Homework #4 (due 5/27/2020)

- Given positive numbers a_1, \ldots, a_n find positive numbers p_1, \ldots, p_n so that $p_1 + \cdots + p_n = 1$ and $V = \frac{a_1^2}{p_1} + \cdots + \frac{a_n^2}{p_n}$ reaches its minimum $(a_1 + \cdots + a_n)^2$.
- 2. If $M = \mathbf{1} \mathbf{1}^T$ is the n by n matrix of 1's, prove that nI M is positive semidefinite. Problem 3 was the energy test. For Problem 4, find the eigenvalues of nI M.
- 3. What is the gradient descent equation $x_{k+1} = x_k s_k \nabla f(x_k)$ for the least squares problem of minimizing $f(x) = \frac{1}{2} ||Ax b||^2$?