
Applied Mathematics for Deep Learning Highlights of Linear Algebra - 10

5. Orthogonal Matrices and Subspaces

• Orthogonal vectors x and y

• Orthogonal basis for a subspace
– Standard basis is orthogonal (even orthonormal) in Rn

– Hadamard matrices Hn containing orthogonal bases of Rn

• Are those orthogonal matirces?

– Every subspace of Rn has an orthogonal basis: Gram-Schmidt 
idea

• Two independent vectors a and b in the plane: aTc=0
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• Orthogonal subspace R (row space) and N (null 
space)
– Ax=0: The row space of A is orthogonal to the nullspace of A

– ATy=0: The column space of A is orthogonal to the nullspace
of AT

• Tall thin matrices Q with orthonormal columns: QTQ=I
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• Orthogonal matrices are square with orthonormal 
columns: QT=Q-1

• Orthogonal basis = orthogonal axes in Rn
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• Examples
– Rotations

– Reflections

– Hadamard matrices

– Haar wavelets

– Discrete Fourier Transform (DFT)

– Complex inner product
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6. Eigenvalues and Eigenvectors

• Ax = (eigenvalue) times x

• A2x = (eigenvalue)2 times x

• Write over vectors as combination of eigenvectors

• Similar matrix B=M-1AM has the same eigenvalues of A
– Compute eigenvalues of large matrices

– Make B gradually into a triangular matrix

– Gradually show up on the main diagonal
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• Diagonalizing a Matrix

– Nondiagonalizable matrices: GM < AM
• GM(Gometric Multiplicity): independent eigenvectors

• AM(Algebraic Multiplicity): repetition of eigenvalues
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7. Symmetric Positive Definite Matrices

• Test
– All eigenvalues of S are positive

– Energy xTSx is positive for x≠0

– All pivots are positive 

– S=ATA with independent columns of A

– All leading determinants are positive

• Second derivative matrix is positive definite @ a 
minimum point

• Semidefinite allows zero 
eigenvalues/energy/pivots/determinants
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• The graph of xTSx=1 is an ellipse, with its axes 
pointing along the eigenvectors of S
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