Homework #2 (due 4/8/2020) 1. Compute the eigenvalues and eigenvectors of A and A^{-1} . Check the trace! $$A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$$ and $A^{-1} = \begin{bmatrix} -1/2 & 1 \\ 1/2 & 0 \end{bmatrix}$. A^{-1} has the _____ eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues _____. - The eigenvalues of A equal the eigenvalues of A^T. This is because det(A λI) equals det(A^T λI). That is true because _____. Show by an example that the eigenvectors of A and A^T are not the same. - 3. (a) Factor these two matrices into $A = X\Lambda X^{-1}$: $$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$ and $A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$. - (b) If $A = X\Lambda X^{-1}$ then $A^3 = ()()$ and $A^{-1} = ()()$. - 4. For which numbers b and c are these matrices positive definite? $$S = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix} \qquad S = \begin{bmatrix} 2 & 4 \\ 4 & c \end{bmatrix} \qquad S = \begin{bmatrix} c & b \\ b & c \end{bmatrix}.$$ With the pivots in D and multiplier in L, factor each A into LDL^{T} . 5. Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant: $$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} S & \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 4(x_1 - x_2 + 2x_3)^2.$$ Compute the three upper left determinants of S to establish positive definiteness. Verify that their ratios give the second and third pivots. $$\textbf{Pivots} = \textbf{ratios of determinants} \qquad S = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 3 \\ 0 & 3 & 8 \end{bmatrix}.$$ 7. A symmetric matrix S = S^T has orthonormal eigenvectors v₁ to v_n. Then any vector x can be written as a combination x = c₁v₁ + ··· + c_nv_n. Explain these two formulas: $$\mathbf{x}^{\mathrm{T}}\mathbf{x} = c_1^2 + \dots + c_n^2$$ $\mathbf{x}^{\mathrm{T}}S\mathbf{x} = \lambda_1 c_1^2 + \dots + \lambda_n c_n^2$. 8. Find the σ 's and \boldsymbol{v} 's and \boldsymbol{u} 's in the SVD for $\boldsymbol{A} = \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix}$.