I.4 2 (for functions) Given a(x) > 0 find p(x) > 0 by analogy with problem 1, so that
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We take C such that the integral of p(z) is 1:

C= L 1 al(x)dr

1.4 4 If M =117 is the n X n matrix of 1s, prove that n] — M is positive semidefinite. Problem 3
was the energy test. For Problem 4. find the eigenvalues of nd — M.

The eigenvalues of nl — M are the solutions to the equation det(nf — M — AI) = 0.

det(nI — M — XT) = det((n — \)] — M) =0

We can see that A = n gives us just det(—M ) and since this is the all ones matrix, this will be
zero. The nullspace of M is going to be n — 1-dimensional, which gives us n — 1 eigenvectors
with A = n.

We can also see that every entry down the diagonal of n] — M will be n — 1, and all the other
n — 1 entries of each row will be —1, so the total sum of entries down each row will be zero.
This gives us an eigenvector of the all ones vector, with an eigenvalue of 0.

In the end. all the eigenvalues are either n or 0, which makes nl — M positive semidefinite.
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