Computations with Large Matrices

e Ax=Db In its many variations

— Ordinary elimination might compute an accurate x, or
maybe not

— Too many equations (m>n) and no solution
— Square matrix might be singular

— Solution might be impossible to compute (A is extremely
ill-conditioned or simply too large)

— In deep learning we have too many solutions: we want
one that will generalize well to unseen test data

« Separate sources of difficulty
 |dentify the problem
e Suggest a course of action
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Good Problems

« Every matrix A has a pseudoinverse A*
— Inverse for every matrix, but this might not help

« Elimination will succeed (with row changes, AWb)

— Square and invertible, reasonable size, not large condition
number

e (m>n=r) normal equations to find the least squares
solution
— columns of A are independent and not too ill-conditioned
— b is probably not in the column space of A
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Difficult Problems

¢ (m<n) many solutions (underdetermined)

e Columns of A may be in bad condition
— Too large condition number

— x Is not well determined - orthogonalize the columns by
a Gram-Schmidt or Householder algorithm

« A may be nearly singular
— ATA will have a very larger inverse, Gram-Schmit may fail

— Different approach to add a penalty term = make ATA
more positive (common in inverse problem)

« Ais way too big (no elimination)
— Random sampling of the columns

— Results are never certain, but the probability of going
wrong is low
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Numerical Linear Algebra
By Trefethen and Bau

« Fundamentals Ax=b
— Reaching the SVD and Eckart-Young AX = Ax

« QR Factorization and Least Squares Sq=1q
— All 3 ways: A, (ATA) TAT, QR Av =ou

Conditioning and Stability
— Condition numbers, backward stability, perturbations

Systems of Equations

— Direct elimination: PA=LU, Cholesky's S=ATA

Eigenvalues

— Reduction to tridiagonal-Hessenberg-bidiagonal; QR with shifts

Iterative Methods
— Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov
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« Krylov Subspaces and Arnoldi Iteration

« Eigenvalues from Arnoldi

e Linear Systems by Arnoldi and GMRES

« Symmetric Matrices: Arnoldi becomes Lanczos
« Eigenvalues of Tridiagonal T by QR Iteration

« Computing the SVD

« Conjugate Gradient for Sx=b

« Preconditioning for Ax=b
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Least Squares: Four Ways

SVD of A leads to its pseudoinverse A*=> x=A"b

A"Ax=A"b can be solved directly when A has
Independent columns

« Gram-Schmidt idea produces orthogonal columns
in Q 2 A=QR
A"A%=A"b > (QR) (QR)z =(QR)'b > R’ (Q"Q)Rk =R’Q"b
— Rx=Q’b (safe to solve and fast)

« Minimize [b-Ax|" +5°[x|" > that penalty changes
the normal equations to (ATA+6%I)x, = Ab
— Now the matrix is invertible and x; goestoxaso — 0
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ATA and ATCA

« Samples in applied mathematics

— Stiffness matrix in mechanical engineering

— Conductance matrix in circuit theory

— (weighted) graph Laplacian in graph theory

— Gram matrix (inner products of columns of A) in mathematics
« Characteristics

— Symmetry: attractive

— Size may be a problem

— Condition number: square of the condition number of A

— In large problems, expensive and often dangerous to compute

« We try not to compute them
— Orthogonal matrices and triangular matrices are good ones
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A* is the pseudoinverse of A

« Suitable “pseudoinverse” when A has no inverse
— Rule 1: if A has independent columns, then A*=(ATA) -TAT
— Rule 2: if A has independent rows, then A*=AT(AAT) -

— Rule 3: A diagonal matrix X is inverted where possible,
otherwise, 2+ has zeros

A Row space to column space
AT Column space to row space

T

column
space of A Reverse the 4 subspaces for A+

space of A

Atb =zt

ATe=0

nullspace of AT

sudiol i -
| Paeudoluverse AT | — millspace ofAR

At A — [g 0 1 row space
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Least Square Solutions to Ax=Db is x*=A*b

« Xx*=A*b is the minimum norm least square solution
— x= x*=A*b makes ||b-Ax||?> as small as possible
— If another x achieves that minimum then ||x*|| <||X||

3 0 x 6
Example : What is the shortest least squares solution to {O O}{ ! } = {8 ?
X)

« SVD solve the least squares problem in one step A*b
— Computational cost?

squared error b — x| =b - UZE x| =[U"b—2V"x|
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Normal Equations

b

e = b — p = error vector

— /

p = projection of b
— = AT in the column space

eof A /—’//

_ column spact ———

plane C(A) = =Z————

e=b-p(=b—A%)L Ax

= (Ax) (b—A%)=x"A"(b—A%)=0 > A" (b-A%)=0
(ATAX=ADb (normal equation for f()

X = (AT A)_1 A'b (least squares solution to Ax =b)

< p=AXx= A(AT A)_1 A’b (projection of b onto the colum space of A)

P = A(AT A)_1 A’ (proj ection matrix that multipliesb to give p)
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Least Squares with a Penalty Term

« To prove that the limit is A* for every matrix A

Minimize|jb — Ax| g 52HXH2 — Solve (ATA + 521)7? =A'b

A=UzY’

ATA+8T=VE (U'UJEV! + 8’1 = V(E'E + 5V

(ATA+8%T) AT = V(272 +5%1) (VI VIETU" = V[(ZTZ +5)' 2 ]UT
limit(ATA +6°1) A7 = limitV[(ZTZ +31)' 2 ]UT —VE'U" =A"

0—0 0—0
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Randomized Linear Algebra

« Matrix multiplication
— Sampling matrix S
— C=AS and R=STB > CR=ASS'B~AB
— It will not be true that SST is close to |
— It will be true that the expected value of SST is |

« Random matrix multiplication with the correct
mean AB

« Norm-squared sampling minimizes the variance

« Applications of random matrix multiplication
— Interpolative approximation A~CMR
— Application of A by a low rank matrix
— Approximation of the SVD of A
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