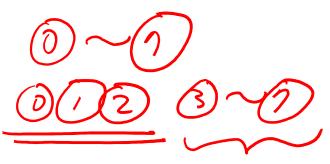
Computations with Large Matrices

- Ax=b/in its many variations
 - Ordinary elimination might compute an accurate x, or maybe not
 - Too many equations (m>n) and no solution -> least 2
 - Square matrix might be singular (A)?
 - Solution might be impossible to compute (A is extremely ill-conditioned or simply too large)
 - In deep learning we have too many solutions: we want one that will generalize well to unseen test data
- Separate sources of difficulty
- Identify the problem
- Suggest a course of action



Good Problems

- Every matrix A has a pseudoinverse A+

- Inverse for every matrix, but this might not help

 Elimination will succeed (with row changes, A₩b) A\b
 - Square and invertible, reasonable size, not large condition number
- (m)>n=r) normal equations to find the least squares solution
 - columns of A are independent and not too ill-conditioned
 - b is probably not in the column space of A

Difficult Problems

- (m<n) many solutions (underdetermined)
- - Too large condition number
 - x is not well determined → orthogonalize the columns by a Gram-Schmidt or Householder algorithm
- A may be nearly singular
 - ATA will have a very larger inverse, Gram-Schmit may fail
 - Different approach to add a penalty term → make A^TA more positive (common in inverse problem)
- A is way too big (no elimination)
 - Random sampling of the columns
 - Results are never certain, but the probability of going wrong is low

Numerical Linear Algebra

By Trefethen and Bau

- Fundamentals
 - Reaching the SVD and Eckart-Young
- QR Factorization and Least Squares
 - All 3 ways: A^+ , $(A^TA)^{-1}A^T$, QR

Ax = b $Ax = \lambda x$ $Sq = \lambda q$ $Av = \sigma u$

- Conditioning and Stability
 - Condition numbers, backward stability, perturbations
- Systems of Equations
 - Direct elimination: PA=LU, Cholesky's $S=A^{T}A$
- Eigenvalues ✓
 - Reduction to tridiagonal-Hessenberg-bidiagonal; QR with shifts
- Iterative Methods
 - Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov

- Krylov Subspaces and Arnoldi Iteration
- Eigenvalues from Arnoldi
- Linear Systems by Arnoldi and GMRES
- Symmetric Matrices: Arnoldi becomes Lanczos
- Eigenvalues of Tridiagonal T by QR Iteration
- Computing the SVD
- Conjugate Gradient for Sx=b
- Preconditioning for Ax=b

Least Squares: Four Ways

- SVD of A leads to its pseudoinverse $A^+ \rightarrow \hat{x} = A^+b$ $\checkmark \bullet A^T A \hat{x} = A^T b$ can be solved directly when A has
 - ✓ $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ can be solved directly when A has independent columns
 - Gram-Schmidt idea produces orthogonal columns in Q → A=QR

$$(\mathbf{Q}\mathbf{R})^{T}(\mathbf{Q}\mathbf{R})\hat{\mathbf{x}} = (\mathbf{Q}\mathbf{R})^{T}\mathbf{b} \rightarrow \mathbf{R}^{T}(\mathbf{Q}^{T}\mathbf{Q})\mathbf{R}\hat{\mathbf{x}} = \mathbf{R}^{T}\mathbf{Q}^{T}\mathbf{b}$$

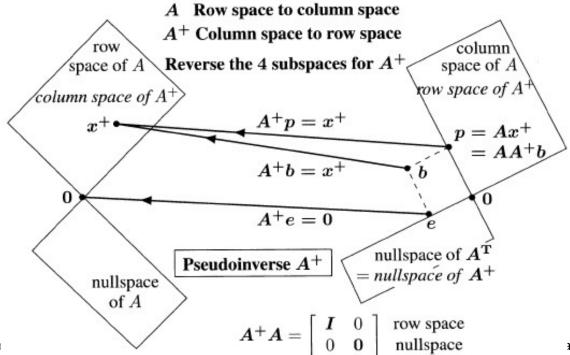
$$\rightarrow \mathbf{R}\hat{\mathbf{x}} = (\mathbf{Q}^{T}\mathbf{b})^{T}\mathbf{b} \text{ (safe to solve and fast)}$$

- Minimize $\|\mathbf{b} \mathbf{A}\mathbf{x}\|^2 + \delta^2 \|\mathbf{x}\|^2 \rightarrow$ that penalty changes the normal equations to $(\mathbf{A}^T \mathbf{A} + \delta^2 \mathbf{I}) \mathbf{x}_{\delta} = \mathbf{A}^T \mathbf{b}$
 - Now the matrix is invertible and \mathbf{x}_{δ} goes to $\hat{\mathbf{x}}$ as $\delta \to 0$

- Samples in applied mathematics
 - Stiffness matrix in mechanical engineering
 - Conductance matrix in circuit theory
 - (weighted) graph Laplacian in graph theory
 - Gram matrix (inner products of columns of A) in mathematics
- Characteristics
 - Symmetry: attractive
 - Size may be a problem
 - Condition number: square of the condition number of A
 - In large problems, expensive and often dangerous to compute
- We try not to compute them X
 - Orthogonal matrices and triangular matrices are good ones

(A⁺) is the pseudoinverse of A

- Suitable "pseudoinverse" when A has no inverse
 - Rule 1: if A has independent columns, then $A^+=(A^TA)^{-1}A^T$
 - Rule 2: if A has independent rows, then $A^+=A^T(AA^T)^{-1}$
 - Rule 3: A diagonal matrix Σ is inverted where possible, otherwise, Σ^+ has zeros



Least Square Solutions to Ax=b is $x^+=A^+b$

- x⁺=A⁺b is the minimum norm least square solution
 - $-x = x^+ = A^+b$ makes $||b-Ax||^2$ as small as possible
 - If another \underline{x} achieves that minimum then $||x^+|| < ||\underline{x}||$

Example: What is the shortest least squares solution to
$$\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
? $A \times = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

SVD solve the least squares problem in one step A+b

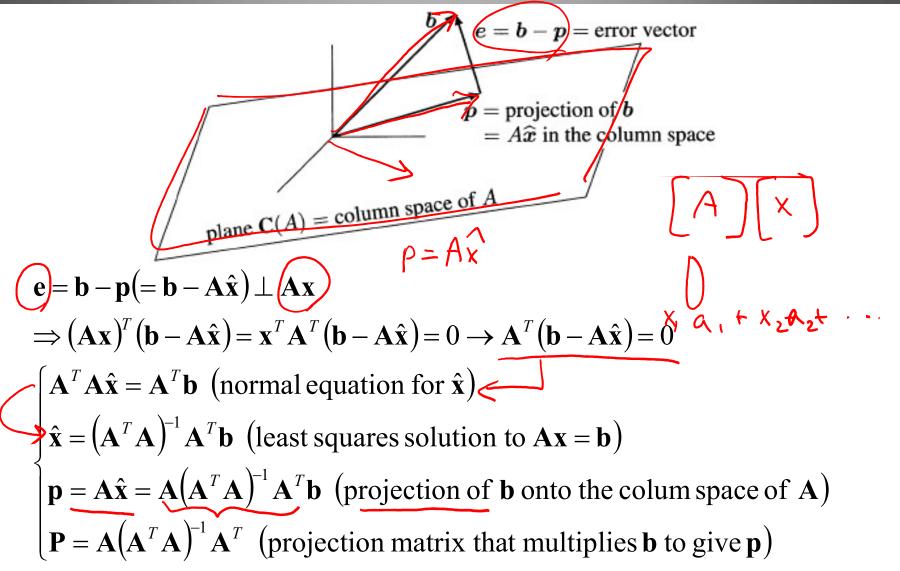
- Computational cost?

$$squared error \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^{2} = \|\mathbf{b} - \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{x}\|^{2} = \|\mathbf{U}^{\mathsf{T}}\mathbf{b} - \boldsymbol{\Sigma}\boldsymbol{Y}^{\mathsf{T}}\mathbf{x}\|^{2}$$

$$+ \mathbf{w} = \boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{b} \qquad \Rightarrow \mathbf{x}^{\mathsf{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{b} = \boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

$$= \boldsymbol{V}^{\mathsf{T}}\boldsymbol{x}^{\mathsf{T}} + \boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{b} \Rightarrow \boldsymbol{X}^{\mathsf{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{b} = \boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

Normal Equations



Least Squares with a Penalty Term

To prove that the limit is A+ for every matrix A

Minimize
$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2 + \delta^2 \|\mathbf{x}\|^2 \to \text{Solve} (\mathbf{A}^T \mathbf{A} + \delta^2 \mathbf{I}) \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^T \qquad \qquad \mathbf{X} = (\mathbf{A}^T \mathbf{A} + \mathbf{S}^T \mathbf{I})^T \mathbf{A}^T \qquad \qquad \mathbf{X} = \mathbf{A}^T \mathbf{b}$$

$$\mathbf{A}^T \mathbf{A} + \delta^2 \mathbf{I} = \mathbf{V} \mathbf{\Sigma}^T (\mathbf{U}^T \mathbf{U}) \mathbf{\Sigma} \mathbf{V}^T + \delta^2 \mathbf{I} = \mathbf{V} (\mathbf{\Sigma}^T \mathbf{\Sigma} + \delta^2 \mathbf{I}) \mathbf{V}^T$$

$$(\mathbf{A}^T \mathbf{A} + \delta^2 \mathbf{I})^{-1} \mathbf{A}^T = \mathbf{V} (\mathbf{\Sigma}^T \mathbf{\Sigma} + \delta^2 \mathbf{I})^{-1} (\mathbf{V}^T \mathbf{V}) \mathbf{\Sigma}^T \mathbf{U}^T = \mathbf{V} [(\mathbf{\Sigma}^T \mathbf{\Sigma} + \delta^2 \mathbf{I})^{-1} \mathbf{\Sigma}^T] \mathbf{U}^T$$

$$\lim_{\delta \to 0} (\mathbf{A}^T \mathbf{A} + \delta^2 \mathbf{I})^{-1} \mathbf{A}^T = \lim_{\delta \to 0} \mathbf{V} [(\mathbf{\Sigma}^T \mathbf{\Sigma} + \delta^2 \mathbf{I})^{-1} \mathbf{\Sigma}^T] \mathbf{U}^T = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^T = \mathbf{A}^+$$

Randomized Linear Algebra

- Matrix multiplication
 - Sampling matrix S
 - C=AS and R=S^TB → CR=ASS^TB~AB
 - It will not be true that SS^T is close to I
 - It will be true that the expected value of SS^T is I
- Random matrix multiplication with the correct mean AB
- Norm-squared sampling minimizes the variance
- Applications of random matrix multiplication
 - Interpolative approximation A~CMR
 - Application of A by a low rank matrix
 - Approximation of the SVD of A

