8. Singular Value Decomposition (SVD)

- Columns of V are orthogonal eigenvectors of $A^{\top} A$
- $A v=\sigma u$ gives orthonormal eigenvectors u of $A A^{\top}$
- $\sigma^{2}=$ eigenvalue of $A^{\top} A=$ eigenvalue of $A A^{\top} \neq 0$
- $\mathrm{A}=$ (rotation)(stretching)(rotation) $\mathrm{U} \Sigma \mathrm{V}^{\top}$ for every A
- Why is the SVD so important?
- It separates the matrix into rank one pieces like the other factorizations $A=L U, A=Q R, S=Q \wedge Q^{\top}$
- Those pieces come in order of importance
- First piece $\sigma_{1} u_{1} v_{1}{ }^{\top}$ is the closest rank one matrix to A
- Sum of the first k pieces is best possible for rank k
- Example Find the matrices $\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}$ for $\mathbf{A}=\left[\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right]$.

$$
\begin{aligned}
& \mathbf{U}=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\sqrt{45} & \\
& \sqrt{5}
\end{array}\right], \mathbf{V}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}{ }^{T}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}{ }^{T}=\mathbf{A}
\end{aligned}
$$

- If $S=Q \wedge Q^{\top}$ is symmetric positive definite, what is its SVD?
- If $S=Q \wedge Q^{\top}$ has a negative eigenvalue($S x=-\alpha x$), what is the singular value and what are the vectors v and u ?
- If $A=Q$ is an orthogonal matrix, why does every singular value equal 1 ?
- Why are all eigenvalues of a square matrix A less than or equal to σ_{1} ?
- If $A=x y^{\top}$ has rank 1 , what are u_{1}, v_{1}, σ_{1} ? Check that $\left|\lambda_{1}\right| \leq \sigma_{1}$
- If A is m by n and B is n by m, then $A B$ and $B A$ have the same nonzero eigenvalues
- Geometry of SVD

- First singular vector v_{1}

Maximize the ratio $\frac{\|\mathbf{A x}\|}{\|\mathbf{x}\|} \rightarrow$ The maximum is σ_{1} at the vector $\mathbf{x}=\mathbf{v}_{1}$
\Rightarrow Find the maximum value λ of $\frac{\|\mathbf{A x}\|^{2}}{\|\mathbf{x}\|^{2}}=\frac{(\mathbf{A} \mathbf{x})^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{\mathbf{x}^{T} \mathbf{S} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \rightarrow 2 \mathbf{S} \mathbf{x}=2 \lambda \mathbf{x}$
Maximize $\frac{\|\mathbf{A x}\|}{\|\mathbf{x}\|}$ under the conditon $\mathbf{v}_{1}{ }^{T} \mathbf{x}=0 \rightarrow$ The maximum is σ_{2} at $\mathbf{x}=\mathbf{v}_{2}$

- Polar decomposition: $\mathrm{A}=\mathrm{U} \mathrm{\Sigma} \mathrm{~V}^{\top}=\left(\mathrm{U} \mathrm{V}^{\top}\right)\left(\mathrm{V} \Sigma \mathrm{V}^{\top}\right)=\mathrm{QS}$

$$
\begin{aligned}
& \underbrace{x+i y}_{\text {complex number }}=\underset{\text { polarform }}{r e^{i \theta}} \rightarrow\left\{\begin{array}{l}
e^{i \theta} \text { :orthogonal matrix } \\
r \geq 0: \text { positive semideinite matrix }
\end{array}\right. \\
& \mathbf{A}=\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]=\underset{\text { rotationstrecth }}{\mathbf{Q}} \underset{\mathbf{S}}{\mathbf{S}}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] \sqrt{5}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

11. Norms of Vectors and Matrices

- The norm of a nonzero vector v is a positive number $\|\mathrm{v}\|$
- That number measures the "length" of the vector
every norm for vectors or functions or matrice must share these two properties of the absolute value $|c|$ of a number
All norms $\left\{\begin{array}{l}\text { multiply } \mathbf{v} \text { by } c \text { (rescaling) } \rightarrow\|\mathbf{c v}\|=\mid c\|\mathbf{v}\| \\ \text { add } \mathbf{v} \text { to } \mathbf{w} \text { (Triangle inequality) } \rightarrow\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|\end{array}\right.$
$\mid l^{2}$ norm $=$ Euclidean norm : $\|\mathbf{v}\|_{2}=\sqrt{\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}}$
$\left\{l^{1}\right.$ norm $=1$ - norm : $\|\mathbf{v}\|_{1}=\left|v_{1}\right|+\cdots+\left|v_{n}\right|$
l^{∞} norm $=$ max norm : $\|\mathbf{v}\|_{\infty}=$ maximum of $\left|v_{1}\right|, \ldots,\left|v_{n}\right|$
$\|\mathbf{v}\|_{p}=\left(\left|v_{1}\right|^{p}+\cdots+\left|v_{n}\right|^{p}\right)^{1 / p}$
- Important vector norms and a failure

- Minimum of $\|v\|_{\mathrm{p}}$ on the line $\mathrm{a}_{1} \mathrm{v}_{1}+\mathrm{a}_{2} \mathrm{v}_{2}=1$

Minimize $\|\boldsymbol{v}\|_{\boldsymbol{p}}$ among vectors (v_{1}, v_{2}) on the line $3 v_{1}+4 v_{2}=1$

- Inner products and $\mathrm{S}=$ norm
$\left.\begin{array}{l}\text { Inner product = length squared : } \mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{T} \mathbf{v}=\|\mathbf{v}\|^{2} \\ \text { Angle } \theta \text { between vector } v \text { and } w: \mathbf{v}^{T} \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta\end{array}\right\} \rightarrow\left\{\begin{array}{l}\text { Cauchy - Schwarz: }\left|\mathbf{v}^{T} \mathbf{w}\right| \leq\|\mathbf{v}\| \mid \mathbf{w} \| \\ \text { Triangle Inequality: }\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|\end{array}\right.$
Choose any symmetric positive definite matrix \mathbf{S}
$\|\mathbf{v}\|_{\mathrm{S}}^{2}=\mathbf{v}^{T} \mathbf{S v}$ gives a norm for \mathbf{v} in \mathfrak{R}^{n} (called the S - norm)
$(\mathbf{v}, \mathbf{w})_{\mathbf{S}}=\mathbf{v}^{T} \mathbf{S w}$ gives the S -inner product for \mathbf{v}, \mathbf{w} in \mathfrak{R}^{n}

Norm of Matrices

- Frobenius Norm
- Matrix Norm ||A\| from vector norm ||v||
- Nuclear Norm

$$
\begin{aligned}
& \left\{\begin{array}{l}
\|\mathbf{A}\|_{F}=\sqrt{\left|a_{11}\right|^{2}+\cdots+\left|a_{1 n}\right|^{2}+\cdots+\left|a_{m n}\right|^{2}} \\
\|\mathbf{A}\|_{F}=\left\|\mathbf{U} \boldsymbol{\Sigma}^{T}\right\|_{F}=\left\|\Sigma \mathbf{V}^{T}\right\|_{F}=\|\boldsymbol{\Sigma}\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}} \\
\|\mathbf{A}\|_{F}^{2}=\text { trace of } \mathbf{A}^{T} \mathbf{A}=\text { sum of eigenvalues }=\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
\|\mathbf{A}\|=\max _{\mathbf{v} \neq 0} \frac{\|\mathbf{A v}\|}{\|\mathbf{v}\|}=\text { largest growth factor } \\
l^{2} \text { norm: }\|\mathbf{A}\|_{2}=\text { largest singular value } \sigma_{1} \text { of } \mathbf{A} \\
l^{1} \text { norm: }\|\mathbf{A}\|_{1}=\text { largest } l^{1} \text { norm of the columns of } \mathbf{A} \\
l^{\infty} \text { norm }:\|\mathbf{A}\|_{\infty}=\text { largest } l^{1} \text { norm of the rows of } \mathbf{A} \\
\|\mathbf{A}\|_{N}=\sigma_{1}+\cdots+\sigma_{r}=\text { trace norm }
\end{array}\right.
\end{aligned}
$$

9. Principal Components

- major tool in understanding a matrix of data
- Eckart-Young low rank approximation theorem
- The norm of $A-A_{k}$ is below the norm of all other $A-B_{k}$
$-A_{k}=\sigma_{1} u_{1} v_{1}{ }^{\top}+\ldots+\sigma_{k} u_{k} v_{k}^{\top}$
- Frobenius norm squared = sum of squares of all entries

Eckart - Young : If \mathbf{B} has rank k, then $\|\mathbf{A}-\mathbf{B}\| \geq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|$
$\mathbf{A}_{k}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}{ }^{T}+\cdots+\sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}{ }^{T}$
Spectral norm : $\|\mathbf{A}\|_{2}=\max _{\mathbf{x} \neq 0} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\sigma_{1}$
Frobenius norm : $\|\mathbf{A}\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$
Nuclear norm : $\|\mathbf{A}\|_{N}=\sigma_{1}+\cdots+\sigma_{r}$

Eckart-Young Theorem

- Best approximation by A_{k}

Eckart-Young in L^{2} :
If $\operatorname{rank}(\mathbf{B}) \leq k$, then $\|\mathbf{A}-\mathbf{B}\|=\max _{\mathbf{x} \neq 0} \frac{\|(\mathbf{A}-\mathbf{B}) \mathbf{x}\|}{\|\mathbf{x}\|} \geq \sigma_{k+1}$
Eckart-Young in the Frobenius norm :
If \mathbf{B} is closest to \mathbf{A}, then $\mathbf{U}^{T} \mathbf{B V}$ is closest to $\mathbf{U}^{T} \mathbf{A V}$
$\mathbf{B}=\mathbf{U}\left[\begin{array}{cc}\underset{k \times k}{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \mathbf{V}^{T}, \mathbf{A}=\left[\begin{array}{cc}\mathbf{L}+\mathbf{E}+\mathbf{R} & \mathbf{F} \\ \mathbf{H} & \mathbf{G}\end{array}\right]$
The matrix \mathbf{D} must be the same as $\mathbf{E}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$
The singular values of \mathbf{H} must be the smallest $(n-k)$ singular values of \mathbf{A}
The smallest error $\|\mathbf{A}-\mathbf{B}\|_{F}$ must be $\|\mathbf{H}\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{r}^{2}}$

Principal Component Analysis

- Understand n sample points in m-dimensional space
- Data matrix A_{0} : n samples, m variables
- Find the average (the sample mean) along each row of A_{0}
- Subtract that mean from m entries in the row
- Centered matrix $A=A_{0}$-(mean)
- How will linear algebra find that closest line through $(0,0)$? It is in the direction of the first singular vector u_{1} of A

A is $2 \times n$ (large nullspace)
$A A^{\mathrm{T}}$ is 2×2 (small matrix)
$A^{\mathrm{T}} A$ is $n \times n$ (large matrix)
Two singular values $\sigma_{1}>\sigma_{2}>0$
- Statistics behind PCA
- Variances: diagonal entries of the matrix ${A A^{\top}}^{\top}$
- Covariances: off- diagonal entries of the matrix $A A^{\top}$
- Sample covariance matrix: $S=A A^{\top} /(n-1)$
- Geometry behind PCA
- Sum of squared distances from the data points to the line is a minimum
- Linear algebra behind PCA
- Singular values σ_{i} and singular vectors u_{i} of A
- Total variance:

$$
T=\frac{\|\mathbf{A}\|_{F}^{2}}{n-1}=\frac{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}{n-1}
$$

