Joint Stiffness 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

• 예제 문제

Joint stiffness analysis

- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

차체구조

예제: JOINT STIFFNESS (1)

How to calculate rotational joint stiffness?

- F = 6680 N $\rightarrow \delta$ = 6.4 mm
 - K = 1044 N/mm per side = 2088 N/mm bending stiffness
 - 30% of 7000 N/mm target
 - Twice the actual stiffness: too stiff ?
- Modified model with flexible joints

- F = 6680 N $\rightarrow \delta$ = 7.7 mm
 - K = 1735 N/mm bending stiffness

예제: JOINT STIFFNESS (2)

- Joint rigidity in-plane bending
 - Mass penalty
 - Additional load path

 Effect of added bulkhead on out-of-plane joint rigidity

JOINT STIFFNESS 쉘 요소

기하형상 생성 (1)

기하형상 생성 (2)

기하형상 생성 (3)

형상 탭 메뉴에서 교차연산 메뉴의 솔리드 클릭

2 합집합으로 면 병합 체크 해 제상태에서 적용

Copyright © Computational Design Lab. All rights reserved.

재료 물성 및 특성 입력

특성 추가/수정									
	번호	이름	종류	하위종류					
	1	2차원 특성	2D	판	수정				
					복사				
					삭제				
					닫기				

두께 1.6 mm 인 판 특성 생 성

재료는 Alloy Steel 로 입력

요소망 생성

최 외곽 면들을 이용하여 요 소 크기 5인 요소망 생성

구속조건 및 하중조건 설정

최대 변위는 1.269788e-2 mm, 최대 회전은 3.35e-5 ! rad 확인

JOINT STIFFNESS 빔 요소

기하형상 생성 (1)

기하형상 생성 (2)

형상 탭 메뉴에서 점과 선 메뉴의 연결선을 이용하여 가로 세로 400 mm 인 ∟ 자 형상을 생성

스프링을 부착할 부분을 0.5 mm 정도로 떨어트림

재료 물성 및 특성 입력

사원 특성 생성/변경								
로드 바 파이프 10 그리기전용								
번호 1 미름 1차원특성 색상 📃 💌								
재료 1: Alloy Steel 🔻 🔟								
단면적 309.76 mm ²								
단면2차모멘트								
I1 121070.729 I2 121070.729 I12 0								
비틀림상수 184358.349 mm 4								
비틀림응력계수 0 mm								
길이당비구조열당 0 kg/mm								
전단면적계수								
K1 0.423474147 K2 0.423492362								
전단중심에서 중립축까지의 거리								
Y 0 mm Z 0 mm								
응력계산위치								
- 단면 속성								
🔲 재료 정보 고려하여 단면 속성을 계산								
☑ 단면형상 Box								
확인 취소 적용								

예제에서 주어진 단면 특성 을 갖는 1차원 특성 생성

재료는 Alloy Steel 로 지정

요소망 생성

요소 생성/삭제						
1D 2D 3D 기타 삭제						
스프링						
요소 번호 21 종류와 연결정보						
◎ 2절점 2절점 ☑ 절점1 ☑ 절점2						
◎ 그라운드 ? 절점을 선택하세요						
절점1 자유도						
O Tx ○ Ty ○ Tz ○ Rx ○ Ry ○ Rz						
절점2 자유도 ④ Tx ◎ Ty ◎ Tz ◎ Rx ◎ Ry ◎ Rz						
특성 2 2:1 · · · · · · · · · · · · · · · · · · ·						
요소망세트 1-1						
[[] 2 학인 취소 적용						

구속조건 및 하중조건 설정

최대 변위는 5.986616e-3 mm 로 기존 쉘 요소의 1.269788e-2 mm 보다 강성 이 있는 것으로 확인

따라서 스프링 강성을 변화 시키면서 기존 쉘 요소의 변 위를 갖는 강성을 시행착오 법으로 구함 (Rx 스프링 강성 변경)

찾은 스프링 강성 값은 2.4e7 N/rad

Copyright © Computational Design Lab. All rights reserved.

해석 결과: 스프링 상수 변경

스프링 상수 변경 후 최대 변 위는 1.264e-2 mm 로 기존 쉘 요소의 1.270e-2 mm 과 유사한 것을 확인

스프링 상수 변경 후 회전변 위는 3.04e-5 rad로 쉘 요소 의 3.35e-5 rad과 10% 정도 의 오차를 가짐

연습문제: BULKHEAD 효과

- Bulkhead 를 모델링하여 해석 수행 후 강성 비교
 - Effect of added bulkhead on out-of-plane joint rigidity

비선형 거동을 고려한 조인트 설계

비선형 정적 해석 개요

선형 거동이란?

▶ 유한요소 해석에서 가장 기본이 되는 식은 다음과 같다.

 $\{F\} = [K]\{U\}$

- {F}: 하중 벡터
- {U}: 변위 벡터
- [K] : 강성 행렬(Stiffness Matrix)

▶ <u>강성행렬이 일정한 값</u>을 가지는 경우 하중과 변위는 선형 관계에 있다고 한다.

- 하중-변위 관계식이 선형 조건
- 변형 및 변형율이 미소한 경우에 적용
- 요소의 적합 및 구성 방정식이 선형
- 강성행렬이 항상 일정
- 항복강도 이하에서 해석
- 초기 모델이 평형조건식을 만족
- 경계조건이 변하지 않음
- 하중은 변위에 독립된 요소
- 변위는 하중에 선형 비례함
- 중첩의 원리 적용 가능

비선형 정적 해석 개요

비선형 거동이란?

- 자연계의 현상은 정확히 말해서 모두 비선형 현상이라고 볼 수 있다.
- •비선형 현상을 포함하고 있는 구조물은 <u>하중과 변위의 관계가 선형 관계를 가지고 있지 않는 것</u>을 의미한다.
- · 즉, 비선형성을 포함하고 있는 구조물의 기본적인 특성은 하중이 변함에 따라 <u>구조 강성이 변한다는 것</u>을 의미한다.

비선형 정적 해석 개요

비선형 정적 해석의 종류

예제: JOINT ANALYSIS

First Order Analysis for Automotive Body Structure Design –Part 2 : Joint Analysis Considering Nonlinear Behavior

Yasuaki Tsurumi, Hidekazu Nishigaki, Toshiaki Nakagawa, Tatsuyuki Amago, Katsuya Furusu

Toyota Central R&D Labs., Inc.

Noboru Kikuchi

The department of Mechanical Engineering at the University of Michigan

Copyright © 2003 SAE International

기하형상 생성

예제의 형상을 바탕으로 A, B 파트 생성

재료 물성치 및 특성 생성

재료 물성 및 특성 입력

서 ★ 기	/人对			X						
영 수가	178									
번호	이름	종류	하위종류	생성 🔻						
1	1.5t	2D 2D	판 파	수정						
3	1.05t	2D 2D	판	복사						
4	0.83t	2D	판	삭제						
				불러오기						
				닫기						
$\Gamma($ $)$ (γ , γ)										
E (young modulus) = 203000 (N/mm^2)										
ν (poisson ratio) = 0.3										
e (pencen nuno) en										

요소망 생성

두께를 고려한 특성을 적용 하여 요소 크기 25인 요소 망 생성

구속조건 및 하중조건 설정

해석 케이스 정의 및 해석 실행

하중에 따라 최대 변위결과 가 비선형성을 보임

선형 해석의 경우 5.69 mm, 비선형 해석의 경우 7.04 mm 의 변형 결과를 보임

비선형 거동을 고려한 조인트 설계 : 1D 모델링

기하형상 생성

재료 물성/특성 입력 및 요소망 생성

비선형 부쉬 특성 생성

Copyright © Computational Design Lab. All rights reserved.

구속조건 및 하중조건 설정

예제와 동일하게 구속 조건 및 하중 조건 설정

구속 조건은 고정 구속 하중 조건은 면외 방향으로 6000N 하중입력

해석 케이스 정의 및 해석 실행

기존 쉘 모델과 유사한 거동 을 하는지 확인

• 다음 모델에 대하여 비선형 정적 해석을 이용하여 1D 조인트 설계 수행

