Design for Body Torsion

- Body torsion requirements
 - Body torsion strength
 - Body torsion stiffness
 - For midsize vehicle: $K = 12000 \text{ Nm/}^{\circ}$, T = 6250 Nm
- Internal loads during global torsion: load path analysis
- Analysis of body torsional stiffness
 - Shear strain energy
 - Effective shear stiffness
- Torsional stiffness of convertibles and framed vehicles

5.1 Body Torsion Strength Requirement

- Maximum torque to recover its shape with little deformation upon removal
- Vehicle-use condition: twist ditch maneuver
 - Input: δ , output: F (load cell)

Test Configuration

- Welded body structure
- Bonded windshield and back light (aluminum panels)
- Bonded and bolted panel dash insert
- Bonded panel spare tire tub
- Bolted reinforcement panel dash brake booster
- Bolted braces radiator
- Bolted reinforcement radiator rail closeout RH/LH
- Bolted reinforcement radiator support upper
- Bolted tunnel bridge lower/upper
- Bolted brace cowl to shock tower assembly
- Holding
 - Front: at panel skirt RH/LH
 - Rear: at plate rear spring upper
- Measurement
 - 12 stadia rods along the front rails, rockers, rear rails

Static Torsion

- Constraint: two locations at the plate spring rear upper
- Load: panel skirt RH/LH by a scale beam, from M = 1000Nm to 4000Nm

Static Torsion: Test Results

- With glass: 21,620 Nm/deg
- Without glass: 15,790 Nm/deg

positive impact of the "member pass through" (Part No.090)

Static Torsion: impact of bonded and/or bolted parts

- 1. full configuration
- 2. as 1, but without braces radiator
- 3. as 2, but without radiator support upper
- 4. as 3, but without bolted brace cowl to shock tower assembly
- 5. as 4, but without tunnel bridge

Range for 20 Cars from Small to Luxury Segments

Nissan GT-T (2016.05.10)

5.2 Body Torsion Stiffness Requirement

- Body torsion test
 - Slope in the linear region of the applied couple vs. angular rotation
- Required functions for high torsional stiffness
 - Good handling property: torsionally stiff body relative to the suspension stiffness
 - Torsional stiffness: 10,000 Nm/°
 - Solid structural feel: minimize relative deformations which cause squeaks and rattles
 - Feel of solidness over road irregularities
 - Related to fundamental natural frequency of the body twisting mode: the higher, the more desirable solid feel
 - Desirable vehicle torsional frequency range: 22~25 Hz
 - Torsional stiffness (benchmarking): 12,000 Nm/°

Good Handling Properties (1)

- Corner turn: roll on the suspension ride spring
- Weight transfer from the inside wheels to the outside wheels
- Affect the steering characteristics of the vehicle
- Suspension design: rigid body assumption → high torsional stiffness (much stiffer than the roll stiffness: 1000 Nm/°)

Vehicle Structure

Good Handling Properties (2)

For typical passenger cars, K_{body} = 10,000 Nm/°

 K_{eff} : stiffness with a torsionally flexible body K_{roll} : suspension stiffness with a rigid body K_{B} : body torsional stiffness

$$K_{eff} = \frac{K_{roll}K_B}{K_{roll} + K_B} \rightarrow \frac{K_{eff}}{K_{roll}} = \frac{1}{\frac{K_{roll}}{K_B} + 1} = \frac{1}{\frac{1}{\frac{1}{\frac{K_B}{K_{roll}}} + 1}}$$

$$\frac{K_{eff}}{K_{roll}} = 0.9 \text{ (wish to approach 1)} \rightarrow K_B = 10 K_{roll}$$

Benchmark Data

• Torisional frequency

• Torsional stiffness

Body-In-White: TOYOTA-CAMRY

 Nameplate CAMRY - Model XLE -Year 1992 Style 4 DR, Vehicle class MID-SIZE Overall length (m) 4.77, Overall width (m) 1.77, Overall height (m) 1.4, Wheelbase (m) 2.62 Base price (\$) 20,508, Seating capacity 5, Curb weight (Kg) 1493 Body/frame UNIBODY, Body material STEEL Fuel economy (MPG) 18/24, Engine 3.0L, V6, TRANS DOHC, Chassis layout FRONT, Transmission 4 SP AUTO Suspension front MacPHERSON STRUT, Suspension rear INDEPENDENT DUAL-LINK

Vibration: TOYOTA-CAMRY

Bending

Torsion

Torsion Stiffness

• Constraints and Loading in FSV Report

Typical Torsional Requirements: Midsize Vehicle

5.3 Load Path Analysis: Global Torsion

- Understand how global body requirements flow down to loads on structural elements
- Idealized structure as a framework of beams
 - Torsional stiffness: 10~30% of experimental values
- Dominant structure in reaction torsion loading
 - Surface: shear resistant members

sideframe, rear hatch opening, windshield ring

Body Torsion - 17

Simple Box Model

- All surfaces are loaded
- Internal loads are independent of material properties
- Each surface is necessary to react the applied torsional couple: removal of any single surface will not allow the required equilibrium and the box will collapse
- Shear flow is equal for all edges

 α : load taken by front surface 1- α : load taken by side surface

Example: Van Rear Hatch Opening

Twist Ditch Torque=7x10⁶Nmm

• Determine shearing loads which need to be reacted by the rear hatch structure.

Passenger Cabin Internal Loads

Structural Surface and Bar Model

Shear Loads on Cabin Panels

Example: Midsize Sedan Data

- Determine internal shear loads
 - Track = 1560 mm
 - Twist ditch torque = 7,730 Nm

Example: Shear Loads

			A				_	Τ	Q	q
750	1560	0	0	0	0	0		7730000	3343	2.142758
707	0	-1560	0	0	0	0		0	3348	
1250	0	0	-1560	0	0	0		0	1515	2.142758
559	0	0	0	-1560	0	0		0	2678	2.142758
750	0	0	0	0	1560	0		7730000	1198	2.142758
2000	0	0	0	0	0	-1560		0	3348	
0	0	0	500	1789	-2000	750		0	4286	2.142758

5.4 Analysis of Body Torsional Stiffness

• Shear strain energy of a surface

$$e = \int \frac{\tau \gamma}{2} dV = \int \frac{\tau^2}{2G} dV =$$

• Energy balance for torque loaded box

Series Spring Analogy

Consider a set of six linear springs in series

- How to increase torsional stiffness?
 - Identify which surfaces is the most flexible: lowest $\left|\frac{(Gt)}{ab}\right|$

- Increase the stiffness of the least stiff spring

Example: Box Van

All Panels Steel G=80,000N/mm² t=1 mm

- K = 6.95x10¹⁰ Nm/rad = 1,200,000 Nm/°
- About 100 times stiffer than measured data
- Why?
 - Ideal flat plate assumption: surfaces remain perfectly flat during loading
 - Reality: out-of-plane shape, holes and cutouts, framework of beams with flexible joints
- Effective shear stiffness: (Gt)_{eff}

Effective Shear Stiffness

- Test panel in a pinned frame fixture
 - (Gt)_{eff} : shear stiffness for a panel
 - S: measured stiffness (slope of load vs. deflection curve)
 - Physical test / FEM
 - a: panel dimension of the side load is applied
 - b: adjacent side dimension

$$G = \frac{\tau}{\gamma} \xrightarrow{\tau = \frac{F}{at}, \ \gamma = \frac{\delta}{b}} (Gt)_{eff} =$$

Example: Van Hatch Opening (1)

- Replace the rear panel with an open frame of rigid links with a typical joint stiffness
 - Typical joint stiffness: $K_i = 0.1 \times 10^8 \text{ Nm/rad}$
- Much more flexible frame than the original assumption of a flat panel

Example: Van Hatch Opening (2)

- K = 1.6x10⁸ Nm/rad = 2807 Nm/°
- Influence of the hatch opening: rear surface
 - Only one surface of the closed box need be flexible to reduce the stiffness for the whole box

Example: Van Hatch Opening (3)

- In practice, increase the shear stiffness of the rear surface
- Typically the hinge and latch are not sufficiently stiff
- Mechanisms to wedge the door into the opening

Example: Crowned Panels

- Improve panel stiffness for normal loading such as dent resistance and panel vibration
- Effective shear stiffness?
 - FEA model of the shear test fixture
 - Much smaller than a flat panel (unrealistically high)

Example: Windshield (1)

- All surfaces enclosing the cabin must act as shear resistant members
- Most effective for shear resistance: adhesive bonding

windshield retention alternatives

effective shear stiffness of windshield

Example: Windshield (2)

 Windshield model for torsional stiffness

- Effect of windshield on torsional frequency
 - Increase with glass: torsionally stiffer body
 - No increase: very stiff body windshield opening perimeter

Example: Side Frame Model (1)

- Contribution to torsional stiffness
- Effective shear stiffness

Example: Side Frame Model (2)

• FEA under shear loading

Torsional Stiffness of a Vehicle Cabin

- Solve for internal shear loads: $Q = A^{-1}T$
- Find the resulting shear flow on any non-loaded surface:
 q = Q/(side length)
- Determine the effective shear stiffness: (Gt)_{eff}
- Determine the torsional stiffness of the cabin: (q/T), (Gt)_{eff}, surface area

Example: Sedan

Torque	7730000
track	1560
hO	1250
h1	750
h2	750
Ls	707
Lr	1250
Lb	559
Lf	2000

			А			
750	1560	0	0	0	0	0
707	0	-1560	0	0	0	0
1250	0	0	-1560	0	0	0
559	0	0	0	-1560	0	0
750	0	0	0	0	1560	0
2000	0	0	0	0	0	-1560
0	0	0	500	1789	-2000	750

Т	Q	_ q
7730000	3343	2.142758
0	3348	
0	1515	2.142758
0	2678	2.142758
7730000	1198	2.142758
0	3348	
0	4286	2.142758

panel	area	(Gt)eff	area/(Gt)eft	
dash	1170000	80000	14.6	
windshield	1103087	80000	13.8	
roof	1950000	80000	24.4	
back light	872067	80000	10.9	
seat back	1170000	80000	14.6	
floor	3120000	80000	39.0	
side frame:L	2312500	234	9882.5	
side frame:R	2312500	234	9882.5	
SUM			19882.3	

5.5 Torsional Stiffness of Framed Vehicle

- Effective structure for torsional stiffness: large central closed section, but limited to seating arrangements
- Monocoque structure
 - efficient in reacting torsional loading
- Alternatives
 - Convertible: absence of top surface
 - Body-on-frame: common for passenger and utility vehicle
 - Backbone frame: closed thin walled sections \rightarrow shear buckling

Convertibles

- Lower load path to resist torsional loads: differential bending of the rocker beams
- Lower structure: two cross members (front: dash, rear: rear seat back), two side beams
 - Cross member: infinitely rigid in torsion → zero twist along crosscar axes, flexibility in bending → side rails are not twisted down
 - Side rail: pure bending with zero slope at its ends

Effect of Differential Bending

• Behavior for the front half: cantilever beam of length L/2

$$\delta = \frac{Fl^3}{3EI} = \left(\frac{w}{2}\right) \left(\frac{\phi}{2}\right) \rightarrow F = 3EI\left(\frac{w\phi}{4}\right) \left(\frac{2}{L}\right)^3$$
$$K = \frac{T}{\phi} = \frac{wF}{\phi} = \frac{w}{\phi} \left[3EI\left(\frac{w\phi}{4}\right) \left(\frac{2}{L}\right)^3\right] = \frac{6w^2EI}{L^3}$$

- In practice
 - large closed box section at dash and rear seat back
 - Difficulty: cross member to side rail joint
 - Zero slope: very large bending moment
 - Stress concentration at the joint

Body-on-Frame

- Body shell, ladder frame, elastomeric body mounts
- Body mounts
 - Relative motion between the frame and body both in vertical direction (compression) and in lateral direction (shear)
 - Isolation of structure borne noise and vibration from the frame into the body

Body-on-Frame: Torsion Model

- Torque applied to the frame through the suspension
 - Twist about different longitudinal axes
 - Shearing deformation in the body mounts
 - Reduce the stiffness of the system: K < K1 + K2

Body-on-Frame: Torsional Stiffness (1)

Vehicle Structure

Body Torsion - 44

Body-on-Frame: Torsional Stiffness (2)

$$K_{vehicle} = \frac{T}{\phi_2} = K_2 + K_1 \psi + 2h^2 k_x \psi$$
$$\psi = \frac{1}{1 + \frac{2h^2 k_x}{\left(\frac{w^2}{2}k_y\right)} + \frac{K_1}{\left(\frac{w^2}{2}k_y\right)}}$$

 K_1, K_2 : torsional stiffness of the body and frame

- k_x, k_y : mount stiffness in the horizontal and vertical directions
- h: height of the body twist axis above the plane of the frame
- w: width between body mounts
- ψ : body-frame coupling term which indicates how tightly coupled are the twisting actions of the frame and body (larger ψ , greater coupling)

Effect of Body Mount (1)

- Compressive stiffness (k_v)
 - Soft mount: body is not coupled to the twisting motion of the frame ($K_{VEH} \rightarrow K_2$)
 - Stiff mount: body and frame are highly coupled ($K_{VEH} \rightarrow K_1 + K_2$)
- Shear stiffness (k_x)
- $k_x \uparrow \rightarrow K_{VEH} > K_1 + K_2$: why?

Effect of Body Mount (2)

- Body and frame have different twist axes
 - Body and frame fight against one another for the axis to twist about by increasing the mount shear stiffness
- Combined twist axis locates above the frame
 - Frame becomes a shear resistant member
 - Shear stiffness of the frame: important design consideration

Evolution of Automobile Frame

- Closed sections for both side rails and cross member
 - Improve torsional stiffness
- Improved joints at cross member to side rail
 - Improve both torsional and shear stiffness

Ladder Frame

Cross Car Moment

(a)

Fore-aft Moment

(b)

- Two limiting cases for simple frame
 - Cross member

Torsion	Bending	Torsional Stiffness		
infinitely rigid	very flexible	$K = 6w^2 EI/L^3$		
very flexible	infinitely rigid	$K = 2 \left(G J_{eff} \big/ L \right)$		
L=3000mm				

w=1500mm

%=2030Nm/°

bending energy

torsion energy

cross member

Strain Energy in Frame Under Torsion

 $EI = 1.1 \times 10^{11} \text{ Nmm}^2$ JG = 6.9 x 10¹⁰ Nmm²

1.2

1.0

.8

.6

.4

.2

0

side member

Stored Energy (10⁵ Nmm)

Frame Shear Stiffness

- k_J = 1x10⁹Nmm/rad, L = 4500mm, k_S ≈ 200N/mm
- Very near the shear stiffness for a body mount
- Increase the frame shear stiffness
 - increase the joint rate with gusset, X configuration of rails

