x4

x5

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
F

⎫⎪⎪⎬
⎪⎪⎭

The system is now in the form of Eq. (31.11) and is ready to be solved.
Although reduction of the equations is certainly a valid approach for incorporating

boundary conditions, it is usually preferable to leave the number of equations intact when
performing the solution on the computer. Whatever the method, once the boundary condi-
tions are incorporated, we can proceed to the next step—the solution.

Generating Solution. Using one of the approaches from Part Three, such as the efficient
tridiagonal solution technique delineated in Chap. 11, the system can be solved for (with all
k ′s = 1 and F = 1)

x2 = 1 x3 = 2 x4 = 3 x5 = 4

Postprocessing. The results can now be displayed graphically. As in Fig. 32.9, the results
are as expected. Each spring is elongated a unit displacement.

FIGURE 32.9
(a) The original spring system. (b) The system after the application of a constant force. The dis-
placements are indicated in the space between the two systems.

F
x = 1

x = 2
x = 3

x = 4

(a)

(b)
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926 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

Chemical/Bio Engineering
32.1 Perform the same computation as in Sec. 32.1, but use 
�x = 1.25.
32.2 Develop a finite-element solution for the steady-state system
of Sec. 32.1.
32.3 Compute mass fluxes for the steady-state solution of
Sec. 32.1 using Fick’s first law.
32.4 Compute the steady-state distribution of concentration for the
tank shown in Fig. P32.4. The PDE governing this system is

D

(
∂2c

∂x2
+ ∂2c

∂y2

)
− kc = 0

and the boundary conditions are as shown. Employ a value of 0.5
for D and 0.1 for k.
32.5 Two plates are 10 cm apart, as shown in Fig. P32.5. Initially,
both plates and the fluid are still. At t = 0, the top plate is moved at
a constant velocity of 8 cm/s. The equations governing the motions
of the fluids are

∂voil

∂t
= μoil

∂2voil

∂x2
and

∂vwater

∂t
= μwater

∂2vwater

∂x2

and the following relationships hold true at the oil-water interface:

voil = vwater and μoil
∂voil

∂x
= μwater

∂vwater

∂x

What is the velocity of the two fluid layers at t = 0.5, 1, and 1.5 s
at distances x = 2, 4, 6, and 8 cm from the bottom plate? Note that
µwater and µoil = 1 and 3 cp, respectively.
32.6 The displacement of a uniform membrane subject to a tension
and a uniform pressure can be described by the Poisson equation

∂2z

∂x2
+ ∂2z

∂y2
= − P

T

Solve for the displacement of a 1-cm-square membrane that has
P�T = 0.6/cm and is fastened so that it has zero displacement along
its four boundaries. Employ �x = �y = 0.1 cm. Display your
results as a contour plot.

Civil/Environmental Engineering
32.7 Perform the same computation as in Sec. 32.2, but use �x =
�y = 0.4 m.
32.8 The flow through porous media can be described by the
Laplace equation

∂2h

∂x2
+ ∂2h

∂y2
= 0

where h is head. Use numerical methods to determine the distribu-
tion of head for the system shown in Fig. P32.8.

Figure P32.4 

30

10

10
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boundary Wall

c = 40

c = 100

Figure P32.5 

Oil

Water

10

8

6

4

2

x = 0

Figure P32.8

2

= 0

12

�h
�y

= 0

h = 20

�h
�n

= 0�h
�y

= 1�h
�x

PROBLEMS
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Figure P32.10 

a
V = 10

V = 0

V = 5

V = 40

V = 20

a

V = 10

Figure P32.11

2

= 0

111

�V
�y

= 0�V
�y

= 0�V
�x

V = 70

V = 100

32.9 The velocity of water flow through the porous media can be
related to head by D’Arcy’s law

qn = −K
dh

dn

where K is the hydraulic conductivity and qn is discharge velocity
in the n direction. If K = 5 × 10−4 cm/s, compute the water veloc-
ities for Prob. 32.8.

Electrical Engineering
32.10 Perform the same computation as in Sec. 32.3 but for the
system depicted in Fig. P32.10.
32.11 Perform the same computation as in Sec. 32.3 but for the
system depicted in Fig. P32.11.

32.12 Use Poisson’s equation to compute the electric potential over
a unit square (1 × 1) plate with zero voltage at the edges and point
charge sources of ρv/ε(0.5, 0.5) = 1 and ρv/ε(−0.5,−0.5) = −1.
Employ �x = �y = 0.1 and display your results as a contour plot.

Mechanical/Aerospace Engineering
32.13 Perform the same computation as in Sec. 32.4, but change
the force to 1.5 and the spring constants to

Spring 1 2 3 4

k 0.75 1.5 0.5 2

32.14 Perform the same computation as in Sec. 32.4, but use a
force of 2 and five springs with

Spring 1 2 3 4 5

k 0.25 0.5 1.5 0.75 1

32.15 An insulated composite rod is formed of two parts arranged
end to end, and both halves are of equal length. Part a has thermal
conductivity ka, for 0 ≤ x ≤ 1/2, and part b has thermal conduc-
tivity kb, for 1/2 ≤ x ≤ 1. The nondimensional transient heat con-
duction equations that describe the temperature u over the length x
of the composite rod are

∂2u

∂x2
= ∂u

∂t
0 ≤ x ≤ 1/2

r
∂2u

∂x2
= ∂u

∂t
1/2 ≤ x ≤ 1

where u = temperature, x = axial coordinate, t = time, and 
r = ka/kb. The boundary and initial conditions are

Boundary conditions u(0, t ) = 1 u(1, t ) = 1

� �a
= � �b

x = 1/2

Initial conditions u(x, 0) = 0 0 < x < 1

Solve this set of equations for the temperature distribution as a func-
tion of time. Use second-order accurate finite-difference analogues
for the derivatives with a Crank-Nicolson formulation to integrate in
time. Write a computer program for the solution, and select values
of �x and �t for good accuracy. Plot the temperature u versus
length x for various values of time t. Generate a separate curve for
the following values of the parameter r = 1, 0.1, 0.01, 0.001, and 0.
32.16 Solve the nondimensional transient heat conduction equa-
tion in two dimensions, which represents the transient temperature
distribution in an insulated plate. The governing equation is

∂2u

∂x2
+ ∂2u

∂y2
= ∂u

∂t

∂u
�
∂x

∂u
�
∂x
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928 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

where u = temperature, x and y are spatial coordinates, and t =
time. The boundary and initial conditions are

Boundary conditions u(x, 0, t) = 0 u(x, 1, t ) = 1

u (0, y, t ) = 0 u (1, y, t ) = 1

Initial condition u(x, y, 0) = 0 0 ≤ x < 1 0 ≤ y < 1

Solve using the alternating direction-implicit technique. Write a
computer program to implement the solution. Plot the results
using a three-dimensional plotting routine where the horizontal
plan contains the x and y axes and the z axis is the dependent
variable u. Construct several plots at various times, including the
following: (a) the initial conditions; (b) one intermediate time,
approximately halfway to steady state; and (c) the steady-state
condition.
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PT8.3 TRADE-OFFS

The primary trade-offs associated with numerical methods for the solution of partial
differential equations involve choosing between finite-difference and finite-element
approaches. The finite-difference methods are conceptually easier to understand. In addi-
tion, they are easy to program for systems that can be approximated with uniform grids.
However, they are difficult to apply to systems with complicated geometries.

Finite-difference approaches can be divided into categories depending on the type of
PDE that is being solved. Elliptic PDEs can be approximated by a set of linear algebraic
equations. Consequently, the Liebmann method (which, in fact, is Gauss-Seidel) can be
employed to obtain a solution iteratively.

One-dimensional parabolic PDEs can be solved in two fundamentally different ways:
explicit or implicit approaches. The explicit method steps out in time in a fashion that is sim-
ilar to Euler’s technique for solving ODEs. It has the advantage that it is simple to program
but has the shortcoming of a very stringent stability criterion. In contrast, stable implicit meth-
ods are available. These typically involve solving simultaneous tridiagonal algebraic equa-
tions at each time step. One of these approaches, the Crank-Nicolson method, is both accurate
and stable and, therefore, is widely used for one-dimensional linear parabolic problems.

Two-dimensional parabolic PDEs can also be modeled explicitly. However, their sta-
bility constraints are even more severe than for the one-dimensional case. Special implicit
approaches, which are generally referred to as splitting methods, have been developed to
circumvent this shortcoming. These approaches are both efficient and stable. One of the
most common is the ADI, or alternating-direction implicit, method.

All the above finite-difference approaches become unwieldy when applied to systems
involving nonuniform shapes and heterogeneous conditions. Finite-element methods are
available that handle such systems in a superior fashion.

Although the finite-element method is based on some fairly straightforward ideas, the
mechanics of generating a good finite-element code for two- and three-dimensional prob-
lems is not a trivial exercise. In addition, it can be computationally expensive for large
problems. However, it is vastly superior to finite-difference approaches for systems in-
volving complicated shapes. Consequently, its expense and conceptual “overhead” are
often justified because of the detail of the final solution.

PT8.4 IMPORTANT RELATIONSHIPS AND FORMULAS

Table PT8.3 summarizes important information that was presented regarding the finite-
difference methods in Part Eight. This table can be consulted to quickly access important
relationships and formulas.
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PT8.5 ADVANCED METHODS AND ADDITIONAL REFERENCES

Carnahan, Luther, and Wilkes (1969); Rice (1983); Ferziger (1981); and Lapidus and Pinder
(1982) provide useful surveys of methods and software for solving PDEs. You can also con-
sult Ames (1977), Gladwell and Wait (1979), Vichnevetsky (1981, 1982), and Zienkiewicz
(1971) for more in-depth treatments. Additional information on the finite-element method
can be found in Allaire (1985), Huebner and Thornton (1982), Stasa (1985), and Baker
(1983). Aside from elliptic and hyperbolic PDEs, numerical methods are also available to
solve hyperbolic equations. Nice introductions and summaries of some of these methods can
be found in Lapidus and Pinder (1981), Ferziger (1981), Forsythe and Wasow (1960), and
Hoffman (1992).
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i + 1, l
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i, l + 1
2

i – 1, j i, j i + 1, j

i, j + 1

i, j – 1

i – 1, l i, l i + 1, l

i, l + 1

i – 1, l + 1

i, l

i + 1, l + 1i, l + 1

Elliptic PDEs
Liebmann’s
method

Parabolic PDEs
(one-dimensional)

Explicit
method

Implicit
method

Crank-Nicolson
method

Ti,j =

Ti
l+1 = Ti

l + λ(T l
i+1 − 2Ti

l + T l
i−1)

−λTi−1
l+1 + (1 + 2λ)Ti

l+1 − λTi+1
l+1 = Ti

l

−λTi−1
l+1 + 2(1 + λ)Ti

l+1 − λTi+1
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= λT l
i−1 + 2(1 − λ)Ti

l + λT l
i+1

Ti +1,j + Ti −1,j + Ti,j +1 + Ti,j −1
����

4

Computational Molecule Equation

TABLE PT8.3 Summary of finite-difference methods.
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