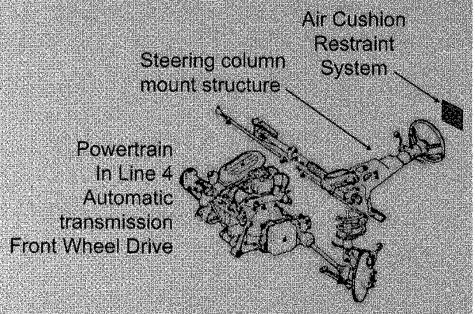
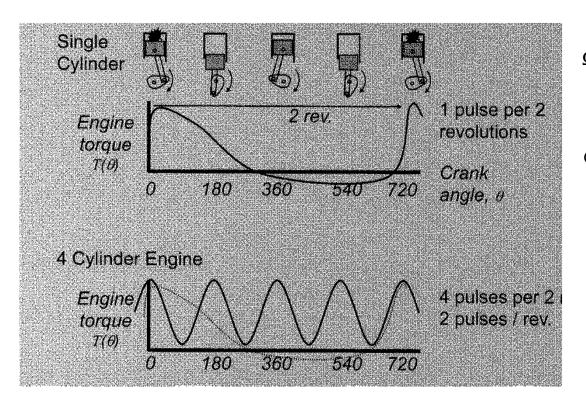

Design for Vibration

 To create an acceptable vibration environment for the automobile passengers


- First-order vibration modeling
- Source-path-receiver model of vibrating systems
- Frequency response of Single-Degree-of-Freedom System
- SDOF models of vehicle vibration systems
- Strategies for design for vibration
- Body structure vibration testing
- Modeling body structure resonant behavior

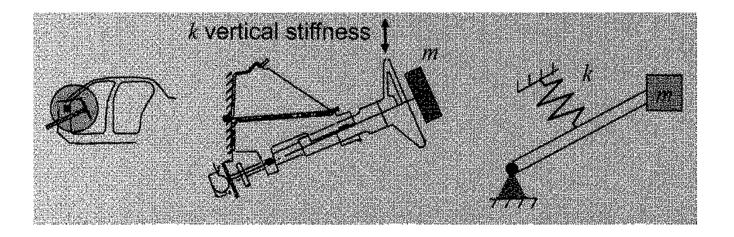
7.1 First-Order Vibration Modeling

- Body structure: resonant system w/ infinite number of natural frequencies
- Avoid resonance at the wrong frequency
- Identify desirable vibration behavior
- Assumption
 - Amplitude will not be large to the receiver of the vibration
 - Uncoupled vibration: frequency of the vibration source ≠ resonance in the vibration path
 - Well-designed vehicle: set of independent single-degree-offreedom oscillators


Example: Vibration System

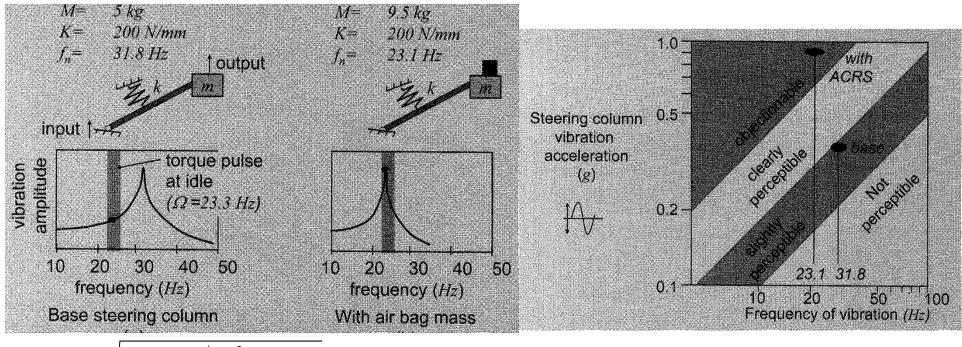
- Powertrain + Steering Column + driver ACRS(Air Cushion Restraint System)
 - Vibration source: Powertrain
 - Vibration model 1: Steering Column Mount
 - Vibration model 2: Steering column + ACRS(Air Cushion Restraint System)

Example: Vibration Source


- Four-cylinder engine in a transverse front-wheel-drive configuration with an automatic transmission
- Engine torque pulse

$$\Omega = \left(\frac{1 \text{ pulse}}{2 \text{ rev}}\right) \left(\frac{N \text{ rev}}{\min}\right) \left(\frac{1 \min}{60 \text{ sec}}\right) (4 \text{ cylinders})$$
$$= \frac{N}{30} \text{ Hz}$$
@idle: $N = 700 \text{ rpm} \rightarrow \Omega = 23.3 \text{ Hz}$

Example: Vibration Model 1

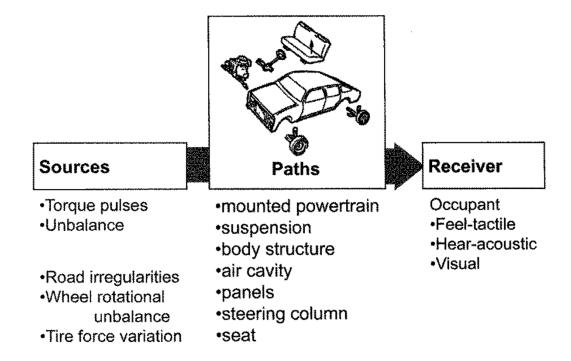

Steering Column Mount

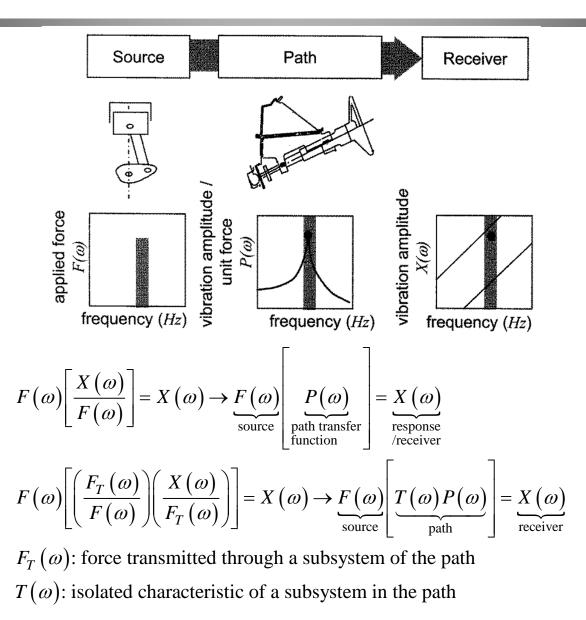
$$k = 200 \frac{N}{mm}$$

$$m = 5 kg$$

$$m = 5 k$$

Example: Vibration Model 2

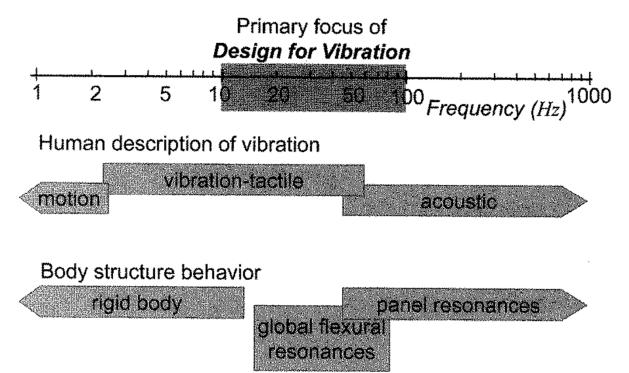

 Coupled resonance: Steering column + ACRS (Air Cushion Restraint System)


$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{200 \frac{\text{kg} \cdot m/\text{sec}^2}{mm} \frac{1000 mm}{m}}{(5+4.5) \text{kg}}} = 145 \frac{rad}{\text{sec}} \to f = 23.1 \text{Hz}$$

7.2 Source-Path-Receiver Model

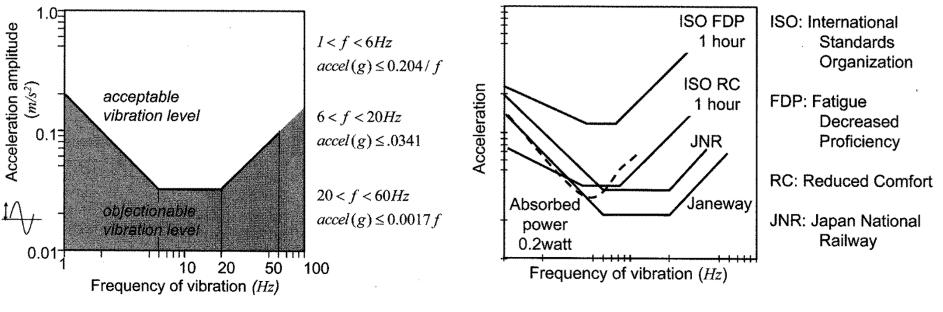
- Source of vibration energy (engine torque pulses)
- Path for the vibration: series of subsystems (steering column with ACRS)
- Receiver which determines the acceptability of the vibration level (driver's hands)

Vibration Characteristics



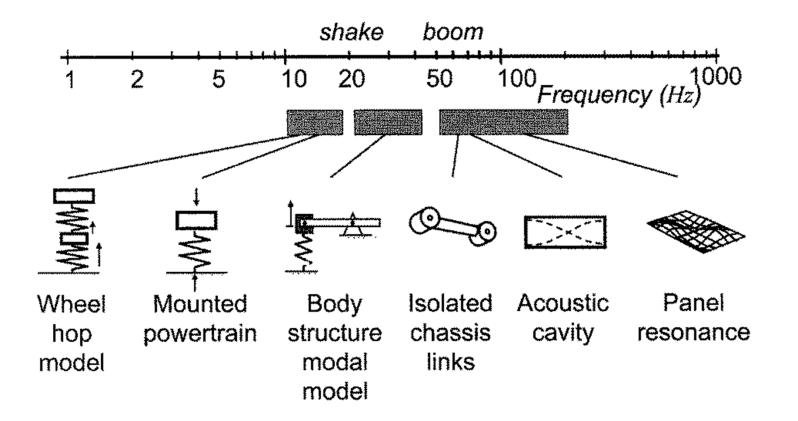
Automobile Vibration Systems

	Source	Isolator	Force into body	Body transfer function	Body deflection
	F(ω)	Τ(ω)	F _T (ω)	Ρ(ω)	Χ(ω)
1 (7.4.1)	Powertrain unbalance force	Mounted powertrain	Force through engine mounts	Body structure	Deflection at seat, steering column
2 (7.4.2)	Force at suspension spindle	suspension	Force through shock absorber and ride spring	Body structure	Deflection at seat, steering column
3 (7.4.3)	Road deflection at tire patch	suspension	Force through shock absorber and ride spring	Body structure	Deflection at seat, steering column
4 (7.8.3)	High frequency chassis deflections	Chassis links with end bushings	Body panel vibrations	Passenger compartment acoustic resonances	Interior sound pressure


Automobile Vibration Spectrum

- Body structure behavior
 - ~ 10 Hz: rigid body
 - 10 ~ 100Hz: primary bending and torsion resonances (overall body architecture, hard to change in the later stages)
 - 100 Hz ~: localized and influenced by structural details

Human Response to Vibration

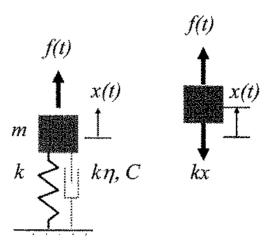

- Subjective test \rightarrow U-shape iso-comfort curve
 - Imperceptible / just perceptible/ annoying
 - 6~20 Hz: least tolerated area

Janeway vertical seat vibration criteria

Comparison of vibration limits

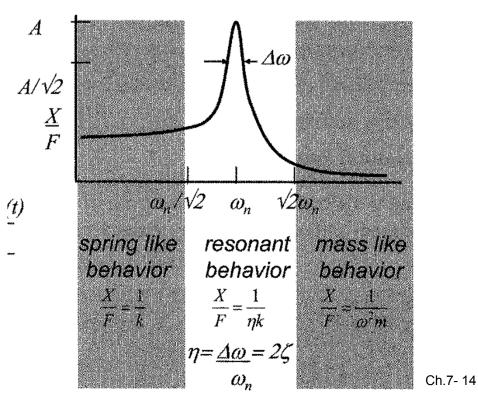
Major Vibratory Systems

7.3 Frequency Response of SDOF System


Equations of motion

$$f(t) = F\sin(\omega t) \rightarrow x(t) = X\sin(\omega t)$$

$$f(t) - kx(t) = m\frac{d^2x}{dt^2} \rightarrow F\sin(\omega t) = kX\sin(\omega t) - mX\omega^2\sin(\omega t)$$


$$F = kX - m\omega^2 X \rightarrow \frac{X}{F} = \frac{1}{k - m\omega^2} = \frac{1/k}{1 - \left(\frac{m}{k}\right)\omega^2} = \frac{1/k}{1 - \left(\frac{\omega}{\omega_n}\right)^2} = P(\omega)$$

- Relation of vibration amplitudes
 - Displacement amplitude: X
 - Velocity amplitude: Xω
 - Acceleration amplitude: $X\omega^2$

Regions of Vibration Behavior

$$\begin{cases} \omega << \omega_n : \text{ spring-like behavior} \left(F = kX \to \left|\frac{X}{F}\right| = \frac{1}{k}\right) \\ \omega = \omega_n : \text{ vibration amplitude grows very large} \\ \omega >> \omega_n : \text{ mass-like behavior} \left(F = m\left(-\omega^2 X\right) \to \left|\frac{X}{F}\right| = \frac{1}{m\omega^2}\right) \end{cases}$$

Amplitude at Resonance

Viscous damping (∝ velocity)

 $F_{D} = C(velocity), \quad \zeta = \frac{C}{2\sqrt{km}} \quad \begin{cases} C: \text{ viscous damping coefficient (for shock absorber, } C = 2) \\ \zeta: \text{ viscous damping factor} \end{cases}$ $\left| F_{D} \right| = C(\omega X) = 2\zeta \sqrt{km} (\omega X) = 2\zeta k \sqrt{\frac{m}{k}} (\omega X)$ $\left| \frac{X}{F_{D}} \right| = \frac{1}{2\zeta k (\omega/\omega_{n})} \xrightarrow{\omega = \omega_{n}} \left| \frac{X}{F_{D}} \right| = \frac{1}{2\zeta k}$

• Structural damping (∝ deflection)

 $|F_D| = \eta(kX) \xrightarrow{\omega = \omega_n} |\frac{X}{F_D}| = \frac{1}{\eta k}, \quad \eta: \text{ damping factor}$

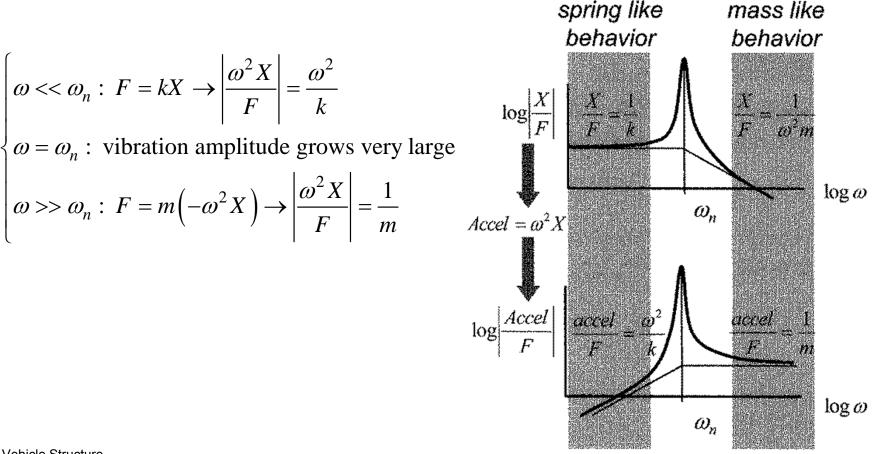
base metal: $0.00001 < \eta < 0.001$

spot-welded automobile body: $0.03 < \eta < 0.1$

• Relation of viscous and structural damping

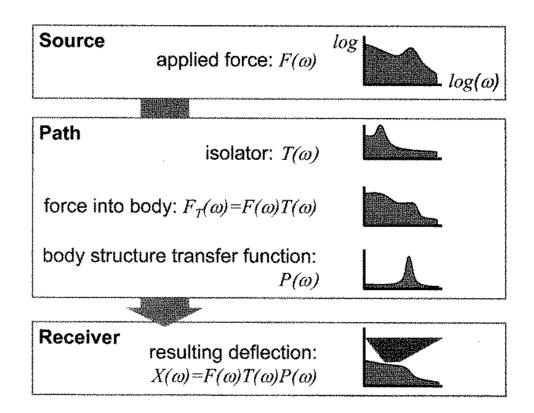
$$\eta = 2\zeta \rightarrow \eta = \frac{\Delta\omega}{\omega_n}$$

 $\Delta \omega$: bandwidth measured at the half-power amplitude


(amplitude at resonance)/ $\sqrt{2}$

Example: Deflection Amplitude

- m = 100kg (4-cylinder automatic transmission powertrain)
- k = 600 N/mm (combined engine mount vertical stiffness)
- F = 500 (amplitude of vertical sinusoidal force)
- (1) mounted powertrain vertical bounce
 - Operating frequency: 15 Hz
- (2) amplitude recorded by accelerometer (10g)
 - Operating frequency: 40 Hz
- (3) at resonance
 - Damping ratio: 0.1


Transfer Function

- Log (displacement output) vs. Log (frequency)
- Log (acceleration output) vs. Log (frequency)

7.4 SDOF Models of Vehicle Vibration Systems

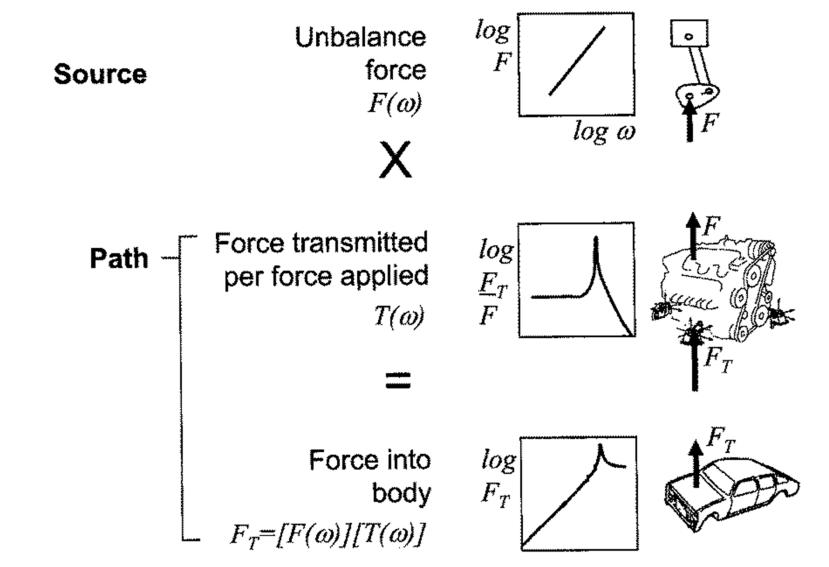
- Powertrain path: reciprocating unbalance
- Suspension path: load at spindle
- Suspension path: deflection at tire patch


Powertrain Path Vibration System

source	isolator	Force into body	Body transfer function	Body deflection	
F(ω)	Τ(ω)	F _T (ω)	Ρ(ω)	Χ(ω)	
Powertrain unbalance force	Mounted powertrain	Force through engine mounts	Body structure	Deflection at seat, steering column	

 Sources		Paths		Receiver
	-		• • •	

Engine	•Mounted engine	•Seat vibration
•Unbalance	Body structure	•Steering wheel

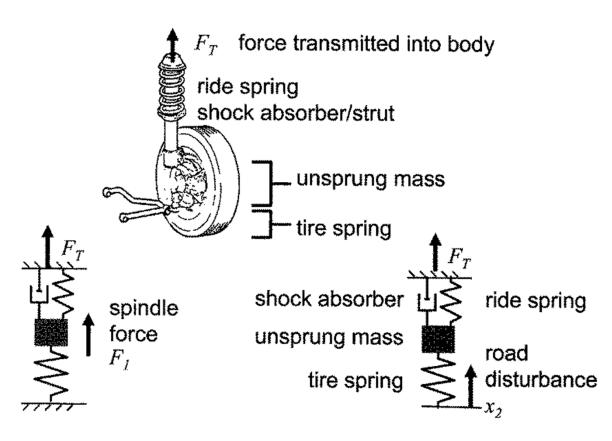

Powertrain Path: Reciprocating Unbalance

Unbalance Forcing Function

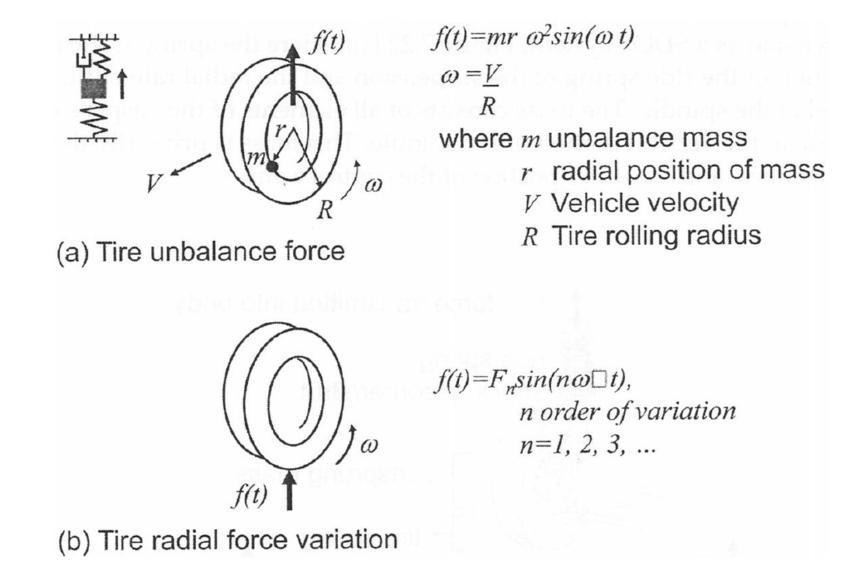
	In line 4	V6	V8
		60° MROTATING	90°
	planar crankshaft	even 120 ⁰ crankshaft	even 90 ⁰ crankshaft
Excitation amplitude	$F_{VERTICAL} = 4mr\frac{r}{l}\Omega^2$	$M_{R0\bar{T}} = \frac{3}{2}mr\frac{r}{l}\Omega^2 a$	None
(2 x engine speed)	h cythrolen the overlike	cylinder spacing <i>a</i> ‡	n Hite crankelraft. v 19E
Balance strategy	<i>F_{VERTICAL}</i> may be eliminated with dual counter rotating balance shafts at 2 x engine speed	balance the primary rotating couple leaving the	crankshaft counter weights balance the primary
		above moment	rotating couple

Transfer Function Model of Powertrain

Example


- A four-cylinder, automatic-transmission powertrain has a mass of 100kg. The engine mount system constrains motion to the vertical. The combined engine mount vertical stiffness is 600N/mm. For an evaluation, the mounted powertrain is placed on a bed plate (ground) and a sinusoidal vertical force is applied to the center of mass.
 - Determine the bounce natural frequency.
 - At what frequency does isolation of unbalance forces begin?
 - What is the engine speed at which isolation begins?

Suspension Path Vibration System


source	isolator	Ford body	e into y	Body transfer function		Body deflection
Force at suspension spindle	suspension	Force through shock absorber and ride spring		Body structure		Deflection at seat, steering column
Road deflection at tire patch	suspension	Force through shock absorber and ride spring		Body structure		Deflection at seat, steering column
Sources			Path		Rece	iver
Rotation Tire radia	 Vertical spindle force Rotational unbalance Tire radial force Road irregularities 			ion e	4	t vibration ering wheel

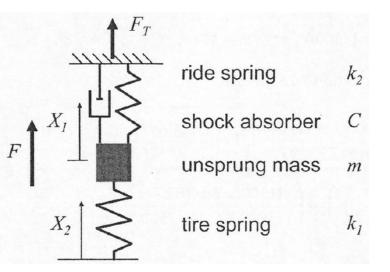
Suspension Model

- Mass: wheel, knuckle, brakes, control arms
- Spring: parallel combination of ride spring of suspension and radial rate of tire

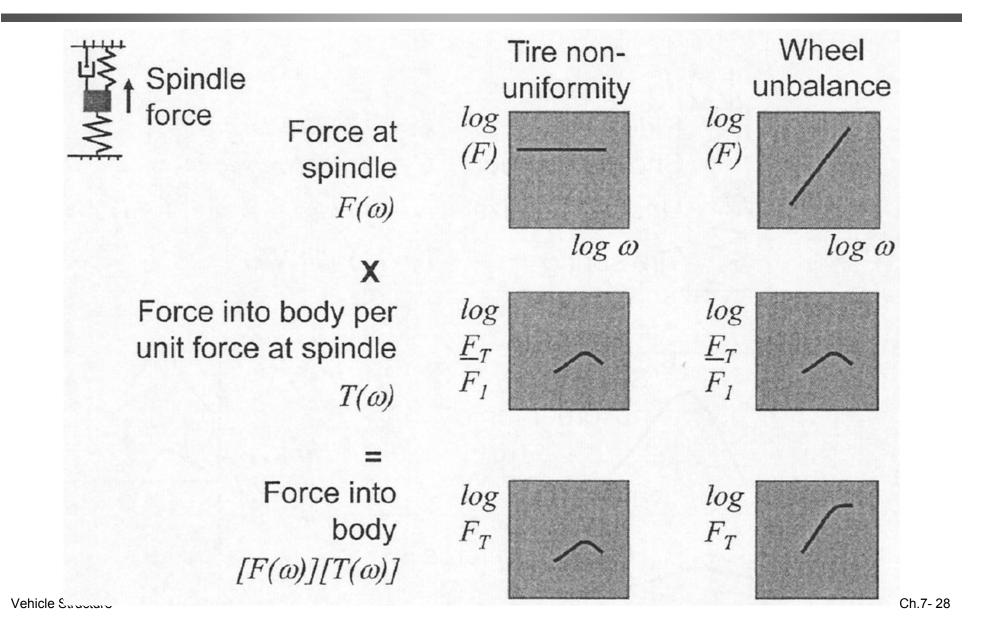
Suspension Vibration Sources: Load at Spindle

Suspension Analysis: Load at Spindle

$$\underbrace{-k_1X_1 - k_2X_1 - iC\omega X_1 + F}_{-\omega^2 X_1} = m\left(-\omega^2 X_1\right)$$


forces on unsprung mass

C: shock absorber viscous damping factor $(1000 \sim 2000 \, Ns/m)$ $\frac{X_1}{F} = \frac{1}{k_1 + k_2 - m\omega^2 + iC\omega}$ $\frac{X_1}{F} = \frac{k_1 + k_2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + i\left(\frac{C\omega}{k_1 + k_2}\right)}$ where $\omega_n^2 = \frac{k_1 + k_2}{m}$ $\left|\frac{X_1}{F}\right| = \frac{k_1 + k_2}{\sqrt{\left[1 - \left(\frac{\omega}{\omega}\right)^2\right]^2 + \left(\frac{C\omega}{k_1 + k_2}\right)^2}}$


$$F_T = X_1 \left(k_2 + iC\omega \right) \rightarrow \left| \frac{F_T}{X_1} \right| = \sqrt{k_2^2 + \left(C\omega \right)^2}$$

force transmitted to body through shock absorber and ride spring

$$\left|\frac{F_T}{F}\right| = \frac{\left(\frac{k_2}{k_1 + k_2}\right)\sqrt{1 + \left(\frac{C\omega}{k_2}\right)^2}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{C\omega}{k_1 + k_2}\right)^2}} = \left|T\left(\omega\right)\right|$$

Force into Body due to Force at Spindle

Example

- A suspension with rolling radius R=300mm has an unbalance of 1oz(28.35g) at the tire rim of radius r=170mm. The vehicle is travelling at 70mph.
 - What is the unbalance force frequency and magnitude?
- Typical tire radial rate k₁=175N/mm, ride rate k₂=17.5N/mm, unsprung mass m₁=40kg, C=1500Ns/m
 - Wheel hop frequency
 - Vehicle speed at resonance
 - Force transmitted to the body per unit force at the spindle at the vehicle speed corresponding to wheel hop

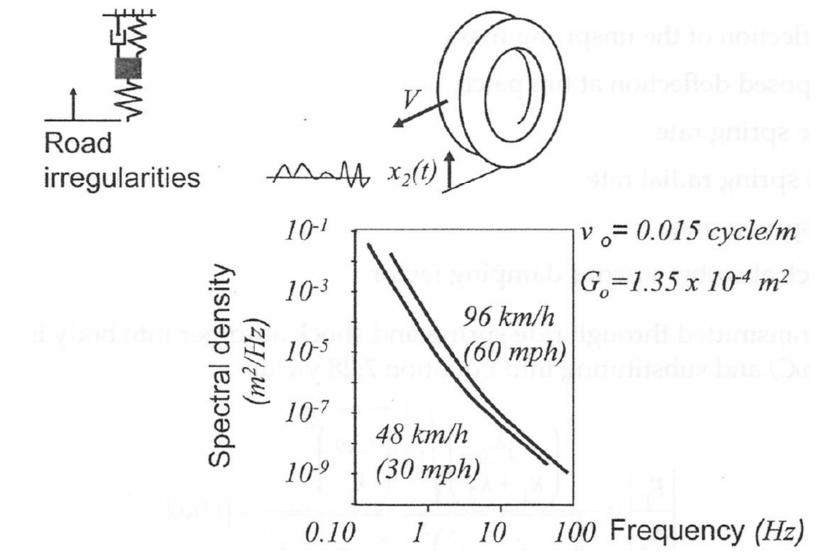
Suspension Path: Deflection at Tire Patch

- Dynamic characteristics for typical roads: Power Spectral Density (PSD) of the displacement
 - Means to characterize a random signal
 - Visualize as mean-square value of the signal as filtered through a 1Hz bandwidth filter at a center frequency f

$$G = G_0 \frac{\left[1 + \left(\frac{\upsilon_0}{\upsilon}\right)\right]}{\left(2\pi\upsilon\right)^2}$$

G: Power Spectral Density $\left[\frac{m^2}{(cycle/m)} \right]$, $G_0 = \begin{cases} 1.35 \times 10^{-4} \text{ (rough roads)} \\ 1.35 \times 10^{-5} \text{ (smooth roads)} \end{cases}$

v: Wave number (*cycle/m*), $v_0 = \begin{cases} 0.015 (bituminous roads) \\ 0.0061 (concrete roads) \end{cases}$


f = vV

- f: temporal frequency (Hz)
- v: spatial frequency (*cycle*/*m*)

Vehicle Structure V: vehicle speed (m/sec)

Ch.7-30

Suspension Vibration Sources: Road Deflections

Suspension Analysis: Road Deflections

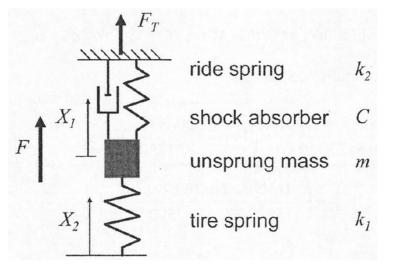
$$\frac{-k_1(X_1 - X_2) - k_2 X_1 - iC\omega X_1}{\text{forces on unsprung mass}} = m(-\omega^2 X_1)$$

$$C: \text{ shock absorber viscous damping factor}$$

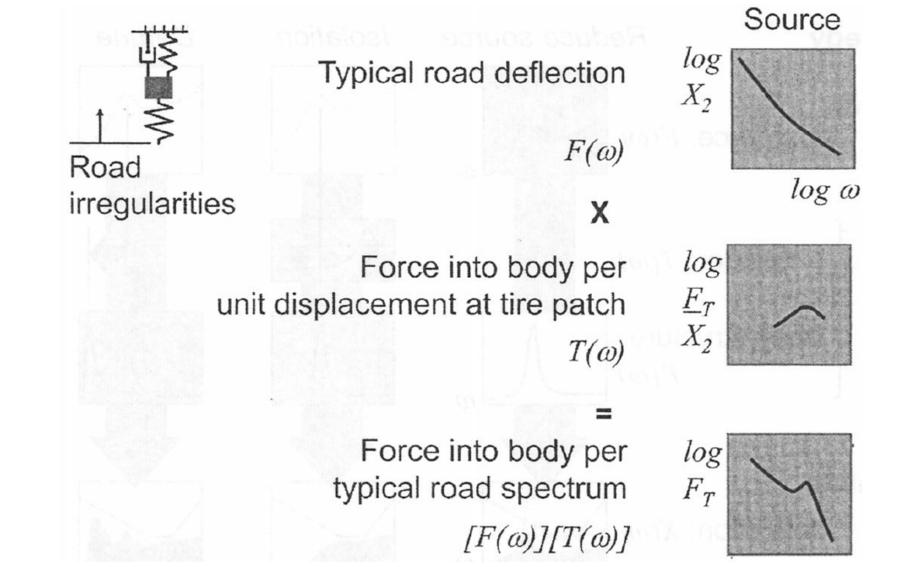
$$(1000 \sim 2000 Ns/m)$$

$$k_1 X_2 = (k_1 + k_2 - m\omega^2 + iC\omega) X_1$$

$$\frac{X_1}{X_2} = \frac{k_1}{k_1 + k_2 - m\omega^2 + iC\omega}$$

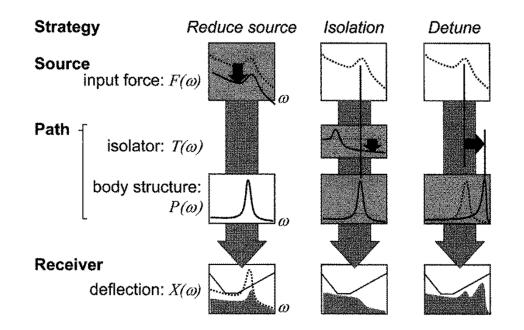

$$\frac{X_1}{X_2} = \frac{\frac{k_1}{k_1 + k_2} - \frac{k_1}{k_1 + k_2}}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + i\left(\frac{C\omega}{k_1 + k_2}\right)}$$
where $\omega_n^2 = \frac{k_1 + k_2}{m}$

$$\left|\frac{X_1}{X_2}\right| = \frac{\frac{k_1 + k_2}{m}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{C\omega}{k_1 + k_2}\right)^2}}$$


$$F_T = X_1 \left(k_2 + iC\omega \right) \rightarrow \left| \frac{F_T}{X_1} \right| = \sqrt{k_2^2 + \left(C\omega \right)^2}$$

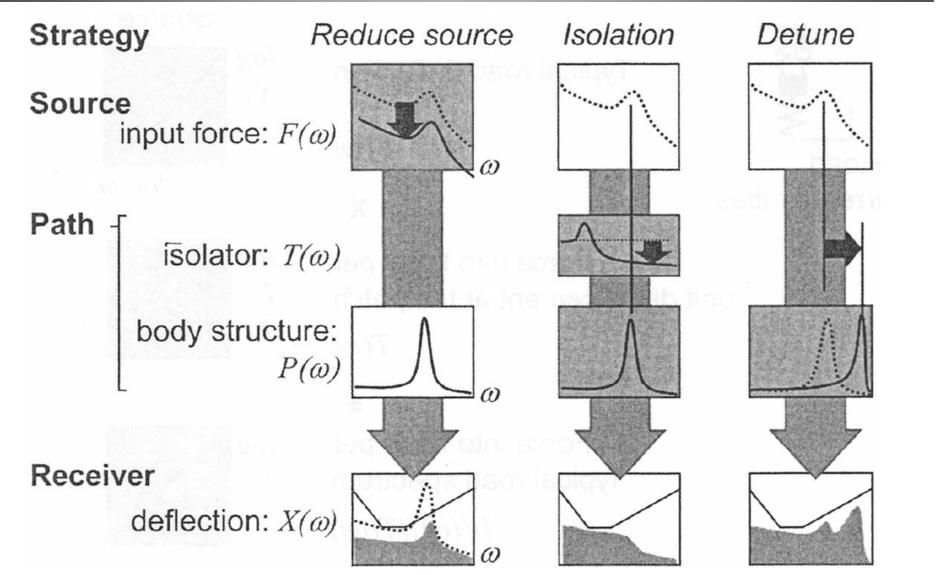
force transmitted to body through shock absorber and ride spring

$$\left|\frac{F_T}{X_2}\right| = \frac{\left(\frac{k_1k_2}{k_1 + k_2}\right)\sqrt{1 + \left(\frac{C\omega}{k_2}\right)^2}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{C\omega}{k_1 + k_2}\right)^2}} = \left|T\left(\omega\right)\right|$$

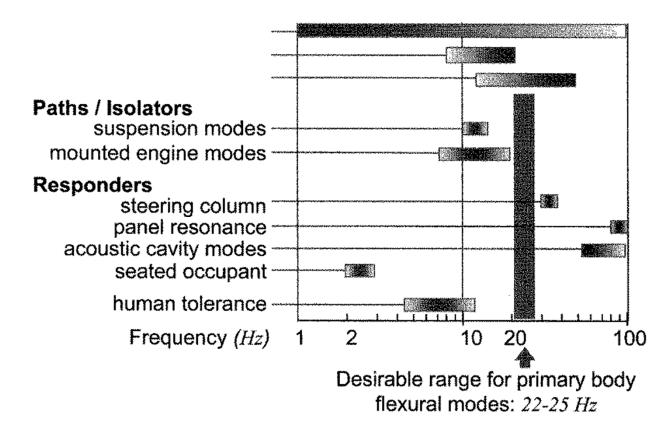


Force into Body due to Road Disturbance

7.5 Strategies for Design


- Objective: minimize the source vibration energy flowing to the receiver with undesirable results
- Three of most important strategies
 - Reduce amplitude of the source
 - Block the flow of energy using isolators in the path
 - Detune resonances in the system

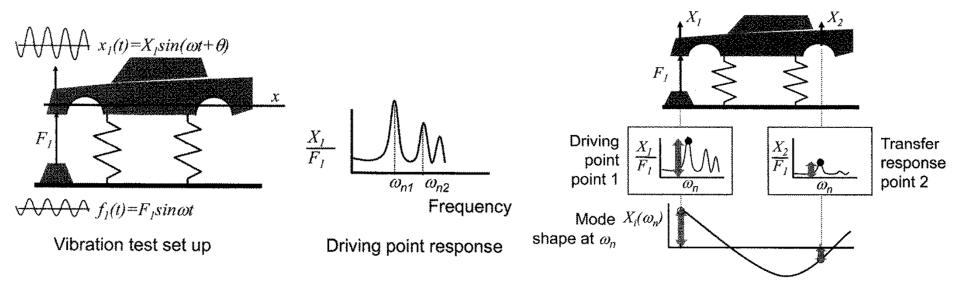
Design for Vibration Strategies


- Reduce amplitude of the source
 - Powertrain
 - Minimize reciprocating mass in engine
 - Add balance shafts to in-line 4 cylinder engine
 - Suspension
 - Balance tires
 - High quality tires with low radial force vibration
 - Minimize shock absorber forces using a linkage ratio ~ 1
- Block the flow of energy using isolators in the path
 - Mounted powertrain at isolator
 - Suspension as isolator
 - Rubber bushings in chassis links at acoustic frequencies
- Detune resonances in the system
 - Position body primary bending and torsion resonances

Vibration Control Strategies

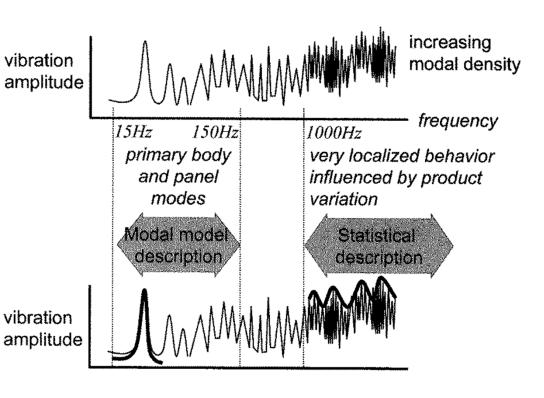
Noise and Vibration Mode Map

- Detune resonances of the body from sources and responders
- Desirable structural resonance band: 22~25 Hz



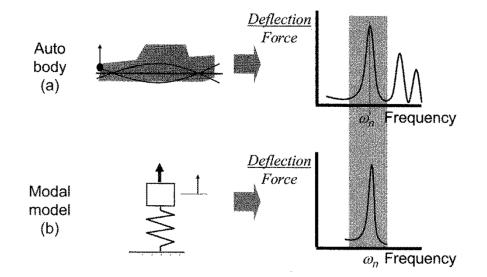
7.6 Body Structure Vibration Testing (1)

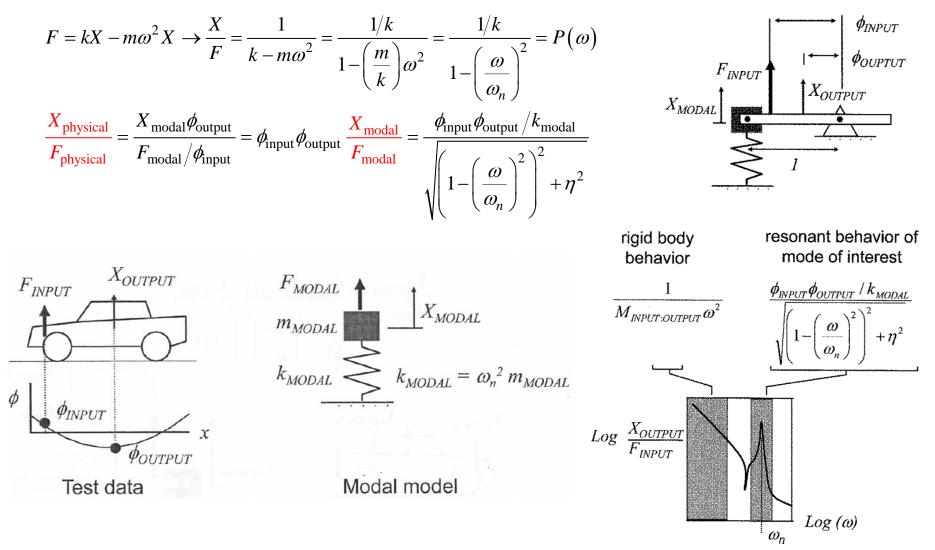
- Result of a vibration test
 - Transfer function: $P(\omega)$
 - Deflected shape (mode shape) for each resonance
- Typical test set-up
 - Support soft springs: inflated inner tubes or elastic cords
 - Rigid body modes at low frequencies (< 3Hz)
 - Electromagnetic or hydraulic shaker: (forcing location) front bumper attachment
 - Excite major modes of vibration (not near a nodal point)
 - Locally stiff (not to locally flexing the structure)
 - Accelerometer: body at the shaker attachment
 - Measure the driving point frequency response
 - input(randomly varying force) \rightarrow [Fourier Transform] \rightarrow (out signals)


Body Structure Vibration Testing (2)

- Driving point response
 - Force amplitude fixed \rightarrow frequency incremented
- Mode shape
 - Forcing frequency fixed (resonance) \rightarrow amplitude measured
 - Node(no deflection) / Anti-node(greatest deflection)
 - Lightly damped structure: In-phase / 180° out-of-phase

7.7 Modeling Resonant Behavior

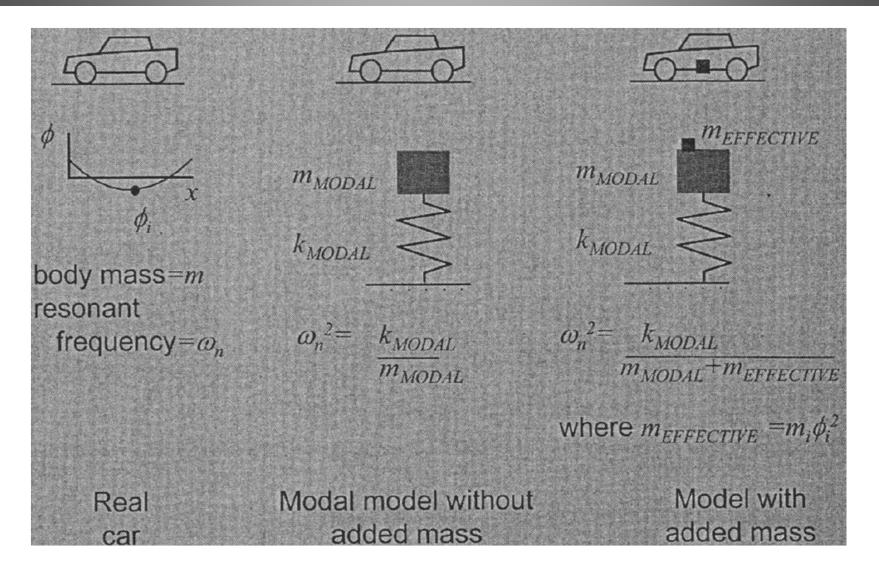

- Structure's modal density
 - Number of modes occurring in a fixed bandwidth
 - Increase with increasing frequency
- Lower frequency
 - 10~150Hz
 - individual modes
 - modal model
- High frequency
 - 1000Hz~
 - high modal density
 - statistical approach


Modal Model (1)

Primary modes of vibration

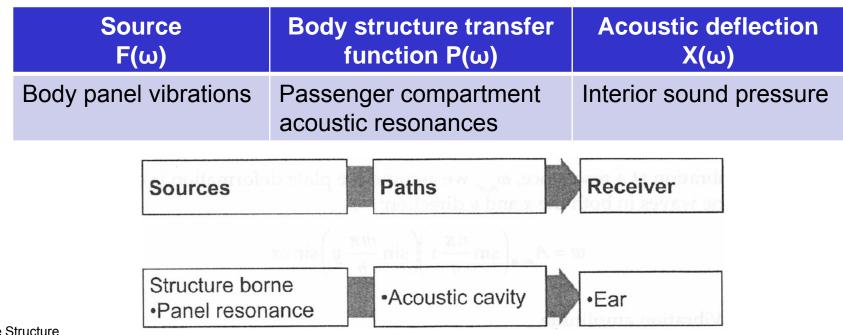
 $F_{\text{physical}} \rightarrow F_{\text{modal}} \rightarrow X_{\text{modal}} \rightarrow X_{\text{physical}}$ $F_{\text{modal}} = F_{\text{physical}}\phi_{\text{input}}$ F_{physical} : force applied to the physical body structure at the input location F_{modal} : force applied to the modal model ϕ_{input} : influence coefficient at the input (determined from mode shape at resonance) $X_{\text{physical}} = X_{\text{modal}}\phi_{\text{output}}$ $X_{\rm physical}$: deflection of the physical body structure at the output location X_{modal} : deflection of the modal model ϕ_{output} : influence coefficient at the output (determined from mode shape at resonance)

Modal Model (2)

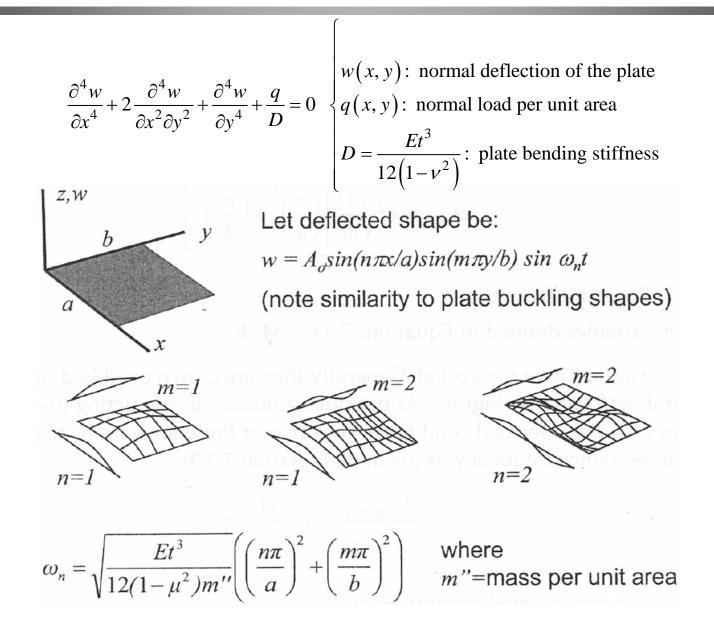

Example: Effect of Mass Placement

- Primary body resonance: 22~25 Hz
- Increase the resonant frequency
 - Increased body stiffness
 - Careful placement of subsystem masses
- Selection of battery location: front corner, dash, trunk

primary bending resonance:
$$f_n = 47$$
Hz $(\omega_n = 295.3$ rad/sec $) \rightarrow \phi_i = \begin{cases} 0.9 & \text{@front corner} \\ -0.2 & \text{@dash} \\ 0.15 & \text{@trunk} \end{cases}$


body shell mass: $M = 250 \text{kg} (= M_{\text{modal}})$ battery mass: m = 16.8 kg

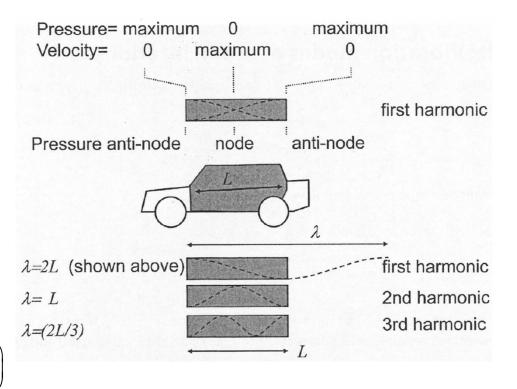
Effect on Resonant Frequency of an Added Mass



7.8 Vibration at High Frequency

- Primary body structure resonance: 18~50Hz
 - Vibration at the receiver: tactile
- Higher frequencies: 50~400Hz
 - More localized response of body structure, acoustic
- Structure-borne panel vibration system

Body Panel Vibration (1)

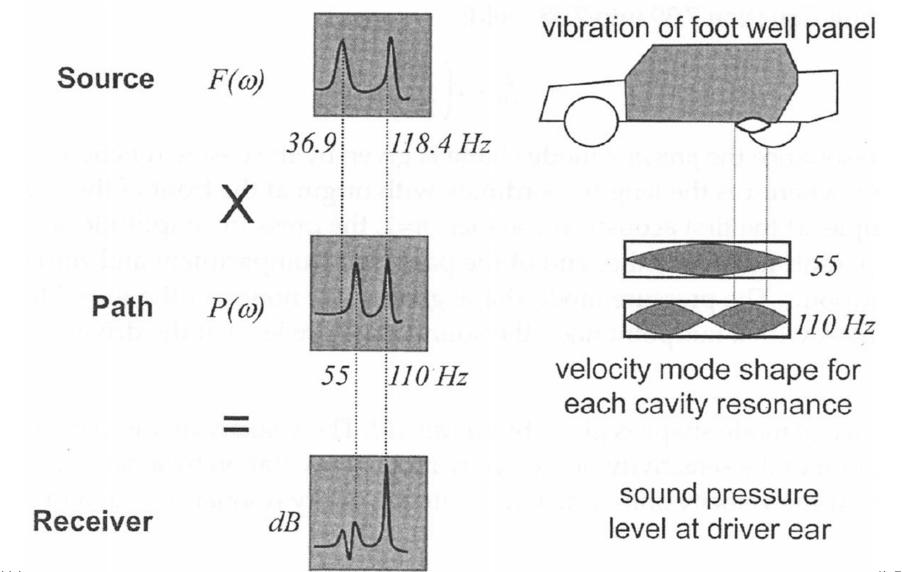

Body Panel Vibration (2)

Acoustic Cavity Resonance

- Closed air cavity of passenger compartment
 - Resonate with a standing acoustic wave
 - Closed boundary conditions at either end

 $\begin{cases} f_n \lambda = c \\ \lambda = \frac{2L}{n} \end{cases} \rightarrow f_n = c \left(\frac{n}{2L} \right)$ f_n : resonant frequency (Hz) λ : wavelength c: speed of sound in air $(330 \, m/sec)$ *L*: cabin length *n*: number of half cosine waves along cabin length pressure mode shape @each resonance: $\cos\left(\frac{n\pi x}{I}\right)$ notion of sound level air velocity mode shape @each resonance: $\sin\left(\frac{n\pi x}{I}\right)$

indication of sensitivity of cavity mode to excitation by a panel $\ensuremath{\mathsf{Vehicle}}$ Structure

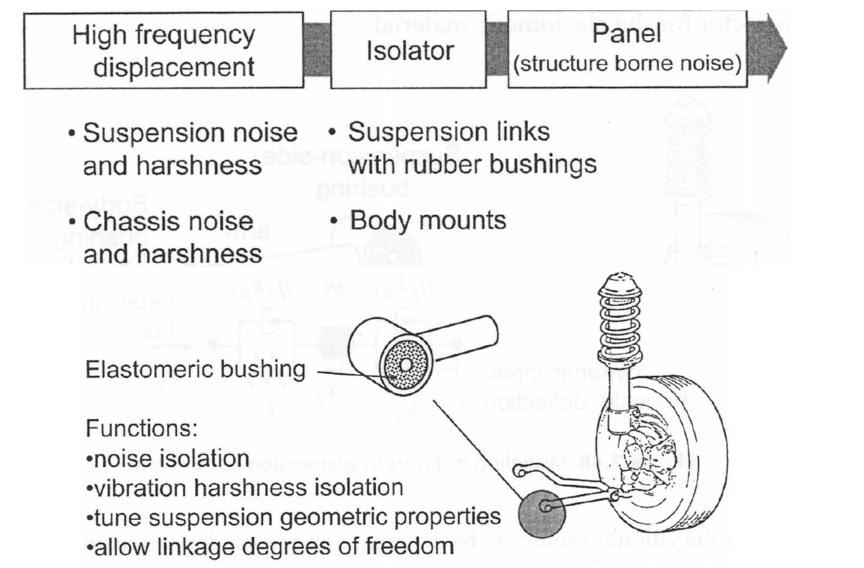


Example

- Vibration frequencies for floor pan
- Vibration modes of sedan interior cavity

$$a = 500mm \\ b = 300mm \\ t = 1mm \\ \rho = 7.83 \times 10^{-6} kg/mm^2$$
 $\rightarrow \omega? \begin{cases} \omega_{1,1} \\ \omega_{1,2} \end{cases} \\ H_C = 20mm \rightarrow f_{\text{FORMED}}? \end{cases}$

Panel and Acoustic Cavity

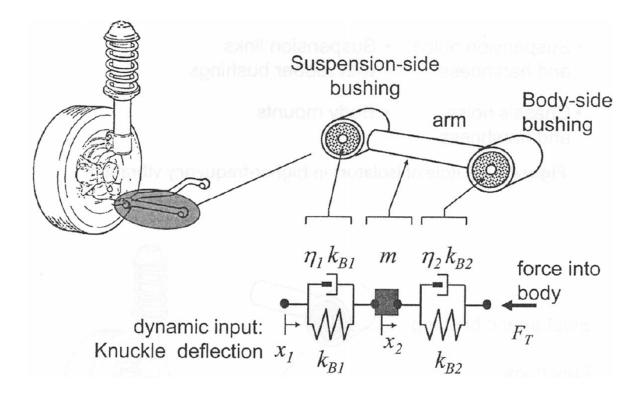


Vibration Isolation through Elastomeric Elements

- Suspension elements due to road impacts → high frequency deflections
- Isolation of higher frequency vibration
 - Elastomeric bushings at the body connections

Source	Isolator	Force into body	Body transfer function	Body deflection
F(ω)	Τ(ω)	F _T (ω)	Ρ(ω)	Χ(ω)
High frequency chassis deflections	Chassis links with end bushings	Body panel vibrations	Passenger compartment acoustic resonances	Interior sound pressure

Suspension Lower Control Arm



Modeling Isolators

$$F = kX + i\eta kX = k^* X \rightarrow \frac{F}{X} = \underbrace{k}_{\text{stiffness}} + i \underbrace{\eta k}_{\text{damping}} = k^*$$

F: force through the bushing

- X: deflection across the bushing
- η : loss factor for the elastomeric material

Response of Isolators

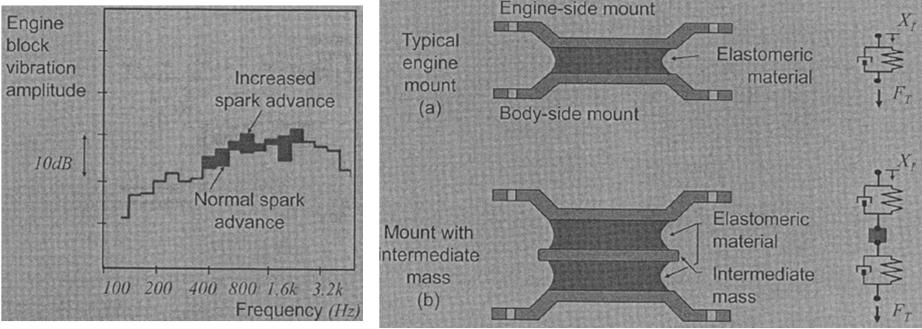
$$\frac{F_{T}}{X_{1}} = \frac{\frac{k_{B1}^{*}k_{B2}^{*}}{1-\omega^{2}\frac{m}{k_{B1}^{*}+k_{B2}^{*}}}}{1-\omega^{2}\frac{m}{k_{B1}^{*}+k_{B2}^{*}}} \Rightarrow \begin{cases} \omega \approx 0: \left|\frac{F_{T}}{X_{1}}\right| = \frac{k_{B1}k_{B2}}{k_{B1}+k_{B2}} \\ \omega_{n} = \sqrt{\frac{k_{B1}+k_{B2}}{m}}: \left|\frac{F_{T}}{X_{1}}\right| = \left(\frac{k_{B1}k_{B2}}{k_{B1}+k_{B2}}\right) \frac{\sqrt{1+\eta^{4}}}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\eta^{2}}} = |T(\omega)| \end{cases}$$

$$\begin{cases} k_{B1}^{*}: \text{ suspension-side bushing stiffness, } k_{B1}^{*} = k_{B1} + i\eta_{1}k_{B1} \\ k_{B2}^{*}: \text{ body-side bushing stiffness, } k_{B2}^{*} = k_{B2} + i\eta_{2}k_{B2} \\ m: \text{ mass of the chassis link} \\ F_{T}: \text{ vibration force amplitude transmitted into body structure} \\ X_{1}: \text{ vibration displacement amplitude imposed by suspension knuckle} \end{cases}$$

$$\frac{\eta / k_{B1}}{k_{B1}} \frac{m}{k_{B2}} \frac{\eta_{2} / k_{B2}}{k_{B2}} \frac{\eta = 0.01}{10^{6}} \frac{\eta = 0.01}{\sqrt{1-9}} \frac{\eta = 0$$

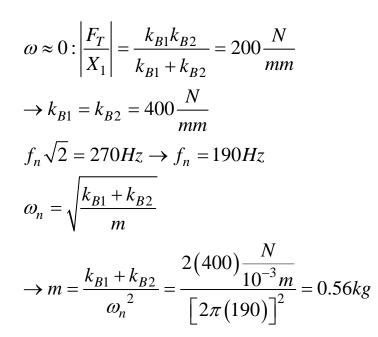
Example

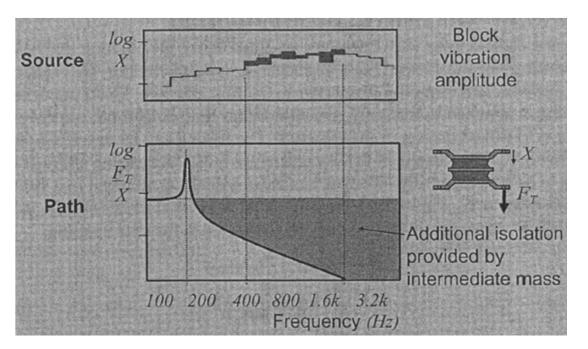
 gear meshing in the transmission → front wheel drive shaft → suspension knuckle → suspension control arm → body structure


$$\begin{aligned} & \text{mesh frequency: } f = 400 Hz \\ & k_{B1} = k_{B2} = 175000 \, N/m \\ & \eta = 0.2 \\ & m = 5kg \end{aligned}$$

$$\begin{cases} \omega \approx 0: \left|\frac{F_T}{X_1}\right| = \frac{k_{B1}k_{B2}}{k_{B1} + k_{B2}} = 875000 \frac{N}{m} \\ & \omega_n = \sqrt{\frac{k_{B1} + k_{B2}}{m}} = 836.7 \frac{rad}{s} (133 Hz): \\ & \left|\frac{F_T}{X_1}\right| = \left(\frac{k_{B1}k_{B2}}{k_{B1} + k_{B2}}\right) \frac{\sqrt{1 + \eta^4}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \eta^2}} = \left(\frac{k_{B1}k_{B2}}{k_{B1} + k_{B2}}\right) \frac{\sqrt{1 + 0.2^4}}{\sqrt{\left[1 - \left(\frac{400}{133}\right)^2\right]^2 + 0.2^2}} = 0.125 \left(\frac{k_{B1}k_{B2}}{k_{B1} + k_{B2}}\right) \end{aligned}$$

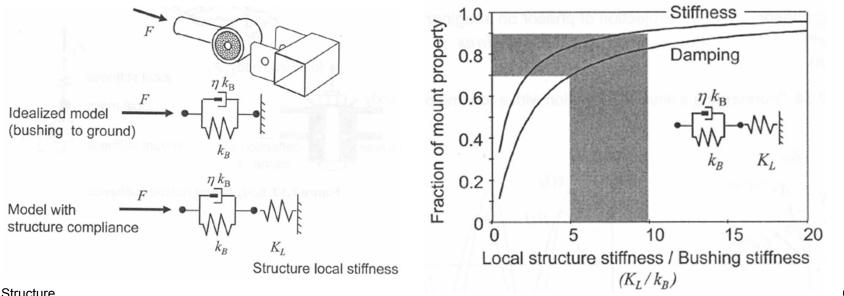
Vehicle Structure

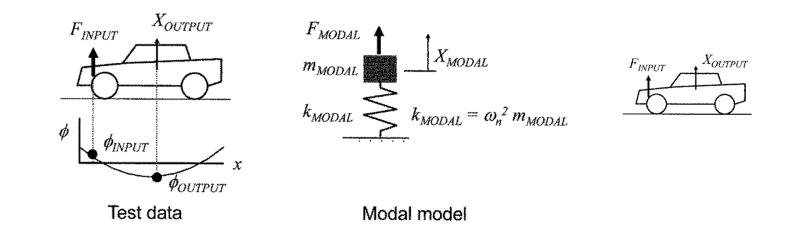

Example: High-Frequency Powertrain Vibration through Engine Mount (1)


- Powertrain \rightarrow engine mount \rightarrow body structure: direct mount
- High frequency vibration of engine block: structure-borne noise
- Increase engine spark timing \rightarrow improve fuel economy
 - Increase dynamic block deflections in 400~2000Hz range
 - To isolate acoustic vibrations, engine mount with free mass

Example: High-Frequency Powertrain Vibration through Engine Mount (2)

- Target static stiffness: 200 N/mm
- Isolation begins at 270 Hz
- Needed intermediate mass?



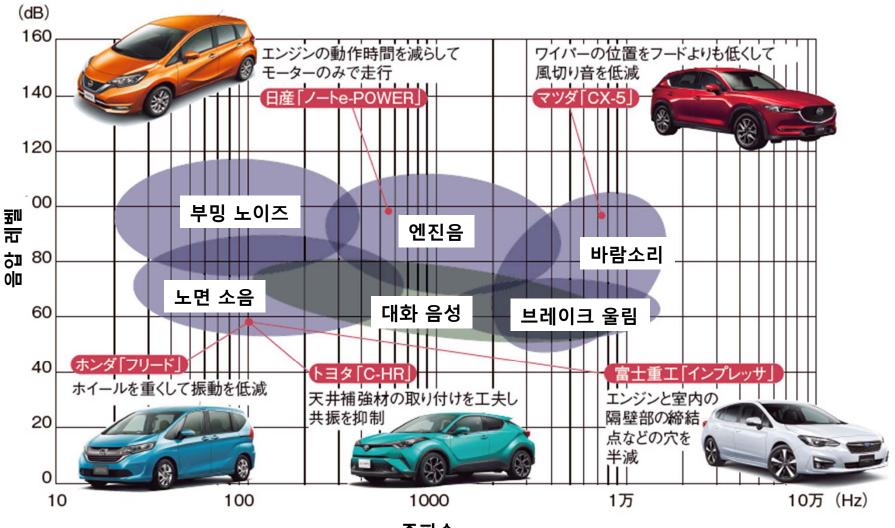

Local Stiffness Effect on Vibration Isolators

- Desired high-frequency-isolation: bush material?
- Localized flexing of structure: local stiffness

$$X = X_{local} + X_{bushing} = \frac{F}{K_L} + \frac{F}{k_B + i(\eta k_B)} \rightarrow \frac{F}{X} = \frac{k_B K_L + i(K_L \eta k_B)}{K_L + k_B + i(\eta k_B)}$$

$$\frac{F}{X} = \frac{k_B \left[\left(k_B / K_L \right) + 1 + \eta^2 \left(k_B / K_L \right) \right] + i(\eta k_B)}{\left[\left(k_B / K_L \right) + 1 \right]^2 + \left[\eta \left(k_B / K_L \right) \right]^2} \xrightarrow{\eta^2 \sim 0} \frac{F}{X} = \frac{k_B}{\left[\left(k_B / K_L \right) + 1 \right]} + i \frac{\eta k_B}{\left[\left(k_B / K_L \right) + 1 \right]^2} \Leftrightarrow \frac{F}{X} = k_B + i \eta k_B$$

Source	Paths	Receiver (occupant)	
 Torque pulses Unbalance Road irregularities Wheel rotational unbalance Tire force variation 	 Mounted powertrain Suspension Body structure Air cavity Panels Steering column Seat 	Feel: tactileHear: acousticVisual	


Nikkei Automotive 2017년 3월호

「静かなクルマ」と言えば、500万円を超えるような高級車の代名詞であり特権だった。 たが、ここへ来て200万円台の普及価格帯の車両で静粛性が大きく向上し始めている。 通けて見える自動車メーカーの思惑は、電動化時代への備え。 静粛性向上に関する"技術の機"の充実を図れれば、電動車両にも活用できる。 一つひとつの取り組みは地球だが役に立つ。各社の主力車種の工夫を追った。

대화를 방해하는 다양한 소음

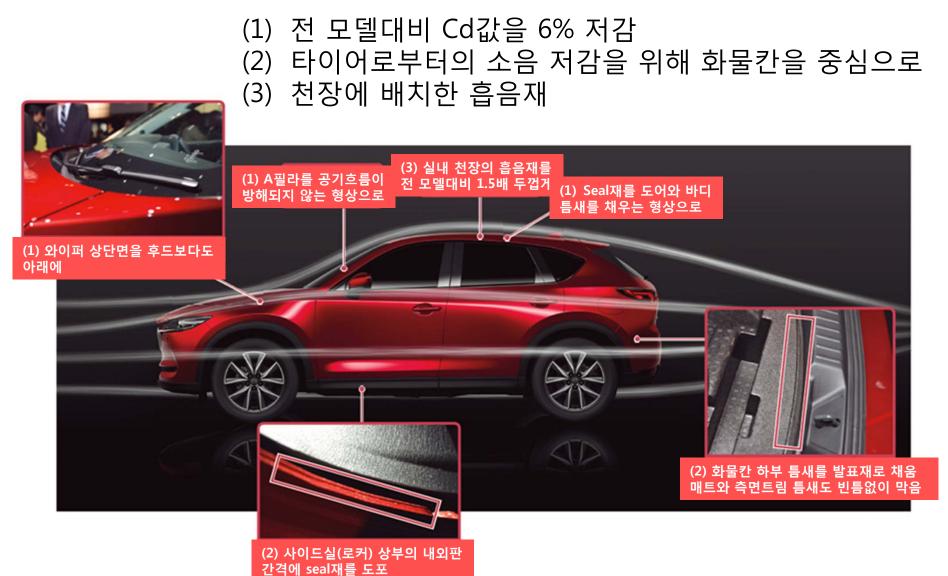
주파수

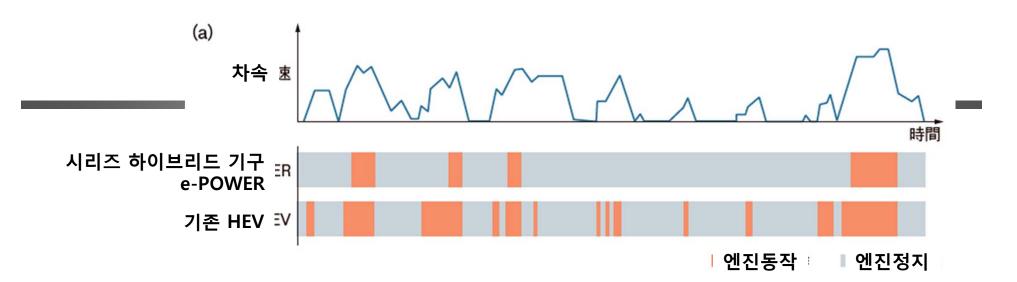
• (3) 차내에 들어온 소리를 정확하게 흡수

- (2) 소리가 차내로 들어오는 것을 차단
- (1) 소리의 원인 자체를 억제

- 사람 목소리와 주파수대역이 겹침 - 노면소음: 타이어로부터의 진동이 휠에 전달되어 소리 발생
- 본격적인 전동화 시대의 대비, 중요한 경쟁력

• 소음 발생 원인: 엔진음, 로드노이즈

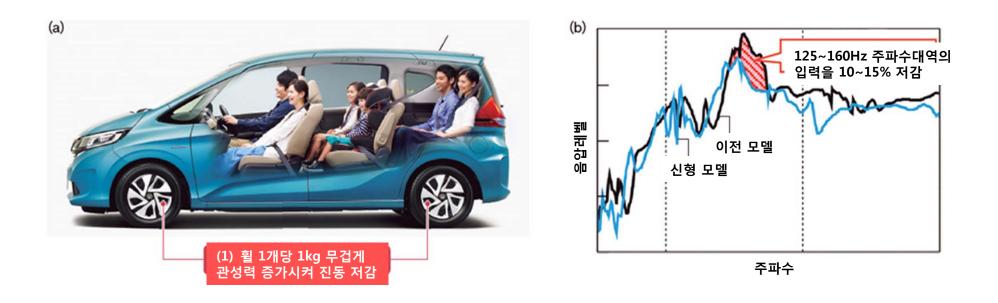

• 정숙성 향상의 필요성


좋은 자동차의 정의?

- 기본 운동성 요소(가속, 회전, 정지)이외에 정숙성

기본 대책

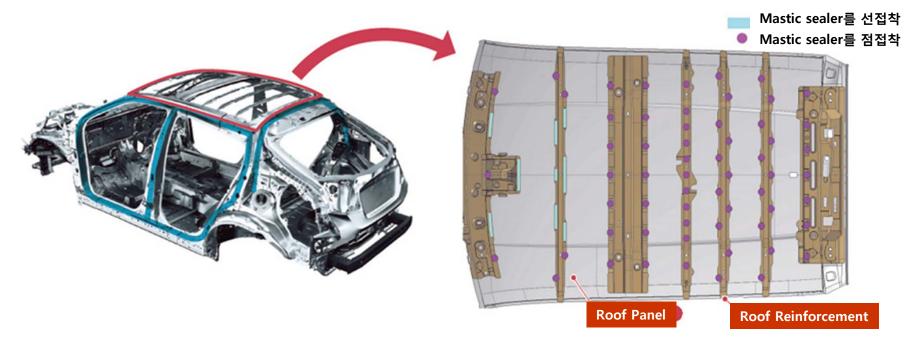
Mazda CX-5


Nissan 신형 Note

(1) 모터를 최대한 활용하여 불쾌한 엔진 소리를 억제
(엔진을 발전기 회전에만 사용)
발전효율이 높은 2,400rpm
전후로 적은 변동 → 소음크기
도 적음

Honda FREED

(1) 휠 1개당 약1kg 무겁게 하여 9kg 전후
휠의 rim외경 두께르 10% 두껍게 → 회전 시 관성력 증가 → 진동 억제
(이전 휠) roll방향으로 진동하여 로드노이즈에 악영향
스프링 하부를 무겁게 하면 조정안정성이 악화됨 → 휠 측면 디스크부 두 께를 증가시켜 강성 증가 → 조정안정성 확보


Toyota C-HR (Prius보다 조용)

(2) 엔진룸과 차량을 구분하는 dash silencer (dash panel에 장착하여 방음, 흡음, 진동억제 등 담당) → 형상 공통화 (Prius, CHR) 토요타 TNGA, 스바루 SGP (플랫폼 쇄신) → PHEV 대응 기존 모델 대비 구멍 면적은 줄이고(20%) 흡/차음재 두께는 증가(5→20mm)

Toyota C-HR (유럽시장)

(2) 루프패널: 노면에 의한 소리(로드 노이즈) 차이를 줄일 대책 유럽노면(포장상태가 제각각): 거친 노면(저주파수"고")과 깨끗한 노면(고주 파수"샤")의 반복 변환 루프패널과 루프보강재(진동억제용)를 탄성접착제(mastic sealer)로 고정: 설치길이를 부분적으로 구분, 바디 내에 일부러 진동 발생부위 설계하여 주 파수 상쇄

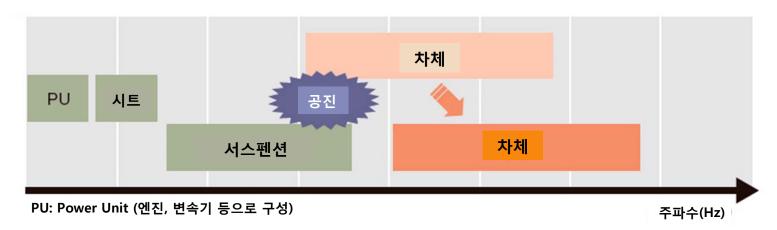
Subaru Impreza: 해석기술로 수치화

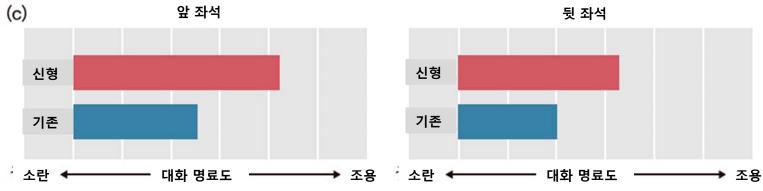
(2) Dash Silencer의 구멍을 줄여 소리의 침입경로를 배제 (41→20)

- Insulator와 주변부품간의 틈을 축소
- 차 실내를 통하는 연료배관을 차 실외로
- Fender Harness를 페지/통합
- 엔진ECU를 엔진룸 내로 이동
- 바디통합유닛을 instrument panel(IP)로 결합하여 체결점을 페지
- HVAC(공조)을 IP의 모듈부품으로 하여 체결점을 페지
- 보안유닛을 HVAC에 붙여서 체결점을 페지
- Idling stop기구의 부착점을 줄임

ダッシュサイレンサーの穴を減らして音の侵入経路を排除 インシュレーターと周辺部品の隙間を縮小 車室内を通していた燃料配管を車室外に フェンダーハーネスを廃止・統合 エンジンECU(電子制御ユニット)をエンジンルーム内に移動 ボディー統合ユニットをインパネに組み込み、締結点を廃止 HVAC(空調)をインパネのモジュール部品とし、締結点を廃止 セキュリティーユニットをHVACに取り付け、締結点を廃止 アイドリングストップ機構の取り付け点を削減

各部の剛性を高めて振動を削減 >フロント車体の横曲げ剛性を90%向上 車体のねじり剛性を70%向上 >フロントサスペンションの剛性を70%向上 >リアサブフレームの剛性を100%向上 ※数値はいずれも先代インプレッサとの比較


Ch.7-68


(1) 각 부재의 강성을 높여서 진동을 줄임 (이전 모델 대비)

- 차체 전면부의 횡굽힘강성을 90% 향상
- 차체의 비틀림강성을 70% 향상
- Front Suspension의 강성을 70% 향상
- Rear Suspension의 강성을 100% 향상

Subaru Impreza: 해석기술로 수치화

(1) 차체와 서스펜션 일부에서 진동주파수가 일치 → 공진으로 로드 노이즈 증가

