Neural Networks: Architectures

Biological Neurons:
Complex connectivity patterns
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Neurons in a neural network:
Organized into regular layers for
computational efficiency
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Sigmoid
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Activation Functions
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Problem: Linear Classifiers are not
very powerful

Visual Viewpoint Geometric Viewpoint

plane car bard cat deer

dog frog horse ship truck
Linear classifiers learn
one template per class
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Linear classifiers
can only draw linear
decision boundaries
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One Solution: Feature Transformation

«fo f(x, y) = (r(x, y), 6(x, y)) o+
e o 2 %
R '.,:' * Transform data with a cleverly o %
"+ ° e+ chosen feature transformf, S
o o then apply linear classifier X @
Color Histogram Histogram of Oriented Gradients (HoG)
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input
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the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)
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Convolution Layer (1)

Filters always extend the full

== e o depth of the input volume

32x32x3 image /
5x5x3 filter
32 44
II Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”
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Convolution Layer (2)

___— 32x32x3 image

5x5x3 filter w
-
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

= wliz +b

~ 1 number:
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Convolution Layer (3)

V
——0

B

Applied Mathematics for Deep Learning

32x32x3 image
5x5x3 filter

convolve (slide) over all

spatial locations

activation map
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:
activation maps
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Convolution Layer
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We stack these up to get a "new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 24
CONV, CONV, CONV,
RelLU RelU RelU
eg.6 e.g. 10
5x5x3 5x5x6
% fitters filters
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one filter =>
one activation map example 5x5 filters

(32 total)
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We call the layer convolutional
because it is related to convolution
of two signals:

flaylegleyl = 3 Y fln.n-glx—n.y—n)

11- " .| --.'. - ny=—o [1y=—e=
‘___:'—-‘4 T, T
elementwise multiplication and sum of
.‘.- a filter and the signal (image)
Figure copyright Andrey Karpathy.
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Output Size

N
Output size:
- (N - F) / stride + 1
eg.N=7,F=3:
F N

stride 1=>(7-3)1+1=5
stride 2 => (7-3)/2+1=3
stride 3 => (7 -3)/3 + 1 =2.33 \
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In practice: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0

(recall:)
(N + 2P -F) / stride + 1
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e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
iIn general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =3 => zero pad with 2

F =7 =>zero pad with 3
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Convolution layer: summary Common setlings:

Let's assume inputis W, x H, x C K__ (ch__w‘,frgojf SE 132 el
Conv layer needs 4 hyperparameters: F=58=1P=2

- Number of filters K - F=5,8=2, P =7 (whatever fits)
- F=1,8=1,P=0

- The filter size F

- The stride S

- The zero padding P
This will produce an output of W, x H, x K
Where:

=(W,-F +2P)/S + 1
- H -(H F+2P)/S + 1
Number of parameters F2CK and K biases
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64
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224 downsampling !
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Single depth slice

Max Pooling
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max pool with 2x2 filters
and stride 2

L
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Convolutional network ==
(AlexNet) e

input image

S

loss =
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253.440-186,624-64.896-64.896—43.264—

4096—4096-1000.
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Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Historically architectures looked like
[(CONV-RELU)*N-POOL?1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GoogleNet

have challenged this paradigm
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