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Computations with Large Matrices

• Ax=b in its many variations
– Ordinary elimination might compute an accurate x, or 

maybe not
– Too many equations (m>n) and no solution
– Square matrix might be singular
– Solution might be impossible to compute (A is extremely 

ill-conditioned or simply too large)
– In deep learning we have too many solutions: we want 

one that will generalize well to unseen test data

• Separate sources of difficulty
• Identify the problem
• Suggest a course of action
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Good Problems

• Every matrix A has a pseudoinverse A+

– Inverse for every matrix, but this might not help

• Elimination will succeed (with row changes, A\b)
– Square and invertible, reasonable size, not large condition 

number

• (m>n=r) normal equations to find the least squares 
solution
– columns of A are independent and not too ill-conditioned
– b is probably not in the column space of A
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Difficult Problems

• (m<n) many solutions (underdetermined)
• Columns of A may be in bad condition

– Too large condition number
– x is not well determined  orthogonalize the columns by 

a Gram-Schmidt or Householder algorithm

• A may be nearly singular
– ATA will have a very larger inverse, Gram-Schmit may fail
– Different approach to add a penalty term  make ATA 

more positive (common in inverse problem)

• A is way too big (no elimination)
– Random sampling of the columns
– Results are never certain, but the probability of going 

wrong is low
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Numerical Linear Algebra
By Trefethen and Bau

• Fundamentals
– Reaching the SVD and Eckart-Young

• QR Factorization and Least Squares
– All 3 ways: A+, (ATA) -1AT, QR

• Conditioning and Stability
– Condition numbers, backward stability, perturbations

• Systems of Equations
– Direct elimination: PA=LU, Cholesky’s S=ATA

• Eigenvalues
– Reduction to tridiagonal-Hessenberg-bidiagonal; QR with shifts

• Iterative Methods
– Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov
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• Krylov Subspaces and Arnoldi Iteration
• Eigenvalues from Arnoldi
• Linear Systems by Arnoldi and GMRES
• Symmetric Matrices: Arnoldi becomes Lanczos
• Eigenvalues of Tridiagonal T by QR Iteration
• Computing the SVD
• Conjugate Gradient for Sx=b
• Preconditioning for Ax=b
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Least Squares: Four Ways

• SVD of A leads to its pseudoinverse A+

• can be solved directly when A has 
independent columns

• Gram-Schmidt idea produces orthogonal columns 
in Q  A=QR

• Minimize                     that penalty changes 
the normal equations to 
– Now the matrix is invertible and 

bAx ˆ

bAxAA TT ˆ

222
xAxb 

  bAxIAA TT   2

0 as ˆ  togoes  xx

       
 fast and solve  tosafe  ˆ

ˆˆˆ

bQxR

bQRxRQQRbQRxQRQRbAxAA
T

TTTTTTTT







Applied Mathematics for Deep Learning Computations with Large Matrices - 7

ATA and ATCA

• Samples in applied mathematics
– Stiffness matrix in mechanical engineering
– Conductance matrix in circuit theory
– (weighted) graph Laplacian in graph theory
– Gram matrix (inner products of columns of A) in mathematics

• Characteristics
– Symmetry: attractive
– Size may be a problem
– Condition number: square of the condition number of A
– In large problems, expensive and often dangerous to compute

• We try not to compute them
– Orthogonal matrices and triangular matrices are good ones
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A+ is the pseudoinverse of A

• Suitable “pseudoinverse” when A has no inverse
– Rule 1: if A has independent columns, then A+=(ATA) -1AT

– Rule 2: if A has independent rows, then A+=AT(AAT) -1

– Rule 3: A diagonal matrix Σ is inverted where possible, 
otherwise, Σ+ has zeros
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Least Square Solutions to Ax=b is x+=A+b

• x+=A+b is the minimum norm least square solution
– x= x+=A+b makes ||b-Ax||2 as small as possible
– If another x achieves that minimum then ||x+||<||x||

• SVD solve the least squares problem in one step A+b
– Computational cost?
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Normal Equations
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Least Squares with a Penalty Term

• To prove that the limit is A+ for every matrix A
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Randomized Linear Algebra

• Matrix multiplication
– Sampling matrix S
– C=AS and R=STB  CR=ASSTB∼AB
– It will not be true that SST is close to I
– It will be true that the expected value of SST is I

• Random matrix multiplication with the correct 
mean AB

• Norm-squared sampling minimizes the variance
• Applications of random matrix multiplication 

– Interpolative approximation A∼CMR
– Application of A by a low rank matrix
– Approximation of the SVD of A


