Computations with Large Matrices

o in Its many variations

— Ordinary elimination might compute an accurate x, or
maybe not

2
— Too many equations (m>n) and n@ion —3 \ext
-\
A

— Square matrix might be singular K

— Solution might be impossible to compute (A is extremely
ill-conditioned or simply too large)

— In deep learning we have too many solutions: we want
one that will generalize well to unseen test data

« Separate sources of difficulty ~
« |dentity the problem @ @

» Suggest a course of action @@# %
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Good Problems

. . + -
« Every matrlx@nas a pseudomverse@ A =A
— Inverse for every matrix, but this might not help £ Wversble
@ Elimination will succeed (with row changes, Afb) A\ b

— Square and invertible, reasonable size, not large condition )
number

. @nﬂ) normal equations to find the least squares
“solution

— columns of A are independent and not too ill-conditioned
— b is probably not in the column space of A

90
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Difficult Problems

« (m<n) many solutions (underdetermined) v

e Columns of A may be in bad condition @
— Too large condition number

— x Is not well determined - orthogonalize the columns by
a Gram-Schmidt or Householder algorithm

« A may be nearly singular
—@Will have a very larger inverse, Gram-Schmit may fail
— Different approach to add a penalty term = make ATA
more positive (common in inverse problem)
A is way too big (no elimination)
— Random sampling of the columns ~_~

— Results are never certain, but the probability of going
wrong is low
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Numerical Linear Algebra
By Trefethen and Bau

« Fundamentals Ax=b

— Reaching the SVD and Eckart-Young < AX = Ax >
QR Factorization and Least Squares Sq)=1q

— All 3 ways: A, (ATA) TAT, QR Av =ou

Conditioning and Stability
— Condition numbers, backward stability, perturbations

Systems of Equations

— Direct elimination: PA=LU, Cholesky's S=ATA

Eigenvalues v/

— Reduction to tridiagonal-Hessenberg-bidiagonal; QR with shifts

. e———
Iterative Methods
— Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov

S ——
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« Krylov Subspaces and Arnoldi Iteration

« Eigenvalues from Arnoldi

« Linear Systems by Arnoldi and GMRES ~~

« Symmetric Matrices: Arnoldi becomes Lanczos
« Eigenvalues of Tridiagonal T by QR Iteration

« Computing the SVD

« Conjugate Gradient for Sx=b |/

« Preconditioning for Ax=b
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Least Squares: Four Ways

( Ve SVD of A leads to its pseudoinverse A*> %=A"b

/ *+ A"Ax=A'b can be solved directly when A has
Independent columns

« Gram-Schmidt idea produces orthogonal columns
In Q 2> A=QR
| - (QR) (QR)k = (QR)'b - R”(Q’Q)Rk =R"Q’b

— Rx=(Qb (safe to solveand fast

—_—

« Minimize [b—Ax| 9 that penalty changes
the normal equations to (ATA+6%I)x, =Ab
— Now the matrix is invertible and x; goestoxaso — 0 v
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— wWreWT

and ATCA  covmimce

‘0

« Samples in applied mathematics & h

— Stiffness matrix in mechanical engineering
'\_—— . . . .

— CoWatrlx In circuit theory

— (weighted) graph Laplauan In graph theory

— Gram matrix (inner products of columns of A) in mathematics
—_  ———

 Characteristics ~
— Symmetry: attractive A\ A

—(Siz& may be a problem
— Condition numbes;£quare gf the condition number of A

— In large problems, expensive and often dangerous to compute

+ We try not to compute them >

— Orthogonal matrices and triangular matrices are good ones
&< R
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A*)is the pseudoinverse of A

« Suitable “pseudoinverse” when A has no inverse
— Rule 1: if A has independent columns, then A*=(ATA) -TAT
— Rule 2: if A has independent rows, then A*=AT(AAT) -

— Rule 3: A diagonal matrix X is inverted where possible,
otherwise, 2+ has zeros

A Row space to column space
AT Column space to row space

T

column
space of A Reverse the 4 subspaces for A+

space of A

Atb =zt

ATe=0

nullspace of AT

sudiol i -
| Paeudoluverse AT | — millspace ofAR

At A — [g 0 1 row space
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Least Square Solutions to Ax=Db is x*=A*b

« Xx*=A*b is the minimum norm least square solution
— x= x*=A*b makes ||b-Ax||?> as small as possible
— If another x achieves that minimum then ||x*|| <||X||

, _ 0| x 6| Ax= Lﬂ
Example : What is the shortest least squares solution to 0 0 =g ? X<
X) i —
x=f L
X-(-___ A+ b
« SVD solve the least squares problem in one step(A*bE>
— Computational cost? - [ho b
2 T II? T z 2 k’O o
squarederroer—AxH =Hb—UZZ XH :HU b X XH
~—__ N -
At AoV’ W = [
RITVZ U v

+
‘(‘W:ZUTb 3
W VTt =3 U0Db - >(+= VX UTIO "3
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Normal Equations

‘ = error vector
’ = projection of/b

— = AT in the ¢blumn space

A Jcﬁlumﬂﬁacﬂuf ’ A ” X S

P—Ax
@ b-p(=b- Ak J_. D
A

= (Ax) (b—A%)=x"A" (b— A%)=0—> A" (b— A%)=0
<! (ATAX=ADb (normal equation for f()f——-\ B

X = (AT A)_1 A'b (least squares solution to Ax =b)

p=Ax=AlA" A)_IAT b (projection of b onto the colum space of A )
P = A(AT A)_1 A’ (proj ection matrix that multipliesb to give p)
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Least Squares with a Penalty Term

« To prove that the limit i@or every matrix A

Minimize [b — Ax|| + 52|x|” — Solve (ATA + 521)7? =A'dD S50
A=Uzx’ X = (RASTY A b K=t
ATA+8T=VE (U'UJEV! + 8’1 = V(E'E + 5V

(ATA+8%T) AT = V(272 +5%1) (VI VIETU" = V[(ZTZ +5)' 2 ]UT
limit(ATA +6°1) A7 = limitV[(ZTZ +31)' 2 ]UT —VE'U" =A"

0—0 0—0
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Randomized Linear Algebra

« Matrix multiplication AR “LCK

— Sampling matrix S AS STYS
— C=AS and R=STB > CR=ASS!B~AB

— It will not be true that SST is close to |

— It will be true that the expected value of SST is | '2

« Random matrix multiplication with the correct

mean AB

« Norm-squared sampling minimizes the variance 0

« Applications of random matrix multiplication g
— Interpolative approximation A~CMR \\0) “(\b; \l

— Application of A by a low rank matrix
— Approximation of the SVD of A

-
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