5. Orthogonal Matrices and Subspaces

* Orthogonal vectors x and y

X'y = 0} Pytagoras Law of right triangles: Hx — sz = HXH2 + HyH2
%
X'y=0 Law of cosines: Hx —yH2 = HXH2 + HyH2 — ZHXHHyHCOSH
* Orthogonal basis for a subspace
— Standard basis is orthogonal (even orthonormal) in R"

— Hadamard matrices H,, containing orthogonal bases of R"
» Are those orthogonal matirces?
— Every subspace of R" has an orthogonal basis: Gram-Schmidt
idea
« Two independent vectors a and b in the plane: a'c=0
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* Orthogonal subspace R (row space) and N (null
space)
— Ax=0: The row space of A is orthogonal to the nullspace of A
— ATy=0: The column space of A is orthogonal to the nullspace
of AT

 Tall thin matrices Q with orthonormal columns: Q'Q=I

1'2‘ 1'2 2] 1'2 2 1]
leg 2 JQ2:§ 2 -1 ,Q3=§ 2 -1 2

-1 -1 2| -1 2 2|
QQ, =1?

P =QQ’ — projection matrix : P> = P = P" —"least squares"

Pb is the orthogonal projection of b onto the column space of P
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* Orthogonal matrices are square with orthonormal
columns: QT=Q""
Q'Q-=1I
QQ' =1
cosfd —sin 6’} _{cosé’ sin @ }
’ reflect

sind cosd

Qs square — { } —-»Q'=Q"

Qrotate - |:

sind —cosd

: 2
Householer reflections:Q =H, =I—2uu’ =I—"ones(n,n)—"—
n
eigenvalues of H, are —1(once)and +1 (n-1 times)

Allreflection matrices have eigenvalues —1and 1

* Orthogonal basis = orthogonal axes in R"
v=cg,+te,d, 6 =q, v

v=0Qc—>Q'v=Q'Qc=c
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 Examples
— Rotations
— Reflections
— Hadamard matrices
— Haar wavelets
— Discrete Fourier Transform (DFT)
— Complex inner product
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6. Eigenvalues and Eigenvectors

* Ax = (eigenvalue) times x
« A’x = (eigenvalue)? times x
matrix A(real), S(symmetric), Q(orthogonal)

Z A, = trace of matrix
i=l1

[1 4, = determinant of matrix

eigenvectors of A are orthogonal iff A”A = AA”

S : real eigenvalues, orthogonal eigenvectors

« \Write over vectors as combination of eigenvectors

« Similar matrix B=M-"AM has the same eigenvalues of A
— Compute eigenvalues of large matrices
— Make B gradually into a triangular matrix
— Gradually show up on the main diagonal
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* Diagonalizing a Matrix
AX =XA > A =XAX"

Afv =2

- V v
cif ZCiﬁfxi

8 3 3 1|10 1|-1 -1
A: = —

127 2 -1 5(5|-2 3

(0.8 03] a1t ¢
A= L)A"Vzcl(l)kxl+c2 1 X,

0.2 0.7

~
Markov matrix

— Nondiagonalizable matrices: GM < AM
» GM(Gometric Multiplicity): independent eigenvectors
« AM(Algebraic Multiplicity): repetition of eigenvalues
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7. Symmetric Positive Definite Matrices

* Test
— All eigenvalues of S are positive
— Energy x"Sx is positive for x#0
— All pivots are positive
— S=ATA with independent columns of A
— All leading determinants are positive

* Second derivative matrix is positive definite @ a
minimum point

« Semidefinite allows zero
eigenvalues/energy/pivots/determinants
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« The graph of x'Sx=1 is an ellipse, with its axes
pointing along the eigenvectors of S

S = QAQ’ :principal axis theorem
x"Sx =x' (QAQ" = (x"Q)A(Q"x)

\Sx =[x y]QAQTm _x ¥

2 Jal A e

2
5x° +8xy+5y° =1—>9[x+yj +1(

V2
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