Motivation

- New master's program in data science?
- Introductory course in mathematical fundamentals for a quantitatively oriented but heterogeneously group of students
 - What data science exactly is
 - What kind of mathematics plays a role
 - What is most important when there is not enough time

Course Description

- Linear algebra concepts are key for understanding and creating machine learning algorithms, especially as applied to deep learning and neural networks.
- This course reviews linear algebra with applications to probability and statistics and optimization—and above all a full explanation of deep learning.

Linear Algebra

Four fundamental subspaces
A=LU, A=QR, S=QΛQ^T, A=UΣV^T
Singular vectors and the SVD
Columns times rows: A≈CR or CMR

Probability and Statistics

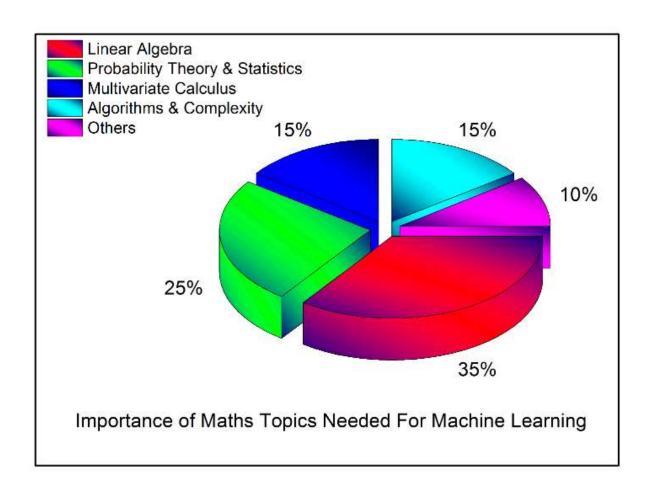
Mean and variance Covariance and joint probability Markov chains Randomized linear algebra

Optimization

Convexity and sparsity
Gradient descent and momentum
Stochastic gradient descent
LASSO and ℓ^1 versus ℓ^2

Deep Learning

Piecewise linear functions Convolutional neural nets Backpropagation Hyperparameters



Two Essential Topics

- Linear Algebra
 - Symmetric, orthogonal
 - Factorization
- Deep Learning
 - Create a(learning) function
 - Input: image (driverless car: pedestrian, pole, handwriting: zip-code)
 - Speech: Siri

$$\begin{bmatrix}
input \\
(data)
\end{bmatrix} \rightarrow \underbrace{[function]}_{matrix multiplication all linear? fail \Rightarrow nonlinear} \rightarrow [output]$$

Two Supporting Subjects

Optimization

- Find entities in those matrices → learning function
- Minimizing error → multivariable calculus, giant calculation

Statistics

- Keep the mean and variance at the right spot
- Numbers: good range
 - Bad news for learning function
 - Grow out of sight exponentially
 - Drop to zero

Linear Algebra

Basic Course

- Elimination to solve Ax=b
- Matrix operations, inverses, determinants
- Vector spaces and subspaces
- Independence, dimension, rank of a matrix
- Eigenvalues and eigenvectors

Stronger Course

- Ax=b in all cases: square system, too many equations and unknowns
- Factor A in LU, QR, $U\Sigma V^T$, CMR: columns times rows
- Four fundamental subspaces: dimensions, orthogonality, good bases
- Diagonalizing A by eigenvectors and left and right singular vectors
- Applications: graph, convolution, iteration, covariance, projection, filter, network, image, matrices of data

Deep Learning and Neural Nets

- Mathematical pillars of machine Learning
 - Linear algebra, Probability/Statistics, Optimization
- Goal: to construct a (learning) function that classifies the training data correctly, so it can generalize to unseen test data
- For the problem of identifying handwritten digits
 - Input: image (a matrix of pixels)
 - Output: ten numbers from 0 to 9
 - Function: create by assigning weights to different pixels in the image (architecture of an underlying neural nets)
 - Big problem of optimization to choose weights
 - MNIST set: 70,000 handwritten digits (60,000 for training data, 10,000 for test data)

Linear and Nonlinear Learning Functions

- Inputs: samples v
- Outputs: computed classifications w=F(v)
- Simplest learning function: w=Av
- Affine functions: F(v)=Av+b (b: bias vector), too simple
- Linearity: very limiting requirement
 - halfway between I and III, I and XIX
 - Handwritten digits: two zeros→8, one and zero→9 or 6, images don't add
- Nonlinearity: squaring?
 - sigmoidal functions with S-shaped graphs: A(S(Bv))
 - Simple ramp function: ReLU(x)=max(0,x)

Structure of F(v)

- Functions that yield deep learning
 - Composition of affine functions Lv=Av+b with nonlinear functions R
 - F(v)=L(R(L(R(...(Lv)))))
 - A, b: weights in the learning function
 - Output from first hidden layer: v₁=ReLU(A₁v+b₁)
 - More layers in F → typically more accuracy in F(v)
- Choose weights A_k and b_k to minimize the total loss over all training samples
 - Least squares: ||F(v)-(true output)||²

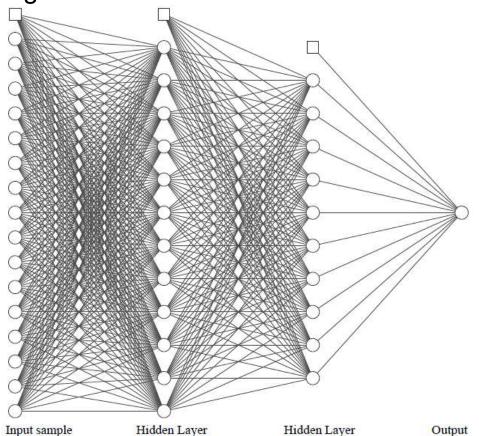
One input
$$v = 2$$
One output $w = 2$

Neural Nets (1)

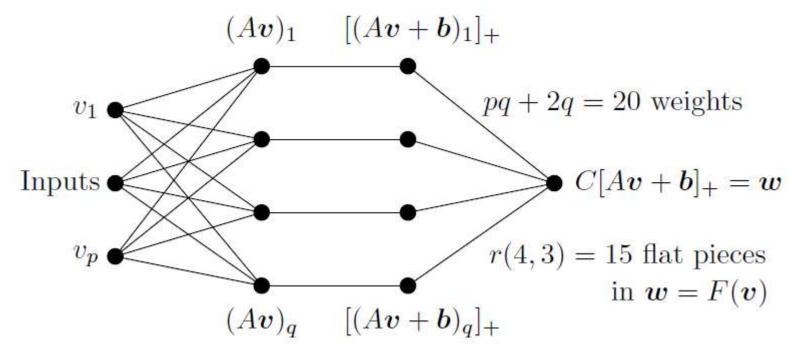
- Input layer: training samples v=v₀
- Output: their classification w=F(v)
- Hidden layers add depth to the network
 - Allow composite function F
- Feed-forwarded fully connected network
 - For images, convolutional neural net(CNN) is often appropriate and weights are shared, constant diag(A)
- Deep learning works amazing well, when the architecture is right

Neural Nets (2)

- Each diagonal: weight to be learned by optimization
 - Edges from the squares contain bias vector b
 - The other weights are in A



Functions of Deep Learning



If A is q by p, the input space R^p is sliced by q hyperplanes into r pieces → measure the "expressivity" of the overall function F(v)

$$r(q,p) = \begin{pmatrix} q \\ 0 \end{pmatrix} + \begin{pmatrix} q \\ 1 \end{pmatrix} + \dots + \begin{pmatrix} q \\ p \end{pmatrix}$$

DL: Linear Algebra and Calculus

Linear algebra

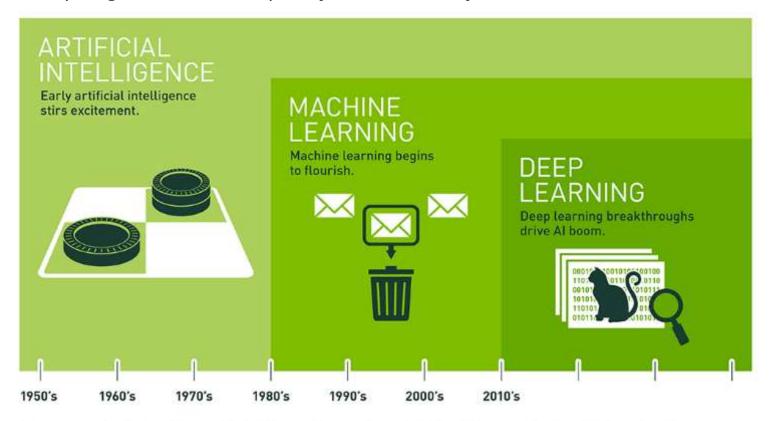
- Compute "weights" that pick out the important features of the training data, and those weights go into matrices
- Form of learning function

Calculus

- Show the direction to move in order to improve the current wrights
- Reduce the loss function L(x) by moving in the direction of fastest decrease
- Reduce the error L(x) by $\mathbf{x}_{k+1} = \mathbf{x}_k s_k \nabla L$ minus sign : downhill s_k : step size (learning rate)

What's the Difference Between AI, ML and DL?

(blogs.nvidia.com) July 29, 2016 by MICHAEL COPELAND



Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Deep Learning vs. Machine Learning

(docs.microsft.com) 03/05/2020

Artificial Intelligence

Any technique that enables computers to mimic human intelligence. It includes machine learning

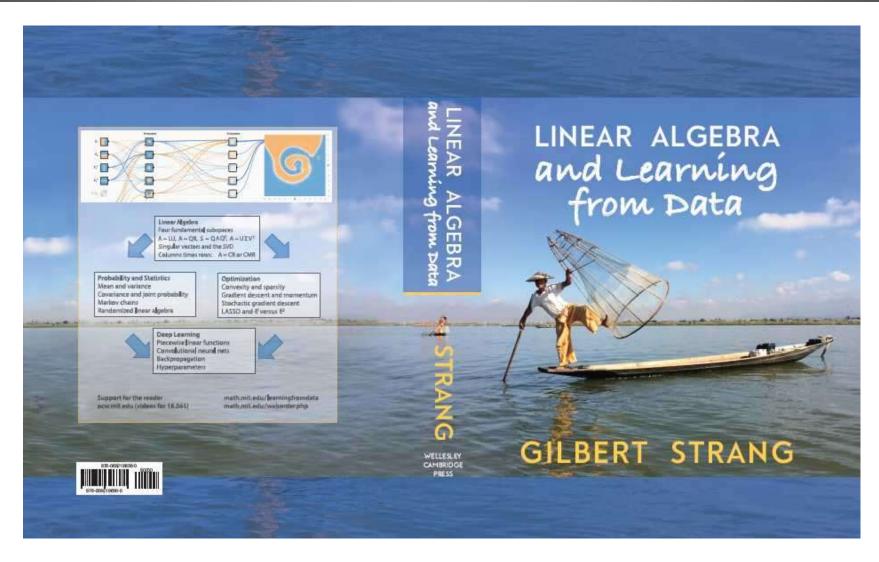
Machine Learning

A subset of Al that includes techniques that enable machines to improve at tasks with experience. It includes *deep learning*

Deep Learning

A subset of machine learning based on neural networks that permit a machine to train itself to perform a task.

Textbook

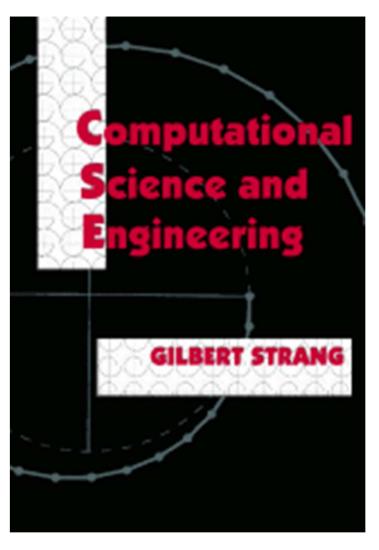


Applied Mathematics for Deep Learning 딥러닝수학

 MIT Math 18.065, Matrix Methods in Data Analysis, Signal Processing, and Machine Learning

Ch	Contents	
1	Highlights of Linear Algebra	
2	Computations with Large Matrices	
3	Low Rank and Compressed Sensing	
4	Special Matrices	
5	Probability and Statistics	
6	Optimization	
7	Learning from Data	

AY: 2008~2017



http://math.mit.edu/~gs/cse/

Applied Mathematics for Computational Design and Analysis 전산설계 및 해석을 위한 응용수학

 MIT Math 18.065 Computational Science and Engineering I

Ch	Contents	
1	Applied Linear Algebra	
2	A Framework for Applied Mathematics	
3	Boundary Value Problems	
4	Fourier Series and Integrals	
5	Analytic Functions	
6	Initial Value Problems	
7	Solving Large Systems	
8	Optimization and Minimum Principles	

Advanced Numerical Methods in Engineering 수치해석특론

Ch	Contents	
1	Applied Linear Algebra	
2	A Framework for Applied Mathematics	
3	Boundary Value Problems	
4	Fourier Series and Integrals	\bigcirc
5	Analytic Functions	
6	Initial Value Problems	\bigcirc
7	Solving Large Systems	\bigcirc
8	Optimization and Minimum Principles	
	Variational Method	