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The body structure is a resonant system with an infinite number of natural
frequencies. If any of these resonances occur at the wrong frequency, objectionable
or destructive levels of vibration will result. In this chapter, we will investigate ways
to avoid this and identify desirable vibration behavior for the body structure. We
will do this from a design perspective—where shall we place these body structure
resonances to result in satisfactory vibration performance?

7.1 First-Order Vibration Modeling

Generally during the early design stages we are not interested in estimating the
precise vibration amplitudes. We wish only to assure that the amplitude will not

be objectionably large to the receiver of the vibration. We can do this by assuming,
for a well-designed vehicle, that the frequency of the vibration source does not
coincide with a resonance in the vibration path (i.e., the vibration is uncoupled). This
assumption will allow us to simplify our analysis models by considering the well-
designed automobile to be a set of independent single-degree-of-freedom oscillators
in which the natural frequencies of these oscillators do not coincide. Following is an
example of this concept.
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7.2 Source-Path-Receiver Model of Vibration Systems

The example of Section 7.1 suggests a way to view vibratory systems for design
purposes. The system, Figure 7.6, is viewed as consisting of:

1. A Source of vibration energy (engine torque pulses in Section 7.1 example)

2. A Path for the vibration consisting of a series of subsystems (the steering column
with ACRS)

3. A Receiver which determines the acceptability of the vibration level (the driver’s

hands).
Source . Path » Receiver
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Figure 7.6 General vibration model.

The vibration characteristics for each of these entities may be viewed as a function of
vibration frequency (frequency domain), Figure 7.6 bottom. For the source, we have
a generalized force amplitude, F(w), being applied to the system; for the path, we
have a transfer function, P(w). This transfer function is the amplitude of the output
(deflection) resulting from a unit of input (force amplitude); and for the receiver, a
relation for the perception of the vibration at amplitude X(w):

X(w) | _
F“”)[m]‘x‘“’)
F(@)[P(@)] = X(e) (7.12)
T ik )

Source Path Sensed by Receiver

where:
~ F(®) = Source amplitude
X(w) = Response amplitude

[P(w)] = Path transfer function [response, X(w), per unit of input, F()]
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In the above relationship, the path is viewed as a single subsystem which responds
directly to the source. This model we used in the steering column example. In
many cases in automobile design, the path is a series of subsystems: for example,

a vibration force, F(w), applied at the spindle of the front suspension. This applied
force is attenuated by the suspension characteristics, [T(»)], and a reduced force,
F(®), is transmitted to the body structure through the suspension attachments. This
behavior can be described by the relationship,

FT (CO) X(CO) _
F(“’)[(m)(FT<w>H'X‘“”

F(o)[T(0)P(0)] = X(w) (7.1b)
T T 1l
Source Path Sensed by Receiver

where:
F(®) = Source amplitude

X(w) = Response amplitude

T(w) = Isolation characteristic of a subsystem in the path (force transmitted, F (),
per unit force applied, F (»))

F,(w) = Force transmitted through a subsystem of the path
P(®) = Body structure transfer function
Equation 7.1b will be used to develop design requirements for the body structure

vibration performance. Later in this chapter we will look closely at the four
vibration systems shown in the table below.

Table 7.1 Four automobile vibration systems.

| Powertrain Mounted  |Force through Body Deflection at seat,
unbalance force |powertrain |engine mounts structure steering column

Force at Suspension |Force through Body Deflection at seat,
| suspension shock absorber structure steering column
|spindle and ride spring
| Road deflection | Suspension |Force through Body Deflection at seat,
| at tire patch shock absorber structure steering column

: and ride spring
High frequency |Chassis links |Body panel Passenger Interior sound
| chassis with end vibrations compartment | pressure
| deflections bushings acoustic

resonances
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7.2.1 Automobile vibration spectrum

As each of the vibration characteristics, F(w), T(w), F (@), P(w), and X(w), depend

on frequency, o, it is useful to consider the vibration spectrum for an automobile,
Figure 7.7. Below 10 Hz the body structure acts as a rigid body. Above 100 Hz, body
vibration behavior is more localized and influenced by structural details. For these
design details we have the ability to take corrective measures for poor performance
later in the design sequence. We are most concerned with the frequency range of
10-100 Hz in body structure design. Behavior of the structure within this range is
that of the primary bending and torsion resonances. These are set by the overall
body architecture which, once established, cannot easily be changed in the later
design stages. Therefore it is important to design-in proper behavior for this range
during the early stages of design.

Primary focus of
Design for Vibration

000

-
N
()]
ki

0 Frequency (Hz)1

Human description of vibration

Body structure behavior

Figure 7.7 Vehicle vibration spectrum.

7.2.2 Human response to vibration

The objective of designing for vibration is to create an acceptable vibration
environment for the automobile passengers. There are considerable data which
relate human preference to vertical seat vibration level. In a typical test, a sinusoidal
vibration level is imposed at a specific frequency to the seat and the subject is asked
to subjectively describe the vibration—imperceptible, just perceptible, annoying.
The data from these evaluations are plotted on a vibration amplitude vs. frequency
plot as lines of constant comfort. A classical criterion is the Janeway curve,

Figure 7.8, which describes the boundary of acceptable vibration amplitude [2].
Figure 7.9 is a summary of data from several contemporary sources compared with
the Janeway curve [3, 4, 5]. The general character of all these iso-comfort curves is
U shaped, with the area least tolerated occurring in the 6-20 Hz range. These data
give us some idea for acceptable vibration levels as we use the source-path-receiver
model to design the structure for vibration behavior.
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Figure 7.8 Janeway vertical seat vibration criteria.

ISO FDP | ISO: International
1 hour Standards
Organization

- ISO RC

9 1 hour | FDP: Fatigue

a‘!; Decreased
© Proficiency
g

RC: Reduced Comfort

Absorbed Janeway .
power JNR: Japan National
0.2watt Railway

F?equen'c;‘/ of vibration (Hzl). o

Figure 7.9 Comparison of recommended vibration limits. (Courtesy of SAE International)

In the following sections we will look at some important vibration systems

of the automobile using this source-path-receiver model of Equation 7.1b,

Figure 7.10. We shall model the isolation behavior, T(®), and also the body structure
transfer function, P(w), as single-degree-of-freedom (SDOF) oscillators, Figure 7.11.
Therefore in the next section, we will begin by developing the equations of motion
for a general SDOF system.
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Sources Paths N Receiver
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Figure 7.10 Automobile vibration model.
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Figure 7.11 Major vibratory systems.

7.3 Frequency Response of a Single-Degree-of-Freedom
System

As an example of a SDOF system, consider the vertical motion of a powertrain mounted
on engine mounts, Figure 7.12a. (In a SDOF system, only one coordinate is needed to
describe the motion. This coordinate may be either a linear or rotational deflection.)

We assume the powertrain is mounted to ground and that a vertical sinusoidal force

is applied with amplitude F and frequency . With a sinusoidal forcing function, the
vertical displacement will also be sinusoidal with amplitude X and frequency w:

f(t) = Fsin(wt)

(7.2)
x(t) = X sin(wt)
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Figure 7.12 Single-degree-of-freedom system behavior.

7.3.1 Equation of motion for SDOF system
Consider a free body of the mass, Figure 7.12a, with a positive deflection of x [6]:

2
Y(forces acting on m)=m ¥ xgt) : '
: at (7.3)
d?x(t)
t)—kx(t) =

fO)-kx(t)=m T
d?x(t) y

7, —Xw? sin(wt)
Fsin(wt) = kX sin(wt) — mXw? sin(wt) (7.4)
F=kX -mw*X '
X it

T k-mo?

When «?=k/m, the denominator of this expression goes to zero and we have very
large deflections. This frequency is the natural or resonant frequency for this system:

Do === (Z.5)
With this definition the response, P(w), is:
X_ 1]k

=P
g7 F ) (7.6)
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where:
X = Amplitude of sinusoidal displacement

F = Amplitude of applied sinusoidal force
k = Spring stiffness
o, = Natural frequency

This is the transfer function for this path of vibration. The units are deflection
amplitude per unit of applied force amplitude (m/N).

7.3.2 Relation of vibration amplitudes

To gain insight into SDOF systems under sinusoidal motion, consider the
relationship between the amplitudes for displacement, x(t), velocity, v(t), and
acceleration, a(t). Given a displacement amplitude, X:
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displacement = x(t) = X sin(at)

velocity = d—z% = X cos(wt) (7.7)
2
acceleration = ddatcgt) =—Xw? sin(wt)

So for any frequency, o, these amplitudes are related as

displacement amplitude = X
velocity amplitude = X (7.8)

acceleration amplitude = X*

Often in vibration testing, an accelerometer is used to measure vibration amplitude.
The relations above can be used to convert between amplitudes.

7.3.3 Regions of vibration behavior

Plotting Equation 7.6 for P(w) against frequency, we can identify three important
regions, Figure 7.12b; at frequencies much below the resonance frequency, (o<<w,)
we have spring-like behavior:

F=kX
2(_':1 (7.9)
F|™ %

For frequencies much higher than the resonance frequency, (0>>w,), we have mass-
like behavior:

F = m(acceleration)

F =m(-Xw?) ' (7.10)
B
F| @?’m

At resonance, (o=, ), the vibration amplitude grows very large—infinite in this
undamped model. For real systems, the vibration amplitude at resonance is large,
but is limited by damping.
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7.3.4 Amplitude at resonance

For behavior close to the resonant frequency, the deflection of the system is limited
only by damping forces, which dissipate vibration energy. A common damping
model is viscous damping, where the damping force is proportional to, and in phase
with, velocity.

F, = C(velocity) (7.11)
where C = Viscous damping coefficient

Often, the damping coefficient is expressed in terms of the viscous damping
factor, &

P C
2km (7.12)
For this case, the amplitude at resonance is given by:
F, = C(velocity)
|Fp| = C(X@) = 26 lm (X ) = 25k ", (X )

T e S (7.13)
Ey| 2w/ o,)

at resonance @ = ,

X 1

Pl 2

Viscous damping is generally assumed for suspension shock absorbers where a
typical value for damping factor, C, is approximately C=2 Nsec/mm (11 Ib sec/in).

A second type of damping is structural damping, in which the damping force is
proportional to deflection, X, but in phase with velocity. The structural damping
factor, 7, describes the damping force as a fraction of force through the stiffness
element:

|F, | = (mkx) (7.14)

As with viscous damping, the damping force determines the amplitude at
resonance:

X 1 (7.15)
E, _—— nk

Structural damping is typically used to describe the behavior of metal structures.
While structural damping for the base metal is typically quite low (0.0001<n<0.001),
significant damping occurs in built-up metal structures at the welded joints. For a
spot-welded automobile body, the damping factor is on the order of (0.03<n<0.1) [7].
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(The same mathematical form is also used to characterize damping behavior of
elastomeric mounts [8]. In that case the factor 7 is called the loss factor, having a
typical range from 0.05<n<0.2.)

Comparing Equations 7.13 and 7.15, note the relation of viscous damping and
structural damping at the resonant frequency:

n=2¢ (7.16)

For either viscous or structural damping, the damping coefficient may be estimated
by the bandwidth at the half-power amplitude, as shown in Figure 7.12b:

_ Ao
®

n

(7.17)

where Aw is the bandwidth measured at the half-power amplitude [\/2(amp1itude at
resonance)], Figure 7.12b.

7.3.5 Transfer function as log-log plot

Because the source-path-receiver model, Equation 7.1b, involves multiplying
frequency characteristics, it is helpful to display F(w), T(w), P(w), and X(w) as log-
log graphs. When displayed in this way, the multiplication in Equation 7.1b is
visualized by adding the y values of the response plots. For example, the response of
a SDOF system, Equation 7.6, is plotted on logarithmic axes in Figure 7.13.
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Figure 7.13 Log displacement output vs. acceleration output.

7.4 SDOF Models of Vehicle Vibration Systems

With the background of Section 7.3, we can now look at some specific vehicle
systems using the model of Equation 7.1b.

F(o)) X(w) || _
F(w)[( o) )( E () H =X(w)
F(o)[T(w)P(w)] = X(w)

T ¥ T

Source Path Sensed by Receiver

(7.1b) repeated

In each case, we are interested in how the forces being applied to the body structure,
F,, vary with frequency, Figure 7.14. Understanding this, we can then decide where
the structural resonances of the body should be placed.

7.4.1 Powertrain path: Reciprocating unbalance
The first system we will look at is the Powertrain path, Table 7.2, Figure 7.15.

Table 7.2 Powertrain path vibration system.

Force through Body structure Deflection at seat,
| powertrain engine mounts steering column
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Source log
applied force: F(w)

Path
isolator: T(w)

- -
force into body: F(@w)=F(w)T(®) l

body structure transfer function:

P(w)

R

Receiver

resulting deflection:
X(w)=F()T(w)P(w)

Figure 7.14 Characterizing behavior with frequency response.

Sources . Paths H Receiver

Engine *Mounted engine *Seat vibration
*Unbalance *Body structure *Steering wheel

Figure 7.15 Powertrain-driven vibration.

The reciprocating elements of the engine—piston and connecting rod—impose

forces on the crankshaft, Figure 7.16. For each cylinder, the oscillating forces are
given by [9]:

f() = [mr92 ﬂ sin(2Q¢)
flt)= F sin(wt)

(7.18)

where:
f(t) = Oscillating force applied to the crankshaft

m = Reciprocating mass
r = Crank shaft offset shown in Figure 7.16
I = Connecting rod length

Q= Engine speed in rad/s [Q2 = N (rpm) (27 rad/rev)(1 min/60 sec)]
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Q = rotational speed of crankshaft

di) m Q=N (rev/min) (min/60sec) (27 rad/rev)
ol
f(t) = © — sin(2
I (t) mr Q7 7 sin(2 2t)
‘\‘Q F, 1]
f(t) F() log F() 2

[0

log @

Figure 7.16 Unbalance forcing function for single cylinder engine.

Note that this oscillating force occurs at two times the engine speed due to the

kinematics of the piston motion, and that the amplitude increases with the square
of the engine speed. For engines with multiple cylinder configurations—L4, V6,
V8—the unbalance forces of the individual cylinders combine to the resultant force

or moment shown in Figure 7.17 [9] for the most common configurations.

In line 4 V6 V8
F, 60° 900
iVERT[CAL (\7 \ m
MROTATING
planar even 1200 even 900
crankshaft crankshaft __crankshaft
Excitation _ ey 3 roe
amplitude Franrica ~4mr79 Mur 5™ P None
(2 x engine cylinder
speed) spacing @}
Balance |F}zrpcqy May be crankshaft crankshaft
strategy |eliminated with dual| counter weights | counter
counter rotating balance the weights
balance shafts at  |primary rotating |balance the
2 x engine speed | couple leaving the | primary
above moment rotating couple

Figure 7.17 Unbalance forcing function for multiple cylinder engines.
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With the source-path-receiver model shown in Figure 7.15, we have engine
unbalance forces applied to the powertrain. The path into the body is through the
mounted powertrain acting as an isolator. For body design, we are interested in the
force transmitted through the engine mounts into the body structure. The mounted
powertrain is a SDOF system, Figure 7.18, with frequency response given by
Equation 7.4. The transmitted force though the engine mounts is then:

. =kX
X__1/k
F— 2
wn
Xk_ 1 (7.19)
E

Lim
(Y

where:
F, = Force transmitted to body through engine mounts

F = Force applied to powertrain

*Engine unbalance force

0 <Torque pulse

Powertrain

Engine mounts

1 Transmitted force into body
FT

Figure 7.18 First order model for powertrain on rigid base.

In this expression, F is the magnitude of the unbalance force, and F; is the force
applied to the body structure through the engine mounts. When the magnitude

of (F,/F) is greater than one, the engine mount system is amplifying the unbalance
forces; when it is less than one, it is reducing—isolating—the unbalance forces. This
isolation begins to occur when:
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The equation above is for an undamped system. If we consider engine mounts with
loss factor 7, we replace the stiffness k with k*=k +ink in Equation 7.4. (See the note
at end of this chapter for the use of complex numbers in solving forced vibration
problems.) The force transmitted into the body through a mount with damping is:

E, VJ1+7n?
T = =T(w)

22 (7.21)
wn
where:

F, = Force transmitted to body through engine mounts
F = Force applied to powertrain

n = Mount structural damping coefficient

As with the undamped powertrain model, isolation begins when a)=a)n\/2.

The peak force transmitted at resonance o=, is reduced as mount damping
increases. However, for the isolation region w>w V2, as damping increases the
force transmitted increases, Figure 7.19. This control vs. isolation trade-off requires
adjusting damping to balance controlling the amplitude at resonance against the
level of vibration isolation achieved.

high damping

low damping
J

@p frequency

N2

Figure 7.19 Force transmitted into body: Powertrain on rigid base.

The behavior of the powertrain vibratory system is summarized in Figure 7.20.

The unbalance force, F(®), applied to the powertrain increases as the square of the
frequency (slope of +2 on log-log plot). The mounted powertrain acts as an isolator,
T(w), above (w>w, \2). Multiplying these two functions yields the force transmitted
to the body through the engine mounts, F,. During design of the body structure,

an objective is to position the primary structure resonances—both bending and
torsion—in the isolation region.

277



Chapter 7 | Design for Vibration

Unbalance  og
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X log ® &
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per force applied Fr
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Force into log
body Fj

—  Fr=[F(@)][T(0)]

Figure 7.20 Transfer function model of powertrain using log-log plots.

7.4.2 Suspension path: Load at spindle

An important vibration path into the body is through the suspension elements,
primarily through the shock absorber and ride spring, Figure 7.21. In general, the
suspension system acts as an isolator for vibration energy at frequencies above the
wheel hop resonance. The source-path-receiver model for this vibration system is
shown in Table 7.3.

Sources I Path » Receiver

*Vertical spindle force S .
*Suspension
Rotational unbalance -Bods *Seat vibration
Tire radial force «Steering wheel
*Road irregularities

structure

Figure 7.21 Suspension-driven vibration.

Table 7.3 Suspension path vibration system: Load at spindle

Deflection at seat,
absorber and ride . steering column
spring
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For the purpose of investigating the loads into the body structure, we can model
the suspension as a SDOF system, Figure 7.22 [10]. Here the spring is the parallel
combination of the ride spring of the suspension and the radial rate of the tire, as
measured at the spindle. The mass consists of all elements of the suspension which
participate in the vertical motion of the spindle. This mass is primarily the wheel,
knuckle, brakes, and the outer portion of the control arms.

F, force transmitted into body

= ride spring
> shock absorber/strut

N
:I_ unsprung mass

___]— tire spring

Fr T Fr
spindle shock absorber ride spring
;glrce unsprung mass ki
tire spring disturbance
b o X,
(a) Spindle force input (b) Road input

Figure 7.22 First-order model of suspension.

As shown in Figure 7.22a this SDOF may be excited by a load at the spindle. When a
wheel unbalance is present, a centrifugal force is applied to the suspension spindle.
Generally we are interested in the vertical component of this rotating force, as this

is the direction the suspension is most compliant. Figure 7.23a shows this case, with
the resulting applied force given by:

f(t) = mro? sin ot (7.22)

where:
f(t) = Vertical force at the spindle

m = Equivalent unbalance mass at wheel rim
r = Wheel rim radius

o = Rotation speed of wheel [V=wR, V: vehicle speed, R: tire rolling radius]
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f(t)=mr &’sin(@t)

f
o=V
T R
where m unbalance mass
v ~ » » radial position of mass
R V Vehicle velocity

(a) Tire unbalance force R Tirs: raling radids

J)=F,sin(no1y),
n order of variation
) o n=1,23, ..

fo

(b) Tire radial force variation

Figure 7.23 Suspension vibration sources.

A second source for a force applied to the spindle is radial force variation of the
tire. Imagine a tire on a test fixture where the spindle is at a fixed distance from an
ideally smooth surface, Figure 7.23b. As the tire rolls, the measured vertical force
is not constant as expected. Rather we would see some oscillation about the mean
force due to imperfections in the tire material and construction. This variation
generally has constant amplitude independent of speed, with frequency expressed
as multiples (orders) of the rotational speed:

f(t)=F, sinnot (7.23)

where:
n = Vibration order, n=1, 2,3, . ..

all other variables are the same as Equation 7.22
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Under either an unbalance or a radial tire force at the spindle, we may find the
resulting spindle deflection for a unit force at the spindle using a free body of the
unsprung mass, Figure 7.24 (the use of complex number notation is covered in the
note at the end of this chapter):

2 forces on unsprung mass = m(acceleration)
-X k, - Xk, —iX,Co+ F = m(-X,0?)
X, 1

F  k+k,—mo?+iCo

i}
X, 3 ki ik,

1
(k K J (7.24)

where:
F = Force applied to spindle

k, = Ride spring rate
k, = Tire spring radial rate
m = Unsprung mass

C = Shock absorber viscous damping factor (typical value is 10002000 Ns/m)

k,+k
o, = Wheel hop frequency, o, = /- S
m
i=v-1
ride spring k,

shock absorber C

unsprung mass m o =

tire spring k;

Figure 7.24 First-order suspension analysis.
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The suspension acts as an isolator for force transmitted into the body. The
force transmitted through the ride spring and shock absorber into the body is
F,=X,(k,+ioC). Substituting Equation 7.24 into this expression gives:

P 2
()
= B - = T()| (7.25)
232 2 '
o, k, +k,
where:

F, = Force transmitted to body through shock absorber and ride spring

e

F

other variables the same as Equation 7.24
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The behavior of this vibratory system is summarized in Figure 7.26. The tire
variation spindle force is constant with frequency, while unbalance force increases
as the square of the frequency (slope of +2 on the log-log plot). Multiplying these
two functions yields the force transmitted to the body through the ride spring/
shock absorber, F,. Above the wheel hop resonance, the force into the body is less
than the force applied to the spindle, and isolation occurs. The primary path for
this transmitted force is the shock absorber. During design of the body structure, an
objective is to place the primary structure resonances—both bending and torsion—
above the wheel hop frequency in the isolation region.

It should be noted that the SDOF suspension model of Figure 7.24 is attached to
ground at the ride spring and shock absorber rather than attached to the vehicle
rigid-body mass (often called a quarter car model). Therefore the suspension model
used here does not exhibit the vehicle ride motions occurring at approximately

1 Hz and should be applied only for frequencies greater than 5 Hz. Our model does
predict the forces transmitted to the body in the region of wheel hop frequency and
above. As these forces are much larger than those occurring at the ride frequencies,
our SDOF model is sufficient to understand the isolation behavior of the suspension
with respect to the body.
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Figure 7.26 Force into body due to force at spindle.

7.4.3 Suspension path: Deflection at tire patch

A second source of vibration flowing through the suspension into the body structure
is due to road deflections at the tire patch, Table 7.4.

Table 7.4 Suspension path vibration system: Road input

| Suspension |Force through Body structure Deflection at seat,
shock absorber steering column
and ride spring

Dynamic characteristics for typical roads have been measured and characterized by
the Power Spectral Density (PSD) of the displacement, Equation 7.26 [10]:

(2]
142
v (7.26)
cL M/ .
where:

G = Power Spectral Density [(m?)/(cycle/m)]

v = Wave number (cycle/m)

G, =1.35 x 10* Rough Roads, 1.35 x 10~° Smooth Roads (1m?)
v, = 0.015 Bituminous Roads, 0.0061 Concrete Roads (cycle/m)
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f(Hz)= v (cycle/m) V (m/sec) (7.27)

where:

v = Spatial frequency (cycle/n)

V = Vehicle speed (m/sec)

f = Temporal frequency (Hz)
The PSD is a means to characterize a random signal, and may be visualized as
the mean-square value of the signal as filtered through a 1 Hz bandwidth filter at
a center frequency f. The center frequency is varied over the range of interest to
arrive at the full spectrum. For maintained paved roads, Equation 7.26 predicts

that the deflection amplitude rapidly diminishes with increasing frequency,
Figure 7.27.

1 3 . L
Road
irregularities ADaM, X,(1)

10 v o= 0.015 cycle/m
G,=1.35x 10" m?

96 km/h
(60 mph)

(m?/Hz)
S

107
48 km/h

109 1 (30 mph)

Spectral density

0.10 1 10 100 Frequency (Hz)

Figure 7.27 Suspension vibration source: Road deflections.

Again, a SDOF model of the suspension may be used to characterize the force
transmitted into the body, Figure 7.24. In this model, the input is the displacement at
the tire patch, X,, which may be characterized by the PSD, G, of Equation 7.26. The
amplitude of the spindle displacement, X,, for a unit displacement at the tire patch,
X,, is determined by a free body of the unsprung mass:
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Z forces on unsprung = m(acceleration)
~(X, - X, )k, - Xk, —iX,Coo = m(-X,0?)
X,k =k, +k, +iCo — mw?)X,

X k

R 1
X, (k +k,+iCo—-mo?)

&=
_ AoS (7.28)

N

where:
X, = Deflection of the unsprung mass

X, = Imposed deflection at tire patch

k, = Ride spring rate

k, = Tire spring radial rate

m = Unsprung mass

C = Shock absorber viscous damping factor

The force transmitted through ride spring and shock absorber into body is
F =X (k,+ioC) and substituting into Equation 7.28 yields:

[ klk2 ] " [ W Jz
k, +k k
_ 1 + 2 2 _ |T(w)| (729)

ARG

where variables are those of Equation 7.28

Ld

X

2

The behavior of this vibratory system is summarized in Figure 7.28. Tire patch
deflections, F(w), rapidly diminish with increasing frequency (slope of —4 on log-
log plot). Again the suspension acts as an isolator, T(w), and the product of these
two functions, F(w)T(w), yields the force transmitted to the body through the ride
spring/shock absorber, F,. During body structure design, we take advantage of
the isolation properties of the suspension by positioning the primary structure
resonances—both bending and torsion—above the wheel hop frequency.
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Figure 7.28 Force into body due to road disturbance.

7.5 Strategies for Design for Vibration

We have now characterized some of the major vibration systems for the vehicle.
Our design objective is to minimize the source vibration energy flowing to the
receiver with undesirable results. Three of the most important strategies to meet this
objective are 1) Reduce amplitude of the source; 2) Block the flow of energy using
isolators in the path; and 3) Detune resonances in the system [11]. Table 7.5 provides
some examples for each of these strategies, and Figure 7.29 illustrates the strategies
as log-log frequency response plots.

Table 7.5 Design for vibration strategies.

Powertrain

|- Minimize reciprocating mass in engine
- Add balance shafts to in-line 4 cylinder engine

V | Suspension

- Balance tires

- High quality tires with low radial force variation

- Minimize shock absorber forces using a linkage ratio~1
|- Mounted powertrain at isolator

- Suspension as isolator

- Rubber bushings in chassis links at acoustic frequencies (treated in
Section 7.8)

Positioning body primary bending and torsion resonances to avoid

eaks in vibration sources and to take advantage of isolation of mounted
powertrain and suspension
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Strategy Reduce source  Isolation

Source
input force: F(w)

Path
isolator: T{w)
body structure:
P(w)
Receiver T
deflection: X(@) [Nt
Idga)

Figure 7.29 Vibration control strategies.

7.5.1 Mode map of vehicle vibratory systems

One of the most important strategies in setting body structure requirements is
that of detuning resonances of the body from sources and responders. If this can
be achieved during the early design phases, many vibration problems can be
avoided, and those remaining may be treated by minor tuning. Using the first-
order vibration models of Section 7.4, we can summarize the source, isolator, and
responder characteristics for a typical vehicle on a mode map, Figure 7.30. This map
clearly shows the desirable structural resonance band of 22-25 Hz. This band falls
in the isolation region of the suspension and mounted powertrain, and yet below
resonances of downstream paths.

Paths / Isolators
suspension modes E
mounted engine modes
Responders
steering column

panel resonance 1l
acoustic cavity modes
seated occupant ——l
human tolerance — 3
1 1 1111 Ll[ iL__N| Nl
Frequency (Hz) 1 2 10 20 100

Desirable range for primary body
flexural modes: 22-25 Hz

Figure 7.30 Noise and vibration mode map.
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7.6 Body Structure Vibration Testing

Often the vibration behavior of an automobile body is evaluated by test. The result
of a vibration test is the transfer function, P(w), and the deflected shape (mode
shape) for each of the resonances. Figure 7.31 shows a typical test set-up [12]. The
body shell is suspended on very soft springs such that the rigid body modes occur
at low frequencies (<3 Hz). This ensures that the rigid modes do not interfere with
the flexural resonances to be measured. Often, these support springs are either
inflated inner tubes or elastic cords. An electromagnetic or hydraulic shaker is
attached to the structure. The forcing location is determined by two criteria: first, the
location will excite major modes of vibration (i.e., is not near a nodal point of any
important mode). Second, the location is locally stiff (the vibration energy will be
directed to the overall mode, not to locally flexing the structure). A typical forcing
location is at a front bumper attachment. The shaker is connected to the body
through a force transducer and a quill—a very-small-diameter shaft which transmits
axial force but does not constrain the body with side loads. An accelerometer is
attached to the body at the shaker attachment location to measure the driving point
frequency response.

\A}AVAWA xX,()=X,sin(wt+6)

F Al
@py -wn2
B e S1()=F sinot : Frequency
Vibration test set up Driving point response

Figure 7.31 Body vibration test.

In practice, a randomly varying force is applied, and the Fourier Transform is taken
of the input and output signals resulting in the frequency response. However for
visualization purposes, view the input as a sine wave force at a specific frequency.
At each frequency, the accelerometer amplitude is plotted while holding the force
amplitude fixed. After the frequency has been incremented over a range, the result
is a plot of driving point response. The peaks on this plot are the resulting body
structure resonances.
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Now holding the forcing frequency fixed at one of the resonance frequencies,
Figure 7.32, the accelerometer location may be moved about the structure and

the amplitude recorded for each location. Plotting the amplitude at each location
results in a plot of the deflected shape for that resonance—the mode shape, ¢. The
mode shape may be considered a snap-shot taken at the moment when there is
maximum deflection throughout the structure. This shape will contain a number
of locations with no deflection—nodal points, and a number of locations with
greatest deflection—anti-nodes. Note that when a lightly damped structure like the
automobile body is excited at a resonance frequency, the motion of all points on the
structure are either moving in-phase or 180° out-of-phase with the driving point.

X X,

FI
Drivipg X X, Transfer
pomt 7:1— F, response
point 1 @, @, point 2

Mode X(®,)

Figure 7.32 Mode shape at resonance.

7.7 Modeling the Body Structure Resonant Behavior

The body structure is a continuous structure with an infinite number of resonant
modes, Figure 7.33. The structure’s modal density—number of modes occurring in
a fixed bandwidth—increases with increasing frequency. For lower frequencies from
10-150 Hz, individual modes may be characterized using a modal model which we
will discuss discussed below. At high frequencies above 1000 Hz, the modal density
is high, with the specific resonant frequencies determined by very small structural
details. As these details are subject to manufacturing variability, the precise
frequency for the resonance is random. In this high-frequency region, a statistical
approach describing the vibration amplitude envelope rather than individual
resonances is useful. (The reader is referred to Machinery Noise and Diagnostics by R.
H. Lyons [13] for more on this approach.) Here we will describe the modal model
method for characterizing the lower-frequency flexural modes of the body.
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Figure 7.33 Appropriate body model depends on frequency range.

7.7.1 Modal model

The vibration behavior of the primary modes of vibration may be modeled using
a modal model. In this technique, the behavior around a structural resonance, o, is
viewed as a SDOF system.

Consider a body structure of mass, m, with a measured resonant frequency, o, and
mode shape ¢, Figure 7.34a. We can model the behavior of this system with the
SDOF system shown in Figure 7.34b. To simulate a load F applied to the real

PHYSICAL

body structure, we apply a force, F,, . , to the modal model such that
Fyiopar = Frrysicar9mpur ' (7.30)
where:
Fpysica, = Force applied to the physical body structure at the input location
F,,opa. = Force applied to the modal model
G ppur = Influence coefficient at the output (determined from mode shape at

resonance at )

For example, if the physical force is applied near a nodal point (very small ¢,,,.), the
modal force will be very small. If the force is applied near an anti-node (large ¢, ),
then the modal force is large.

In response to this applied modal force, the modal mass oscillates at a deflection

amplitude X, .. To arrive at the corresponding deflection for the real structure,
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Deflection

: Force
Auto
o, Al )

(@)

i
Modal -J—
model
(b) _

Deflection

Force

w, Frequency

Figure 7.34 First-order body model using a SDOF modal model.

we multiply this modal deflection by the influence coefficient at the output
location:

Xprysicar = XmoparPourpur (7.31)

where:
Xonysicar, = Deflection of the physical body structure at the output location

Xyopa, = Deflection of the modal model

Poupur = Influence coefficient at the output (determined from mode shape at
resonance at )

Using the relationship for a SDOF transfer function, Equation 7.6, but with the
addition of influence coefficients for the input location and output location, the
following model results, Figure 7.35:

Xourpur o Pourpurmpur / knvopat (7.32)
F INPUT - 2y
e e +(n)?
where:
kyiopa. = Modal stiffness: k—o?

o, = Model frequency

Myop., = Modal mass (often set equal to the mass of the body)
n = Modal damping

Ppur = Input influence coefficient for mode at o,

Pourpur = Output influence coefficient for mode at o,
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Figure 7.35 Modal model of body.

This modal model represents the behavior in the region of the resonance. We may
add the rigid body behavior to extend the model below the resonance region, Figure
7.36. The parameters for this model: @, m,,..., Kyiopars T i @ity 0AY, be
determined from experimental data.

rigid body - resonant behavior of
behavior mode of interest
1 ¢JNPUT¢OUTPUT / k MODAL

MWPUT:OUTPwa’2 [ =
1{2] b
n
a’n

Log (w)

n

Figure 7.36 Including rigid body behavior in modal model.

A physical interpretation of Equation 7.32 is shown in Figure 7.37 [14]. The modal
oscillator is connected to a lever of unit length. The physical force is applied at the
lever position ¢,,,,,» and the physical deflection is measured at position ¢ ;-
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X QUTPUT  _ ¢INPUT ¢OUTPUT / kMODAL

=T

Ppur E
X | Pouprur
Fopur ouUTPUT Fosmin
Y IXOUTPUT
MODAL A
° ) |
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7.8 Vibration at Frequencies Above the Primary

Structure Modes

We have been looking at the interaction of vibration sources with the primary body
structure resonances in the region 18 Hz to 50 Hz. At these frequencies, the vibration
at the receiver is tactile. At higher frequencies—50 Hz to 400 Hz—the response of
the body structure is more localized and the vibration is sensed by the receiver
acoustically. In this section, we will look at a vibration system in this high-frequency
region, Table 7.6, where structure-borne panel vibration excites the air cavity within
‘the vehicle, Figure 7.40. :

Table 7.6 Panel vibration system.

Passenger compartment Interior sound pressure
acoustic resonances
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Figure 7.40 Structure- borne vibration.

7.8.1 Body panel vibration

We can model the vibration behavior of a body panel as a flat plate, Figure 7.41.
The plate equation below relates the normal deflection of the plate, w(x, y), the plate
stiffness, D, and the applied loads, g.

4 4 4

8w+2 tw +8w+_q_:O (7.33)
ox*  “ox%ay* oy* D

where:

w(x,y) = Normal deflection of the plate

Et3 .
D = ————Plate stiffness
12(1- p?)

g(x,y) = Normal load per unit of area at location (x,y)

Let deflected shape be:
w = A sin(nmx/a)sin(mny/b) sin w,t
(note similarity to plate buckling shapes)

B Et’ nz f mn ) where
&= 12(1- % )m"\\ a o m”=mass per unit area

Figure 7.41 Vibration frequency of a simply supported flat plate.
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During vibration at a resonance, o, , we assume the plate deformation is described
by half sine waves in both the x and y direction:

w= Am,n(sin%@x)(sianny) sin wt (7.34)

where:

A, , = Vibration amplitude

a = Plate length in the x direction

b = Plate width in the y direction

n = Number of half sine waves in the x direction, n=1, 2,. . .

m = Number of half sine waves in the y direction, m=1, 2, .. ..

o = Vibration frequency (rad/s)

This assumed deformation is appropriate for simply supported boundary
conditions. The normal load, g, is that of the inertia force of a small patch of plate:

%W
= (7.35)

where m” = Plate mass per unit area

Substituting the deflected shape, Equation 7.34, and 7.35 into Equation 7.33 yields:

4 2 2 4 2. m -
{(_’f) o) (Y () el }[Am(smfgx)(sin%y)smw]=o 736
To satisfy this equality, the first bracketed term must be zero at the resonant
frequencies. Solving for the frequency yields

2 2
TP /2[(2) +(Ln—) ] (7.37a)
g m"|\a b
where:

o = Resonant frequency

m,

other variables defined in Equations 7.33, 7.34, & 7.35

Rarely are automotive panels flat. Generally they are crown or ribbed to enhance
structural performance. Figure 7.42 provides guidance in predicting the resonant
frequency for these formed conditions. Addition of these formations to a panel will
increase resonance frequency, as given by Equation 7.37b

He (7.37b)

t

JrormED -C
Jevar
where:
frormep = Formed panel primary frequency

Jear = Flat panel primary frequency given by Equation 7.37a with m=n=1
H_. = Crown height

t = Panel thickness

C = Constant (C=1.25 for crown, C=1 for ribbed panel)
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Figure 7.42 Experimental plate stiffening study.
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Automotive panels in practice are both crown and ribbed, Figure 7.43, largely due to

this ability to increase panel resonant frequencies [15].

Harrier/Lexus RX300, 1998 Rear compartment pan

forward

<25z

Crown panel application Rib application

(a) (b)

Figure 7.43 Panel stiffening to increase vibration frequency. (Photo courtesey of
A2Mac1.com, Automotive Benchmarking)

7.8.2 Acoustic cavity resonance

The closed air cavity of the passenger compartment can resonate with a standing
acoustic wave similar to an organ pipe, Figure 7.44. In this case, the boundary
conditions at either end are closed. For this condition the acoustic resonant
frequency is given by:

fhee (7.38)

where:
£, = Resonant frequency (Hz)
A = Wavelength

¢ = Speed of sound in air (~330 m/sec)
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T RE L

Figure 7.44 Cavity resonance.

The standing wavelength is
A=— (7.39)

where:
L = Cabin length

n = Number of half cosine waves along cabin length, n=1, 2,3 . ..

Substituting Equation 7.39 into 7.38 yields:

n
= C(ﬁ) (7.40)

At each resonance the pressure mode shape is given by the cosine function,
cos(nnx/L), where x is the length coordinate with origin at the front of the cavity.
For example, at the first acoustic resonance, n=1, the pressure amplitude is
maximum (anti-node) at either end of the passenger compartment and zero (node)
at the midpoint. The pressure mode shape gives some notion of the sound level.
For this case, with a midpoint node the sound pressure level at the driver’s ear

is low.

The air velocity mode shape is given by sin(znx/L). The velocity mode shape provides
an indication of the sensitivity of the cavity mode to excitation by a panel. A panel
located near the velocity anti-node will excite the cavity resonance to a high degree.
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The two examples above illustrate the source-path-receiver system in which panel
vibration becomes a vibration source, exciting cavity resonances, causing sound
pressure at the driver’s ear, Figure 7.45. For these examples, the flat panel resonance
at 118.4 Hz will couple with the air cavity resonance at 110 Hz resulting in high
sound pressure levels at the driver’s ear. By crowning the panel, the panel resonant
frequency will increase and would become detuned from the acoustic resonance
resulting in a reduced sound level.
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Figure 7.45 Panel and acoustic cavity as vibration system.



Table 7.7 Suspension element noise path vibration system.

‘| Chassis links with - |Body panel |Passenger compartment |Interior sound

| end bushings vibrations acoustic resonances pressure

7.8.3 Vibration isolation through elastomeric elements

We can now expand the vibration system of the previous section by including a
typical isolator in the path, Table 7.7 and Figure 7.46. High frequency deflections
may occur in suspension elements due to road impacts. To isolate these higher-
frequency vibrations, the suspension elements have elastomeric bushings at the
body connections, Figure 7.47.

High frequency Isolat Panel
displacement sl (structure borne noise)

» Suspension noise * Suspension links
and harshness with rubber bushings

» Chassis noise * Body mounts
and harshness

Figure 7.46 Role of isolators in higher-frequency vibration.

Elastomeric bushing

Functions:
*noise isolation
evibration harshness isolation
tune suspension geometric properties
-allow linkage degrees of freedom

Figure 7.47 Lower control arm bushing.
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To understand how these bushings help reduce vibration into the body, consider the
model shown in Figure 7.48 [16]. A suspension lower control arm is shown. At either
end of the arm, the connection is through an elastomeric bushing. The bushings
may be viewed as a stiffness element and damping element in parallel. This may be
modeled as a complex stiffness, k*, with the imaginary part indicating the bushing
damping. (See note at end of this chapter on using rotating phasors to model vibration
systems.) The bushing behavior can then be written as:

F=kX+inkX=k'X

F ) .
=(k+ink)=k (7.41)

= (Stiffness Portion) + i(Damping Portion)

S R PR

where:
F = Force through the bushing

X = Deflection across the bushing

n = Loss factor for the elastomeric material.

Suspension-side

Hpshing Body-side

bushing

Mkgy m  mykg, force into

body
dynamic input: e Fy
Knuckle deflection x; 1 2o
Bi B2

Figure 7.48 Modeling isolators in suspension control arm.

We consider the vibration source to be the higher-frequency displacements of the
suspension knuckle, and we are interested in the force being transmitted through
the body-side bushing into the body structure. This transfer function, T( w)=F /X, is

given by:
( k3kny J
B _ kgy + kg, (7.42)
X gl
(kBl + sz)
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where:
k*,, = Suspension-side bushing stiffness k*, =(k,+in k;,)
k*,, = Body-side bushing stiffness k*,,=(k;,+ink;,)
m = Mass of the chassis link
F, = Vibration force amplitude transmitted into body structure
X = Vibration displacement amplitude imposed by suspension knuckle

At very low frequencies (w~0), Equation 7.42 tells us that the combined link stiffness
is the series combination of the two bushing stiffnesses:

F _ [Mz_] (7.43)
0~0 \Kp+kg

T
X

At a frequency of

o = M (7.44)
i m

the chassis link resonates against the two bushings. We can expand Equation 7.42 by
substituting in the complex stiffness expressions of Equation 7.41 and arrive at

3 =[ e L =[T (@) (7.45)
Xy \kpy+kg,

where:
n = Loss factor at each bushing

other variables are those of Equation 7.42

The first bracketed expression in Equation 7.45 is the static stiffness. The second
expression is the gain at frequency . For the damping levels usually seen in
bushings (1<0.2), the n terms in Equation 7.45 vanish. We then see that for
frequencies above Yo, the force transmitted through the link begins to be attenuated
over that transmitted statically (gain<1). The chassis link acts as an isolator for

the higher-frequency vibrations, Figure 7.49. Notice also in this figure that there

is a trade-off due to bushing damping; high damping controls the amplitude at
resonance, but increases the force transmitted at higher frequencies.
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Mk m 1k,

1007 V214, 500
Frequency (Hz)

Figure 7.49 Response of isolators in suspension control arm.
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Many additional connections within the vehicle may be viewed as elastomeric
elements with an intermediate mass. For example, Figure 7.53 shows a body-frame
interface connected through an elastomeric body mount.

Body-on-frame

force into body, F. .
T v fr local stiffness
o local mass
_t ) X
frame deflection of mount stiffness 1

frame, X

Figure 7.53 Body mount isolation behavior.

309



Chapter 7 | Design for Vibration

7.8.4 Local stiffness effect on vibration isolators

In designing chassis links with bushings, we must select the bushing material (k,
and 77) which gives the desired high-frequency-isolation behavior. We expect the
bushing stiffness and damping properties to be fully effective. However, when

the bushing is attached to the body structure rather than to ground, we have seen
that there is localized flexing of the structure. The flexing can be described as a

local stiffness, K;. This localized flexing will cause both the bushing stiffness and
damping to be less than fully effective. Consider a bushing attached to a structure
with local stiffness, K., Figure 7.54. Now the total deflection of this system is the sum
of the localized structure deflection and the deflection across the bushing:

X=X, ocar + Xpusume

F F
S s e v
K, kg +i(nkg)
E. kK UK o)

X (ky+inky +K,)
Which can be rearranged to

_ ky[(ky 1 K+ 14120y [ K )]+ i)

2 (7.46)
[k / K)+1] + [0ty / K]

|

The loss factor, 7, is typically 0<n<0.2 and we can make the approximation 7n? ~0
giving:

L = i N (7.47)
X kg 7K)+1] [k, / K, )+1]
Idealized mode| = E

(bushing to ground)

n :/jfi
F
Model with ~ ——> \/\/\[E
structure compliance
kg K,
Structure local stiffness

Figure 7.54 Isolator attachment to flexible structure.
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Compare this final expression to the expression for a bushing attached to ground:
F :
i = kB + lT]kB

We can see that the stiffness portion of Equation 7.47—the real component—is
reduced by a factor of:

1
[(ky / Kp)+1]

However the damping portion of Equation 7.47—the imaginary component—is
reduced by a factor of:

1
[(ky 1 K)+1]

Thus, when the body structure has local flexibility at a bushing attachment, the
damping qualities of the bushing are reduced more than that of the stiffness,

Figure 7.55. This result has implications for structure design at attachments where
we expect high-frequency inputs; the local stiffness of the structure, K;, should be at
least five times the bushing stiffness, k,, to maintain 70% of the bushing damping.

Stiffness

-
(@]

o
e

Damping

o
o

n kg

Fraction of mount property

0.4
kB KL
0.2 1
% 5 10 15 20
Local structure stiffness / Bushing stiffness

(Kp/kp)

Figure 7.55 Required local stiffness for effective isolation.

7.8.5 Summary: Design for vibration

In this chapter, we have looked at a few of the important vibratory systems in the
automobile. Our focus has been on determining the required qualities of the body
structure which will minimize objectionable vibration levels. During early design
layout, it is important to detune structural resonances from source vibrations, and
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also to take advantage of the isolation characteristics of other systems, suspension
and mounted powertrain, for example. For preliminary design, this detuning can be
achieved using the first-order models presented in this chapter.

7.9 Note on Use of Rotating Phasors to Solve Damped

Vibration Problems

Earlier in this chapter we used complex variables to describe damping behavior. In
this section we will further develop this useful concept. Consider a vector of length
X rotating about a fixed point at a rotation speed of w rad/sec, Figure 7.56a [18].

The projection of this vector onto the vertical axis can be described by x(t)=Xsinot,
Figure 7.56b. Now consider the horizontal axis to be the Real axis and the vertical
axis to be the Imaginary axis. The vector may be described as the rotating phasor
x(t)=Xe''. If we also let the amplitude of the phasor X be complex X*=(X, )+i (X, ),
then the phase angle, 6is given by tan™(X, m/X, ), Figure 7.57. This visualization
offers some simplifications in solving damped vibration problems.

/7 Jm(Fe)

_{g\\é)_ » JW=Fsinwt /\ /\ ‘
VARV

Rotating phasor Projection of phasor on imaginary axis
Felot Jm(Fel®)=Fsinawt
(a) ' (b)

Figure 7.56 Representing a sinusoidal function with a rotating phasor.

T
Xeilot+d) Jm x(?)

/*;‘d) | 0
Felmjz)'e / V V ,

Xei(or+¢) = ()(eiqﬁ) elol= ()(‘%4_ i ij) elolt = X oiot

Complex amplitude X* gives information about magnitude
of X and phase relative to the force phasor

Two rotating phasors
(Fel® reference phasor)

Figure 7.57 Complex amplitude X*,
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7.10 Note on Mechanical Impedance Technique

The use of complex variables to describe mechanical vibration offers a very useful
tool in developing models of more complex vibratory systems. The mechanical
impedance technique is based on an analogy with alternating current electrical
circuits [19]. The impedance of an electrical element is defined as the voltage
amplitude, E, measured across the element divided by the current amplitude, I,
flowing through the element:

Z=

E
-I‘ (7.50)
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For example, the impedance for a resistor is Z=R=E/I. To analyze electrical networks,
we apply loop equations (the voltage around any closed loop is zero), and node
equations (the sum of current into any node is zero). Applying these equations allow
the prediction of the current through and voltage drop across any element.

Note that the impedance in an electrical element is the voltage difference measured
across the element, divided by the current flowing through the element. For an analogous
mechanical element, the across variable is the deflection across the element (we could
equivalently use velocity or acceleration) divided by the force flowing through the
element. Note that this analogy maintains the validity of both node equations—forces
sum to zero at a point, and loop equations—relative deflections around a closed path
sum to zero. This electrical-mechanical analogy is summarized in Figure 7.58.

Impedance in an electrical network

Mechanical Impedance analogy

E (voltage) is measured across an
element

I (current) flows through an element

X displacement (we could alternatively
take velocity or acceleration as the
across variable)

F Force

Impedance definition
Z= (across variable)/(through variable)
Z=E/I
e.g. resistor
E=IR
R=E/I
(impedance of a resistor, Z=R)

Impedance definition
Z= (across variable)/(through variable)
Z=X/F

Zy= 1/k (spring)
Zy= 1V/(-w?m) (mass)
Zp =1/(ink) (structural damping)

Note:

-at a node, currents must sum to zero
~around a closed loop, the net voltage
drop is zero

Note:
+at a point, forces must sum to zero
«around a closed loop the relative

displacements sum to zero

Figure 7.58 Mechanical impedance analogy.

The impedance of a general mechanical system element is:

(7.51)

Table 7.8 provides the impedance for common mechanical elements.

Table 7.8 Impedance of mechanical elements.
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To solve a mechanical network, we apply node and loop equations to determine
deflections and forces just as we would with an electrical network. We can also use
standard impedance rules for solving electrical circuits to arrive at a result. Two
important rules are:

1. For two elements, Z,, Z,,in series, the equivalent impedance is

EQ = e (7.52)
ZotZy
2. For two elements in parallel, the equivalent impedance is
Zpa=7Z,+Z, (7.53)
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