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8. Singular Value Decomposition (SVD)

• Columns of V are orthogonal eigenvectors of ATA

• Av=su gives orthonormal eigenvectors u of AAT

• s2 = eigenvalue of ATA = eigenvalue of AAT ≠ 0

• A = (rotation)(stretching)(rotation) USVT for every A

• Why is the SVD so important?
– It separates the matrix into rank one pieces like the other 

factorizations A=LU, A=QR, S=QΛQT

– Those pieces come in order of importance

– First piece σ1u1v1
T is the closest rank one matrix to A

– Sum of the first k pieces is best possible for rank k
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• Example

• If S=QΛQT is symmetric positive definite, what is its SVD?

• If S=QΛQT has a negative eigenvalue(Sx=-x), what is the 
singular value and what are the vectors v and u?

• If A=Q is an orthogonal matrix, why does every singular value 
equal 1?

• Why are all eigenvalues of a square matrix A less than or equal 
to σ1?

• If A=xyT has rank 1, what are u1, v1, σ1? Check that | λ1 |≤ σ1
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• If A is m by n and B is n by m, then AB and BA have 
the same nonzero eigenvalues

• Geometry of SVD
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• First singular vector v1

• Polar decomposition: A= USVT= (UVT)(VSVT)=QS
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11. Norms of Vectors and Matrices

– The norm of a nonzero vector v is a positive number ||v||

– That number measures the “length” of the vector
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• Important vector norms and a failure
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• Minimum of ||v||p on the line a1v1+ a2v2 =1

• Inner products and S=norm
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Norm of Matrices

• Frobenius Norm

• Matrix Norm ||A|| from vector norm ||v||

• Nuclear Norm
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9. Principal Components

• major tool in understanding a matrix of data

• Eckart-Young low rank approximation theorem
– The norm of A−Ak is below the norm of all other A−Bk

– Ak = σ1u1v1
T + …+ σkukvk

T

• Frobenius norm squared = sum of squares of all entries
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Eckart-Young Theorem

• Best approximation by Ak
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Principal Component Analysis

• Understand n sample points in m-dimensional space

• Data matrix A0: n samples, m variables
– Find the average (the sample mean) along each row of A0

– Subtract that mean from m entries in the row

– Centered matrix A=A0-(mean)

– How will linear algebra find that closest line through (0,0)? It 
is in the direction of the first singular vector u1 of A
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• Statistics behind PCA
– Variances: diagonal entries of the matrix AAT

– Covariances: off- diagonal entries of the matrix AAT

– Sample covariance matrix: S=AAT/(n-1)

• Geometry behind PCA
– Sum of squared distances from the data points to the line is 

a minimum

• Linear algebra behind PCA
– Singular values σi and singular vectors ui of A

– Total variance: 
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