Body Torsional Stiffness 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Side frame effective shear stiffness analysis
 - Body torsional stiffness analysis
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

예제: TORSIONAL STIFFNESS (1)

다음 주어진 기하형상의 비틀림 강성을 구하시오

예제: TORSIONAL STIFFNESS (2)

다음 주어진 기하형상의 비틀림 강성을 구하시오

T = 7,730,000 Nmm, q = 2678 N / 1250 mm = 2.1414 N/mm

Panel	Area of panel (mm²)	Effective shear rigidity (Gt) _{EFF} (N/mm)	Area of surface / (Gt) _{EFF} (mm ³ /N)
dash	1170000	80000	14.6
windshield	1103087	80000	13.8
roof	1950000	80000	24.4
back light	872067	80000	10.9
seat back	1170000	80000	14.6
floor	3120000	80000	29.0
side frame-left	2312500	234	9882.5
side frame-right	2312500	234	9882.5

$$K = \frac{1}{\left(\frac{q}{T}\right)^2} \sum_{\text{ALL SURFACE}} \left[\frac{\text{area of surface}}{\left(Gt\right)_{EFF}}\right] = 6.55 \times 10^8 \text{ Nmm/rad}$$

예제: TORSIONAL STIFFNESS (3)

Side Frame Model 의 강성 계산

• FEA under shear loading

EFFECTIVE SHEAR RIGIDITY 사이드 프레임

기하형상 생성 (1)

기하형상 생성 (2)

재료 물성 및 특성 입력 (1)

재료		🍟 탄성계수 204.8 GP
번호 2 이름	재료 색상 🗾	┡ 푸와송비 0.28
All I7-4PH, H1100 AISI 1020 AISI 1020 AISI 1060 AISI 304 SS Annealed AISI_Steel_1005 AISI_Steel_1008-HR AISI_Steel_1008-HR AISI_Steel_Maraging Aloy Steel Cast Alloy Steel Cast Alloy Steel Cast Alloy Steel Cast Carbon Steel Cast Stainless Steel Chrome Stainless Steel Chrome Stainless Steel H-1(CR60) HL-4000 Hp-1 Hp-4 Inconel_718_Aged Plain Carbon Steel S/Steel_PH15-5 S45C SAPH-400 SE508 SGACC SGACC SGACC SGACC SGCC SGCC SGCC SGCC SGC SPEC SPDE SPPC SPPC340 SR-0300 Steel SUS316 Image	건형 탄소성 초단성 온도의존 구조 탄성계수 204800 N/mm² 프와송비 0.28 질량밀도 0 kg/mm³ 열정도 0 TI 건도움 0 W/(mm·TI) 비열 0 J/(kg·TI) 발열계수 1 안전롭게산방법 T순이론 미순이론 Von Mises 음력(Ductile) 인장 0 N/mm² 압성 비례 감쇠 계수 0 1/sec 각성 비례 감쇠 계수 0 sec 구조 감쇠 계수 0	재료 생성
[콜티포기] 편집	작인 쉬오 적용	

Copyright © Computational Design Lab. All rights reserved.

재료 물성 및 특성 입력 (2)

두께 1 mm 인 8가지 1차원 특성 생성

요소망 생성

각 단면 정보에 맞게 요소망 생성 (요소크기 20 mm)

구속조건 및 하중조건 설정 (1)

구속조건 및 하중조건 설정 (2)

해석 케이스 정의 및 해석 실행

TORSIONAL STIFFNESS 쉘 + 빔 요소

기하형상 생성 (1)

기하형상 생성 (2)

재료 물성 및 특성 입력 (1)

재료		🍟 탄성계수 204.8 GP
번호 2 이름	재료 색상 🗾	┡ 푸와송비 0.28
All All 17-4PH, H1100 AISI 1020 AISI 1020 AISI 1020 AISI 1020 AISI 1020 AISI 204 SS Annealed AISI_310_SS AISI_Steel_1005 AISI_Steel_1008-HR AISI_Steel_Maraging Alloy Steel Cast Carbon Steel Cast Carbon Steel Cast Carbon Steel Cast Stainless Steel Chrome Stainless Steel Chrome Stainless Steel Chrome Stainless Steel PH-1 Hp-4 Inconel_718_Aged Plain Carbon Steel SAPH-400 SE508 SGACC SGACC SGCC SGCD1 SHP SM45C SM490A(KS) SPCC SPDE SPRC340 SR-2300 Steel Steel SUS316	선형 탄소성 초단성 일도의조 무조 1 1 프라송비 0.28 월평청계수 0 결량필도 0 kg/mm³ 월조운도 0 연진도 0 y/(mm*(T)) 비열 0 j/(kg*(T)) 방영계수 1 1 1 1 안전률계산방법 • • • 0 N/mm² 감성 지수 0 N/mm² 압축 0 N/mm² 감상 지수 0 1/sec · · · 감성 비례 감상 계수 0 sec · · · 구조 감상 계수 0 · · · · ·	재료 생성
불러오기 편집	확인 취소 적용	

Copyright © Computational Design Lab. All rights reserved.

재료 물성 및 특성 입력 (2)

두께 1 mm 인 2차원 특성 과 두께 1 mm 인 8가지 1 차원 특성 생성

총 9가지 특성 생성

요소망 생성 (1)

양 끝 형상에 1차원 빔 요소

생성 (크기: 20mm)

요소망 생성 (2)

구속조건 및 하중조건 설정 (2)

12.387825 N/mm² 인 압력 하중으로 비틀림 하중을 적 용

해석 케이스 정의 및 해석 실행

1차원 BEAM으로 모델링 후 Torsional stiffness를 구하고 앞선 예제와 비교

Side frame 외 보강재의 단면 형상은 rocker로 가정하고 해석 수행