4.5 Axially compressed cylinder

REFERENCE	Simo et al. [4-4]	
KEYWORDS	shell elements, solid elements, layered solid elements	
MODEL FILENAME	Buckling05.nfxa	

Figure 4.5.1 shows a cylindrical shell model under distributed compressive load. Both ends of the cylinder are clamped in transverse direction. One eighth portion of the cylinder is modeled with symmetric boundary condition. The linear buckling analysis is carried out to determine the lowest critical load factor. The typical mode shape is sketched in Figure 4.5.2.

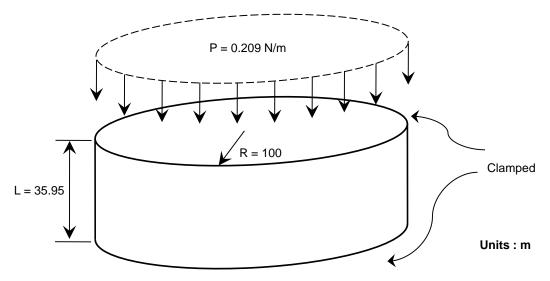


Figure 4.5.1 Axially compressed cylinder model

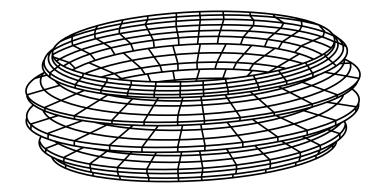


Figure 4.5.2 Buckling mode shape

Material data	Young's modulus Poisson's ratio	E = 567 Pa $v = 0.3$
Section property	Thickness	t = 0.247 m

Tuble 4.5.1 Cruccu totu juctor obtained using shell elements			
Reference		1.0833	
Element type	Number of elements		
TRIA-3	840	1.1094	
QUAD-4	420	1.1370	
TRIA-6	840	1.0104	
QUAD-8	420	1.0198	

 Table 4.5.1
 Critical load factor obtained using shell elements

Table 4.5.2	Critical load fa	ctor obtained	using solid	elements

Reference		1.0833
Element type	Number of elements	
HEXA-8	420	1.0608
HEXA-20	420	0.9935

Table 4.5.3	Critical load f	factor obtained	using layered	d solid elements
-------------	-----------------	-----------------	---------------	------------------

Reference		1.0833
Element type	Number of elements	
HEXAL-8	420	1.0691
HEXAL-20	420	0.9917