det
$$\begin{bmatrix} -\lambda & 2\\ 1 & 1-\lambda \end{bmatrix} = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$$
 gives $\lambda_1 = 2$ and $\lambda_2 = -1$
The sum 2 - 1 arms with the trees $0 + 1$ - 4^{-1} has the same eigenvectors of A with

The sum 2 - 1 agrees with the trace 0 + 1. A^{-1} has the same eigenvectors as A, with eigenvalues $\lambda_1^{-1} = \frac{1}{2}$ and $\lambda_2^{-1} = -1$.

2.

 $(A - \lambda I)$ has the same determinant as $(A - \lambda I)^{\mathrm{T}}$ because every square matrix has $\det M = \det M^{\mathrm{T}}$. Pick $M = A - \lambda I$.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ have different}$$
$$eigenvectors.$$

3.

Eigenvectors in X and eigenvalues in Λ . Then $A = X\Lambda X^{-1}$ is given below.

The second matrix has $\lambda = 0$ (rank 1) and $\lambda = 4$ (trace = 4). A new $A = X\Lambda X^{-1}$: $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}.$

4.

$$\begin{array}{lll} \text{Positive definite} & \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 - b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}} \\ \begin{array}{lll} \text{Positive definite} & \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & c - 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & c - 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}}. \\ \begin{array}{ll} \text{Positive definite} & \\ \text{for } c^2 > b \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 \\ -b/c & 1 \end{bmatrix} \quad D = \begin{bmatrix} c & 0 \\ 0 & c - b/c \end{bmatrix} \quad S = LDL^{\mathrm{T}}. \end{array}$$

Applied Mathematics for Deeping Learning

1.

$$S = \begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{bmatrix}$$
 has only one pivot = 4, rank $S = 1$,
eigenvalues are 24, 0, 0, det $S = 0$.

6.

Corner determinants $|S_1| = 2$, $|S_2| = 6$, $|S_3| = 30$. The pivots are 2/1, 6/2, 30/6.

7.

$$(c_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + c_n \boldsymbol{v}_n^{\mathrm{T}}) (c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n) = c_1^2 + \dots + c_n^2 \text{ because the } \boldsymbol{v} \text{ 's are orthonormal.}$$

$$(c_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + c_n \boldsymbol{v}_n^{\mathrm{T}}) S (c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n) = () (c_1 \lambda_1 \boldsymbol{v}_1 + \dots + c_n \lambda_n \boldsymbol{v}_n)$$

$$= c_1^2 \lambda_1 + \dots + c_n^2 \lambda_n.$$

8.

Exchange \boldsymbol{u} 's and \boldsymbol{v} 's (and keep $\sigma = \sqrt{45}$ and $\sigma = \sqrt{5}$) in equation (12) = the SVD of $\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$.

5.