Size Optimization

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

예제 문제

- Beam design problem using MATLAB
- 5 bar truss structure example: volume minimization problem
- 3 bar truss structure example: topology + size optimization

- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 최적설계 문제 정식화 및 최적설계 실행
 ▶ 후처리

BEAM DESIGN PROBLEM USING MATLAB

예제: BEAM DESIGN PROBLEM

 $\underset{b,d}{\text{Minimize } mass}$

subject to

$$\begin{cases} g_1 = \sigma(b, d) \le (\sigma_a)_{bending} \\ g_2 = \tau(b, d) \le (\tau_a)_{shear} \\ g_3 = d \le 2b \\ g_4 = b \ge 0 \\ g_5 = d \ge 0 \end{cases}$$

 $\underset{b,d}{\text{Minimize } f = bd}$

subject to

$$\begin{cases} g_1 = \frac{6M}{bd^2} - (\sigma_a)_{bending} \le 0\\ g_2 = \frac{3V}{2bd} - (\tau_a)_{shear} \le 0\\ g_3 = d - 2b \le 0\\ g_4 = -b \le 0\\ g_5 = -d \le 0 \end{cases}$$

MATLAB의 Optimization

버를 이용한 최적화 가능

Tool을 이용하면 다양한 솔

MATLAB을 이용한 최적화

MATLAB의 Optimization tool 기능을 이용 • (명령어 'optimtool' 또는 아이콘 ☑) Optimization

Optimization Tool Elle Help Problem Setup and Results Solver: fmincon - Constrained nonlinear minimization minimax - Minimax optimization fminimax - Minimax optimization fminimax - Unconstrained nonlinear minimization Objective freminunc - Unconstrained nonlinear minimization Objective fseminf - Semi-infinite minimization fosive - Nonlinear equation solving Start point fzero - Single-variable nonlinear equation solving ga - Gener Gorithm Constraints: Linear inequalities:	Options >> Stopping criteria Max iterations: Use default: 1000 Specify: Max function evaluations: Use default: 3000 Specify: X tolerance: Use default: 1e-10 Specify: nization	본 문제와 같이 제약조건이 있는 문제의 경우에는 민감 도 기반의 'fmincon'을 많이 사용하며 민감도 계산이 어 렵거나 전역 최적해가 필요 한 경우 'GA (genetic algorithm)' 를 사용
Linear equalities: fminimax - Minimax optimization Bounds: Nonlinear constraint fun Derivatives: fseminf - Semi-infinite minimization Run solver and view result fsolve - Nonlinear equation solving Start Pause fzero - Single-variable nonlinear equat Current iteration: ga - Genetic Algorithm	minimization nimization ion solving	
Objective function value: 27019,80543053885 Ontimization terminated: average change in the fitness value less than	금 Function Value Check	T × 🔀 변수 - Straine_ele
options, TolFun and constraint violation is less than options, TolCon, Changes applied, Optimization running, Objective function_value: 27303.064551685675	FiveBar_optimization.m + I function [x, fval, exitflag, output, lambda, grad, hessian] = FiveBar 2 2X This is an auto generated MATLAB file from Optimization 3 3 Hess 4 2X Start with the default options 5 options = optimoptions('fmincon'); 6 2X Modify options setting 7 options = optimoptions(options, 'Display', 'final-detailed'); 8 options = optimoptions(options, 'TolX_Data); 9 options = optimoptions(options, 'Algorithm', 'sqp'); 10 options = optimoptions(options, 'Algorithm', 'sqp'); 11 [x, fval, exitflag, output, lambda, grad, hessian] =	r_optimization(x0,1b,ub,ToIX_Data) tion Tool. File→Generate Code 기능을 통해 스크립트로 변환 가능 implotfval @optimplotconstrviolation @optimplotfirstorderopt });

OPTIMTOOL 이용

A Optimization Tool		
File Help	fmincon - Constrained nonlinear minimization	
Problem Setup and Results 0	p Trust region reflective 👻	Quick Reference <<
Solver: fmincon - Constrained nonlinear minimization 리즘,	Interior point SQP	fmincon Solver
Algorithm: SQP ···································	Active set Trust region reflective	nonlinear multivariable function.
Objective function: @(x) x(1)*x(2)	Max function evaluations: Use default: 100*numberOfVariables	below corresponding to your task.
Start point: [1 1]	기 설계값 X tolerance:	Problem Setup and Results Solver and Algorithm
Constraints:	현구속조건 (Δ ^{♥ specify}	▶ Problem
Linear inequalities: A: [-2 1] b: [0]	Function tolerance:	▶ Constraints
Linear equalities: Aeq: beq:	O Specify:	▶ Run solver and view results
Bounds: Lower: [0 0] Upper:	순의 장/하안값 Constraint Blerance: Use default: 1e-6	Options
Nonlinear constraint function: @beam_cons	Specify:	Stopping criteria
Derivatives: Approximated by s빠r선형 구속	자 거 Henstraint tolerance:	Function value check
Run solver and view results 계산을 위한	함수 ◎ specify:	User-supplied derivatives Approximated derivatives
Start Pause Stop	Unboundedness threshold:	▶ Algorithm settings
Current iteration: 19 Clear Results	Specify:	Plot functions
Local minimum found that satisfies the constraints.	Function value check	Output function
Optimization completed because the objective function is	Error if user-supplied function returns Inf, NaN or complex	▶ Display to command window
feasible directions, to within the default value of the optimality	User-supplied derivatives	Suggested Next Steps
tolerance, and constraints are satisfied to within the default value of the	Validate user-supplied derivatives	When the Solver Fails
constraint tolerance.	Hessian sparsity pattern: Use default: sparse(ones(numberOfVariables)) 	When the Solver Might Have
최적화 결과 🚽	Specify:	Succeeded When the Solver Succeeds
Final point:	Hessian multiply function: Use default: No multiply function	More Information
1 4 2	Specify:	▶ User Guide
335.41 335.41	· · · · · · · · · · · · · · · · · · ·	Function equivalent

GENERATE CODE 이용

Optimization Tool

File	Help	
)	<pre>[] function [x,fval,exitflag,output,lambda,grad,hessian] = untitled(xU,Aineq,bineq,lb)</pre>
	Reset Optimization Tool	XXX This is an auto generated MATLAB file from Optimization Tool.
	Clear Problem Fields	
	Import Options	XX Start with the default options
	Import Problem	<pre>options = optimoptions('fmincon');</pre>
		XX Modify options setting
	Preferences	<pre>options = optimoptions(options, 'Display', 'off');</pre>
	Export to Workspace	<pre>options = optimoptions(options, 'PlotFcn', { @optimplotx @optimplotfunccount @optimplotfval });</pre>
í .		options = optimoptions(options, Algorithm', 'sqp');
	Generate Code	[x.fval.exitflag.output.lambda.grad.bessian] =
		(a) = (a(a) + (1) + (2))
	Close Ctrl+W	<pre>- fmincon(@(x)x(1)*x(2), xu, Aineq, Dineq, [], [], [D, [], @beam_cons, options);</pre>

→ 일부 상수의 경우 넘어오지 않으므로 수정 필요

XX Start with the default options		
options = optimoptions('fmincon');		
XX Modify options setting		
options = optimoptions(options,'Display', 'off');		
options = optimoptions(options,'PlotFcn', { @optimplotx @optimplotfunccour	t @optimplotfval	});
options = optimoptions(options,'Algorithm', 'sqp');		
[x,fval,exitflag,output] 🚍		
fmincon(@(x)x(1)*x(2),[1 1],[-2 1],[0],[],[],[0 0],[],@beam_cons.options)		

MATLAB 최적화 결과값의 의미

>> untitled

x =

335, 4102 335, 4102	
	All algorithms:
	 First order optimality conditions satisfied.
fual =	O Too many function evaluations or iterations.
1441 -	-1 Stopped by output/plot function.
1 12500+05	-2 No feasible point found.
1.12306-03	Trust-region-reflective, interior-point, and sqp:
	2 Change in X too small.
evitflag =	Trust-region-reflective:
exiting -	3 Change in objective function too small.
	Active-set only:
	4 Computed search direction too small.
	5 Predicted change in objective function too small.
output =	Interior-point and sqp:
οαίραι -	-3 Problem seems unbounded.

다음 필드를 포함한 <u>struct</u>:

iterations: 19 funcCount: 60 algorithm: 'sqp' message: 'Local minimum found that satisfies the constraints....' constrviolation: 2.4825e-13 stepsize: 9.9144e-05 Issteplength: 1 firstorderopt: 3.1236e-06

MATLAB 코드

	XX Start with the default opti	ions			
	<pre>options = optimoptions('fmincon');</pre>				
	XX Modify options setting				
치거치도 시행시	options = optimoptions(options,'Di	splay', 'final-detailed');			
쇠식와들 실행아는	options = optimoptions(options, Al	gorithm', 'sqp'); %			
메인 스크립트	xO = [500 500]; % Start point				
	[x.fval.exitflag.output] =				
	$f_{mincon}(\theta(x), x(1) + x(2), x(1) - 2, 1)$	0].[].[].[0.0].[] @heam.cons.options)			
	■ function [c con]=beem cons(y)]				
	M = 407: % Mmm				
	$V = 1 E_0 A_0^2 + V h$				
	Y - 1984, % N				
	sig_a = 10, %N/mm 2	x: design variables			
	tau_a = 2; %N/mm~2	c: inequality constraint			
	b = x(1);	ceq: equality constraint			
	d = x(2);				
	c(1) = 6+M/b/d^2-sig_a; %91				
	c(2) = 3*V/2/b/d-tau_a; %92				
피리미터 미 페하ㅈ거이	ceq=[];				
파다미너 곳 세인소신의					
계산이 포함된	XX Plot				
함수 스크립트	[bb,dd]=meshgrid(0:700,0:1000);				
- · –	c1 = 6+M./bb./(dd.^2)-sig_a;				
	c2 = 3*V/2./bb./dd-tau_a;				
	c3 = dd−2∗bb;				
	<pre>contour(bb,dd,c1,[0 0],'b');text</pre>	(100,500, 'g1', 'color', 'b');drawnow;			
	hold on				
	<pre>contour(bb,dd,c2,[0 0],'m');text</pre>	(150,850,ig2',icolori,imi);drawnow;			
	hold on				
	contour(bb.dd.c3.[0 0].'v'):text	(400,800, 'g3', 'color', 'v');drawnow;			
	hold on				
	plot(x(1) x(2) ini ind(xi) ini)	drawpow:			
	<pre>Lplot(x(1),x(2), 'o', 'color', 'r');</pre>	drawnow;			

Copyright © Computational Design Lab. All rights reserved.

x0 = [400 200], f = 112500

x0 = [200 500], f = 112500 x*=[245.595 458.07]1]

5 BAR TRUSS STRUCTURE (VOLUME MINIMIZATION PROBLEM) 로드 요소

근사모델을 이용한 최적설계

- 해석된 데이터를 바탕으로 근사의 수학 모델을 만들어 최적화를 수행
- 설계자가 정한 시간 내에 적절한 설계안 도출 가능 → 실제 산업현장에서 많이 사용

• NFX의 경우 근사모델 기반 최적화만 지원하고 있음

근사모델 생성

최적화 수행

예제: 5 BAR STRUCTURE

Material : aluminum 탄성계수 : 6.895E4 N/mm² 프와송비 : 0.3 질량밀도 : 2.77E-6 kg/mm³

a = 254 mm

$$F_{1x} = 22.241 \text{ kN}$$
 , $F_{1y} = -13.344 \text{ kN}$
 $F_{2y} = 4.448 \text{ kN}$

문제정식화

설계변수 : 각 부재의 단면적 설계목적 : 부피 최소화 설계제약조건 부재 최대응력 413.684 MPa 이하 절점 최대변위(x,y방향) 1.524 mm 이하 6.4516 mm² ≤ 부재 단면적 ≤ 64.516 mm²

Referenced optimum values*

부재 번호	1	2	3	4	5
단면적 [mm²]	32.26	6.45	30.39	10.77	6.45

* A. Pospisilova and M. Leps, ACTA PLYTECHNICA, 2012

기하형상 생성 (1)

기하형상 생성 (2)

재료 물성 및 특성 입력

5개의 로드요소 특성 생성 (초기 단면적 : 20 mm²)

성 추7	ŀ/수정			×
번호 1 2 3 4 5	이름 Bar1 Bar2 Bar3 Bar4 Bar5	종류 1D 1D 1D 1D 1D	하위종류 로드 로드 로드 로드 로드	<u>생정</u> ▼ 수정 복사 삭제 불러오기
				달기

요소망 생성

구속조건 및 하중조건 설정

설계변수 설정

Copyright © Computational Design Lab. All rights reserved.

해석 케이스

'선형 정적해석' 선택

해석 케이스 정의 및 실험점 추출 (1)

해석 케이스 정의 및 실험점 추출 (2)

해석 케이스 정의 및 실험점 추출 (3)

치수 최적화 설정: 응력 제약조건

치수 최적화 결과 확인: 응력 제약조건

후처리: 응력 제약조건

치수 최적화 설정: 변위 제약조건

28

치수 최적화 결과 확인: 변위 제약조건

최적화 결과를 설계 모델에

변위조건은 모두 만족하나

응력조건을 위반한 결과가

나타남

반영하여 해석 수행 가능

후처리: 변위 제약조건

치수 최적화 설정: 응력 & 변위

31

치수 최적화 결과 확인: 응력 & 변위

후처리: 응력 & 변위

Copyright © Computational Design Lab. All rights reserved.

치수 최적화 결과

		최적화 문제				
		참고 문헌	응력 제약	변위 제약	응력 & 변위	
부피[mm³]		2.6e4	3.4e4	2.7e4	3.3e4	
최대 응	력[MPa]	414.09	360.59	573.57	365.68	
	절점 1,x	1.52	1.33	1.45	1.35	
변위	절점 1,y	-1.52	-1.01	-1.28	-0.97	
[mm]	절점 2,x	0.001	0.04	-0.22	0.002	
	절점 2,y	-0.004	-0.16	0.83	-0.01	
	A1	32.26	37	33	37	
	A2	6.45	8.5	6.6	6.7	
변수 [mm ²]	A3	30.39	39	35	40	
	A4	10.77	20	7.1	17	
	A5	6.45	8.3	6.5	12	

NFX를 이용한 치수 최적화 의 경우 참고 문헌의 결과 대비 제약조건에 여유가 있 는 상태로 결과가 도출된 것 을 알 수 있음

MATLAB을 이용한 최적화: fmincon

• 최적화 세팅

A Optimization Tool		
File Help	fmincon - Constrained nonlinear minimization	
Problem Setup and Results 최적화 알고리즘	Opt Trust region reflective	ck Reference <<
Solver: fmincon - Constrained nonlinear minimization Algorithm: SQP Broblem	SQP Ma Active set Trust region reflective	fmincon Solver Find a minimum of a cons multivariable function.
Objective function:	→ Ax function evaluations:	Click to expand the sectior corresponding to your task Problem Setup and F
Start point: rand(5,1)*64.516*0.9+6.4516	· · · · · · · · · · · · · · · · · · ·	 Solver and Algorithm Problem
Linear inequalities: A:	Function tolerance:	Constraints
Linear equalities: Aeq. Deq. Deq. Bounds: Lower: 6.4516*ones(5,1) Upper: 64.516*ones(5,1)	면수의 경계값 ◎ Specify: 1e-10 Constraint tolerance: ◎ Use default: 1e-6	Options Stopping criteria
Nonlinear constraint function: DeriveBar Derivatives: Approximated by solver	부속조건계산 ◎ specify: 0.01 음과위:한:슈: ◎ Use default: 1e-6	 Function value check User-supplied derivative
Run solver and view results Start Pause Stop	(구조해석포함) Specify:	 Approximated derivative Algorithm settings
Current iteration: 32 Clear Result options, MaxFunEvals = 500 (the default value),	Ilts Specify:	 Plot functions Output function
Optimization running, Objective function value: 0.0715409861874495 Converged to an infeasible point,	Error if user-supplied function returns Inf, NaN or complex User-supplied derivatives	 Display to command wi Suggested Next Step Overview of Next Steps When the Selver Fello
fmincon stopped because the size of the current step is less than the default value of the step size tolerance but constraints are not satisfied to within the default value of the constraint tolerance, よれようし ろう	Validate user-supplied derivatives Hessian sparsity pattern: W Use default: sparse(ones(numberOfVariables))	 When the Solver Paris When the Solver Might H When the Solver Succes
지역와 걸고 Final point:	Specify: Hessian multiply function: Specify: Specify:	More Information User Guide Function equivalent
1 2 3 4 5 32.251 6.452 30.484 10.745 6.4	52 ¢ Approximated derivatives	

MATLAB을 이용한 최적화: fmincon

			최적	화 문제		MATLAB의 fmincon 솔버의
		참고 문헌	응력 제약	변위 제약	응력 & 변위	· 경우 민감도를 이용한 알고 · 리즘을 사용하며 크게 4가
부피	[mm ³]	2.6e4	2.6e4	2.5e4	2.6e4	지 방법을 사용
최대 응	력[MPa]	414.09	413.68	632.33	414.70	본 문제에 적용 가능한 방법
	절점 1,x	1.52	1.52	1.52	1.52	은 'Interior point', 'SQP', Active set' 3가지이며, 본
변위	절점 1,y	-1.52	-1.52	-1.52	-1.52	· 문제의 경우 결과에 큰 차이 · 가 없으므로 기본으로 되어
[mm]	절점 2,x	0.001	3.92e-7	-0.21	-8.30e-6	있는 'Interior point'를 이용
	절점 2,y	-0.004	-1.50e-6	0.81	3.19e-5	인 걸피 이용함
	A1	32.26	32.26	31.37	32.26	¦ 잠고 문헌의 결과와 유사한 ¦ 결과를 나타냄
	A2	6.45	6.45	6.45	6.45	 응력 제약 문제의 경우 GA
변수 [mm ²]	A3	30.39	30.41	31.67	30.41	결과와 마찬가지로 변위 제
	A4	10.77	10.75	6.45	10.75	약소간을 고려하지 않음에 도 변위 제약조건을 만족하
	A5	6.45	6.45	6.45	6.45	는 것을 알 수 있음

MATLAB을 이용한 최적화: GA

• 최적화 세팅

A Optimization Tool	0080 F 220868-0 00 +0	
File Help		
Problem Setup and Results 최적화 알고리즘	Options	Quick Reference <<
Solver: aa - Genetic Algorithm	Specify:	· · · · · · ·
Problem	e 전·현·아우 Ose default: -Inf	Genetic Algorith
Fitness function: @(x) (x(1)+x(4)+x(5)+x(2)*(sqrt(2))+x(3)*(sqrt(2)))*254	Specify:	Click to expand the section
Number of variables: 5	Stall generations: Use default: 50 	corresponding to your task
Constraints: 설계	변수 개수 ◎ specify:	Problem Setup and F
Linear inequalities: A: [] b: []	Stall time limit: O Use default: Inf	► Constraints
Linear equalities: Aeq: [] beq: []	수의 경계값 specify:	Run solver and view res
Bounds: Lower: 6.4516*ones(5,1) Upper: 64.516*ones(5,1)	Stall test: average change	Options
Nonlinear constraint function: @FiveBar	Function tolerance: Use default: 1e-6 	Specify options for the Ger
Integer variable indices: 구속조건계신	Specify:	Population
Run solver and view results 음 위한 함수	Constraint tolerance:	Fitness scaling
C ···	Specify:	Selection
Start Pause Stop		▶ Reproduction
Current iteration: 4	Plot interval: 1	Mutation
		Crossover
		Migration
		Constraint parameters
Changes applied, Optimization running,	Score diversity Scores Selection	Hyprid function
Objective function value: 27303,064551685675 Optimization terminated: average change in the fitness value less than options. TolFun	Stopping Max constraint	Plot Eurotions
and constraint violation is less than options, TolCon,	Custom function:	Output function
1 저희 거리	Output function	Display to command wi
최직와 결과 🖡	Custom function:	E
Final point:	□ Display to command window	More Information
1 2 3 4 5	Level of display: off	▶ User Guide
35.354 6.455 31.588 11.884 6.453	User function evaluation	Function equivalent
K	Evaluate fitness and constraint functions: in serial	▼ 4 Ⅲ

MATLAB을 이용한 최적화: GA

			최적	GA의 경우 최적화 계산과정				
		참고 문헌	응력 제약	변위 제약	응력 & 변위	· 에서 랜덤 요인이 포함되기 · 때문에 100번을 수행하여		
부피[mm³]		2.6e4	2.6e4	2.7e4	2.6e4	제일 좋은 결과를 도출함		
최대 응력[MPa]		414.09	414.02	593.93	414.10	참고 문헌의 결과와 유사한		
변위 [mm]	절점 1,x	1.52	1.52	1.39	1.52	결과를 나타냄 		
	절점 1,y	-1.52	-1.52	-1.39	-1.52	¦ 응력 제약 문제의 경우 변위 제약조건을 고려하지 않을		
	절점 2,x	0.001	9.0e-7	-0.21	1.71e-5	에도 변위 제약조건을 만족		
	절점 2,y	-0.004	-3.4e-6	0.8	-6.53e-5	¦ 아는 것을 될 수 있음 		
변수 [mm ²]	A1	32.26	32.23	34.45	32.23			
	A2	6.45	6.45	6.45	6.45			
	A3	30.39	30.39	34.78	30.38			
	A4	10.77	10.74	6.87	10.74			
	A5	6.45	6.45	6.45	6.45			

3 BAR TRUSS STRUCTURE (TOPOLOGY + SIZE OPTIMIZATION)

예제: 5 BAR STRUCTURE

Material : aluminum 탄성계수 : 6.895E4 N/mm² 프와송비 : 0.3 질량밀도 : 2.77E-6 kg/mm³

a = 254 mm

$$F_{1x} = 22.241 \text{ kN}$$
, $F_{1y} = -13.344 \text{ kN}$
 $F_{2y} = 4.448 \text{ kN}$

문제정식화

설계변수 : 각 부재의 단면적 설계목적 : 부피 최소화 설계제약조건 부재 최대응력 413.684 MPa 이하 절점 최대변위(x,y방향) 1.524 mm 이하 6.4516 mm² ≤ 부재 단면적 ≤ 64.516 mm²

Referenced optimum values*

부재 번호	1	2	3	4	5
단면적 [mm²]	32.26	6.45	30.39	10.77	6.45

* A. Pospisilova and M. Leps, ACTA PLYTECHNICA, 2012

기하형상 생성 (1)

기하형상 생성 (2)

254*254 평면 생성 (설계영역)

재료 aluminum 두께 5.5 mm, 요소 크기 10 mm인 판 요소 생성

구속조건 및 하중조건 설정

해석 케이스 정의

Copyright © Computational Design Lab. All rights reserved.

위상 최적화 결과 확인

🗢 🗘 🚥 . X 등위면 기준 0.01 0.3 1 🔲 결과 변경시 값 고정 ④ 면 이외 영역 보이기 ◎ 기준값 미상 🔘 기준값 이하 ◎ 면 만 보이기 추가 삭제 모두삭제 닫기

재료밀도 0.3 이상인 결과 확인 시 1, 3, 4번 부재만 표현되는 것을 확인

치수 최적화 설정

			midas NFX - (NFXD12)		- 6
현상 유수망 정정/열 해성	동적/과도열 해석 유동해석 해석 결기	부성 도구			사용모드 * 스탠일 * 배경 * 언머 * 💓 🗕 🖻 🗙
	· · · · · · · · · · · · · · · · · · ·		드 및 전전문규 📷		
전 빅터 티 채우기유형 - 클 바람형상	· A. 인인서초총 T. 응럽 사람화 👔	▲해등위면 중·근사모델현상 등 북학재 · ○ 히테.	/히소 모든 요소 · · · · · · · · · · · · · · · · · ·		
CHOIG그램 등 결과색상 · 자동스케일(*	1) · @ 경과수송 14 입의방향 부재력합계 영	기타기능 / 10 최적모델생성 / 2 보고서 [1] 컨투	에선 III 요소증양결과 옵션		
일반	23	최적설계章치리 특수章치리	보이기/감추기 도구		
* 60 QQQCC+		· 🖓 🔞 🔜 🗅 🚥 📄 🏥 🕁 🍱 🗐 🛼 🛊	+ N K K * S V		
해석 및 결과	a ×				PI
한목	변호 색상	0 42.1 84.2	🛅 🗣 🕵 - 없음 (0) 👘 👘		midas NFX
	24				1076/L 31339-400 1035
채우기	면그리기				
역상 키트대신	킨누네				, Alexandre and Alexandre a
- 보이기	False	1			1
선색할					×
선두께	1	[DATA] Size Optimization, RSMOPT: CANDIDATE 3, 선혈 정적히	H석(圖수), [UNIT] N, mm		
		▶ ■ 🔛 🏡 4+ ♣ 레벨 3 (보통)			0
		(시작페이지 (10_Bar_Truss) 10_Bar_Truss	ass_Optimized 🚯 NFXD4 🚯 S_Bar_Truss 🚯 S_bar_top	oology 🚯 _Optimized5_bar_topology1 🚯 NFXD11 🔯 _O	ptimizedNFXD11 () NFXD12 × () Optim >
		콜랙창			a x
		M - EFUE OFTHUZATION > -RUIN OFTHUZATION - RUIN DINE REFORME SUPPLICE MODEL: COMPLETED > FUENTIE TRUMM FORM: COMPLETED > OFTHUZATION COMPLETED > OFTHUZATION COMPLETED > SYSTEM INFO) NIMMER OF THURSENS : 1			
	NO	> WALL CLOCK TIME : 16.563 sec			
	48	>		0.100 10.00 5.100	•
Heady			X: 0~265,319 Y: -5,7599~262,359 Z:0~0	G:[3] N:[4] E:[3]	N v mm v J v sec v

위상최적화에서 도출된 1, 3, 4번 부재만을 모델링하여 치수최적설계 수행

재료 물성치, 단면적 모델링, 경계조건 설정 등은 앞선 실 습 예제와 동일하게 설정

치수최적설계 모델링 후, 최 적설계 수행

치수 최적화 결과 확인

설계 모델생성											
적설	널계 결과 요약										
[적]	화케이스 so		•								
Т	설계변수 이름	<u>素</u> フ	값	최소값	최대값	설계안 1	설계안 2	설계안	3 사용지	· 설계안	*
	설계변수-1	2	0	6.5	65	39	40	40	3	39	_
	설계변수-3	2	0	6.5	65	43	34	35	4	43	
	설계변수-4	2	0	6.5	65	7.3	16	16	16 7		
					출	력 (예상값 / 해석	값)				
	목적함수 변화율 (%)	0				58	53	54	58	58	
_	제약조건 최대위배율 (%)	71				0	0	0	0	47	
4	목적함수-1	1.7e+004				2.7e+004	2.6e+004	2.7e+004	2.7e+004	2.7e+004	E
4	제약조건-1	7.1e+002			4.1e+002	4.1e+002	3.9e+002	4e+002	4.1e+002	6.1e+002	
4	세약소건-2	2.5			1.5	1.2	1.2	1.2	1.2	1.2	
4	세약소건-3	2.1			1.5	0.92	1.5	1.4	0.92	0.9	
4	세약소건-4	0			1.5	0	0	0	0	0	
*	세약소건-5	1.1			1.5	0.52	0.18	0.16	0.52	1.3	
*											Ŧ
						III					4
								사용자 설계안	확인 예상	값 확인	해석값 확인
델산	병성										
대상 사용자 설계안 🔹 모델파일 경로 NFXD4_#bar_Optimized.nfx											
										2	약인 [쥐소

근사모델의 정확도 및 치수 최적화 결과 확인

'사용자 설계안'의 경우 근 사모델 내에서는 제약조건 을 만족하나 실제 해석 값이 만족하지 못하는 것을 확인 할 수 있음

치수 최적화 결과

			최적	응력 제약조건 문제의 경우				
		참고 문헌	응력 제약	변위 제약	응력 & 변위	· 근사모넬 상에서는 응력이 · 만족하였으나 실제 해석 결		
부피[mm³]		2.6e4	2.3e4	2.1e4	2.7e4	과에서는 응력과 변위 모두		
최대 응력[MPa]		414.09	437.71	689.19	367.07			
변위 [mm]	절점 1,x	1.52	1.24	1.52	1.24	¦ 변위 세약소건 문세의 경우 ¦ 변위는 만족하나 응력은 만		
	절점 1,y	-1.52	-1.98	-1.47	-1.47	속하지 못함		
	절점 2,x	0.001	0	0	0	응력, 변위를 모두 고려한		
	절점 2,y	-0.004	-0.45	1.07	-0.44	이 하며, 앞서 5-bar 문제에 비		
변수 [mm²]	A1	32.26	40	32	40	¦ 해 부피노 감소한 것을 알 ¦ 수 있음 (3.3e4→2.7e4)		
	A2	6.45	-	-	-			
	A3	30.39	29	31	34			
	A4	10.77	11	6.5	16	 		
	A5	6.45	-	-	-			

숙제: EIGENVALUE 최적화

• Weight (volume) minimization of a three bar truss

Objectives :

Minimize the weight of the truss

1st eigen frequency must be between 1,500 Hz – 1,550 Hz (모드해석 케이스 필요)

Modeling

Material : aluminum

a = 254 mm

Initial value of each area

Area 1 : 645.16 mm^2 Area 2 : 1290.32 mm²

Upper and lower bound of section area

 $64.516 \le$ Area 1 or $2 \le 6451.6$