Homework #3 (due 4/20/2020)

Find a closest rank-1 approximation to these matrices (L² or Frobenius norm):

$$A = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad A = \left[\begin{array}{ccc} 0 & 3 \\ 2 & 0 \end{array} \right] \qquad A = \left[\begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

- 2. If A is a 2 by 2 matrix with $\sigma_1 \ge \sigma_2 > 0$, find $||A^{-1}||_2$ and $||A^{-1}||_F^2$.
- 3. Show directly this fact about ℓ^1 and ℓ^2 and ℓ^∞ vector norms: $||v||_2^2 \le ||v||_1 ||v||_{\infty}$.
- Why do A and A⁺ have the same rank? If A is square, do A and A⁺ have the same eigenvectors? What are the eigenvalues of A⁺?
- What multiple of $a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ should be subtracted from $b = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ to make the result A_2 orthogonal to a? Sketch a figure to show a, b, and A_2 .
- 6. Complete the Gram-Schmidt process in Problem 8 by computing $q_1 = a/\|a\|$ and $q_2 = A_2/\|A_2\|$ and factoring into QR:

$$\begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{bmatrix} \begin{bmatrix} \|\boldsymbol{a}\| & ? \\ 0 & \|\boldsymbol{A_2}\| \end{bmatrix}.$$

The backslash command $A \setminus b$ is engineered to make A block diagonal when possible.

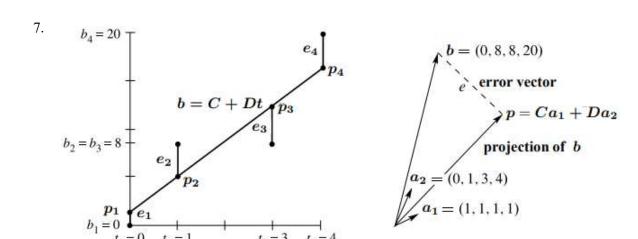


Figure II.3: The closest line C + Dt in the t - b plane matches $Ca_1 + Da_2$ in \mathbb{R}^4 .

With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations $A^{T}A\widehat{x} = A^{T}b$. For the best straight line in Figure II.3a, find its four heights p_i and four errors e_i . What is the minimum squared error $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

Project b = (0, 8, 8, 20) onto the line through a = (1, 1, 1, 1). Find $\hat{x} = a^T b/a^T a$ and the projection $p = \hat{x}a$. Check that e = b - p is perpendicular to a, and find the shortest distance ||e|| from b to the line through a.