8. Singular Value Decomposition (SVD)

- Columns of V are orthogonal eigenvectors of A^TA
- Av=σu gives orthonormal eigenvectors u of AA^T
- σ^2 = eigenvalue of A^TA = eigenvalue of $AA^T \neq 0$
- A = (rotation)(stretching)(rotation) $U\Sigma V^T$ for every A
- Why is the SVD so important?
 - It separates the matrix into rank one pieces like the other factorizations A=LU, A=QR, S=QΛQ^T
 - Those pieces come in order of importance
 - First piece $\sigma_1 u_1 v_1^T$ is the closest rank one matrix to A
 - Sum of the first k pieces is best possible for rank k

Example

Find the matrices
$$\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}$$
 for $\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$.

$$\mathbf{U} = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}, \mathbf{\Sigma} = \begin{bmatrix} \sqrt{45} \\ \sqrt{5} \end{bmatrix}, \mathbf{V} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\boldsymbol{\sigma}_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \boldsymbol{\sigma}_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} = \mathbf{A}$$

- If $S=Q\Lambda Q^T$ is symmetric positive definite, what is its SVD?
- If $S=Q\Lambda Q^T$ has a negative eigenvalue($Sx=-\alpha x$), what is the singular value and what are the vectors v and u?
- If A=Q is an orthogonal matrix, why does every singular value equal 1?
- Why are all eigenvalues of a square matrix A less than or equal to σ₁?
- If $A=xy^T$ has rank 1, what are u_1 , v_1 , σ_1 ? Check that $|\lambda_1| \le \sigma_1$

- If A is m by n and B is n by m, then AB and BA have the same nonzero eigenvalues
- Geometry of SVD

4 parameters: two angles, two numbers

First singular vector v₁

Maximize the ratio $\frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$ \rightarrow The maximum is σ_1 at the vector $\mathbf{x} = \mathbf{v}_1$

$$\Rightarrow \text{ Find the maximum value } \lambda \text{ of } \frac{\|\mathbf{A}\mathbf{x}\|^2}{\|\mathbf{x}\|^2} = \frac{(\mathbf{A}\mathbf{x})^T \mathbf{A}\mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{\mathbf{x}^T \mathbf{S}\mathbf{x}}{\mathbf{x}^T \mathbf{x}} \to 2\mathbf{S}\mathbf{x} = 2\lambda\mathbf{x}$$

Maximize $\frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$ under the condition $\mathbf{v}_1^T\mathbf{x} = 0 \to \text{The maximum is } \sigma_2 \text{ at } \mathbf{x} = \mathbf{v}_2$

• Polar decomposition: $A = U\Sigma V^T = (UV^T)(V\Sigma V^T) = QS$

$$\underbrace{x + iy}_{\text{complex number}} = \underbrace{re^{i\theta}}_{\text{polar form}} \rightarrow \begin{cases} e^{i\theta} : \text{orthogonal matrix} \\ r \ge 0 : \text{positive semideinite matrix} \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = \mathbf{Q} \mathbf{S}_{\text{rotation stretch}} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \sqrt{5} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

11. Norms of Vectors and Matrices

- The norm of a nonzero vector v is a positive number ||v||
- That number measures the "length" of the vector

every norm for vectors or functions or matrice must share these two properties of the absolute value |c| of a number

All norms
$$\begin{cases} \text{multiply } \mathbf{v} \text{ by } c \text{ (rescaling)} \rightarrow ||c\mathbf{v}|| = |c||\mathbf{v}|| \\ \text{add } \mathbf{v} \text{ to } \mathbf{w} \text{ (Triangle inequality)} \rightarrow ||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}|| \end{cases}$$
$$\begin{cases} l^2 \text{ norm} = \text{Euclidean norm} : ||\mathbf{v}||_2 = \sqrt{|v_1|^2 + \dots + |v_n|^2} \\ l^1 \text{ norm} = 1 \text{ - norm} : ||\mathbf{v}||_1 = |v_1| + \dots + |v_n| \\ l^\infty \text{ norm} = \text{max norm} : ||\mathbf{v}||_\infty = \text{maximum of } |v_1|, \dots, |v_n| \end{cases}$$
$$||\mathbf{v}||_p = \left(|v_1|^p + \dots + |v_n|^p\right)^{1/p}$$

Important vector norms and a failure

 $v_2 = -1$

Minimum of $||v||_p$ on the line $a_1v_1 + a_2v_2 = 1$

Minimize $||v||_p$ among vectors (v_1, v_2) on the line $3v_1 + 4v_2 = 1$

$$\left(\frac{3}{25}, \frac{4}{25}\right)$$
 has $||v^*||_2 = \frac{1}{5}$

$$\left(\frac{1}{7},\frac{1}{7}\right)$$
 has $||v^*||_{\infty}=\frac{1}{7}$

Inner products and S=norm

Inner product = length squared : $\mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v} = \|\mathbf{v}\|^2$ Angle θ between vector \mathbf{v} and $\mathbf{w} : \mathbf{v}^T \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$ $\Rightarrow \begin{cases} \text{Cauchy-Schwarz:} \|\mathbf{v}^T \mathbf{w}\| \le \|\mathbf{v}\| \|\mathbf{w}\| \\ \text{Triangle Inequality:} \|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\| \end{cases}$

Choose any symmetric positive definite matrix S

 $\|\mathbf{v}\|_{\mathbf{S}}^2 = \mathbf{v}^T \mathbf{S} \mathbf{v}$ gives a norm for \mathbf{v} in \Re^n (called the S - norm)

 $(\mathbf{v}, \mathbf{w})_{\mathbf{S}} = \mathbf{v}^T \mathbf{S} \mathbf{w}$ gives the S - inner product for \mathbf{v}, \mathbf{w} in \mathfrak{R}^n

Norm of Matrices

- Frobenius Norm
- Matrix Norm ||A|| from vector norm ||v||
- Nuclear Norm

$$\begin{cases} \left\| \mathbf{A} \right\|_{F} = \sqrt{\left| a_{11} \right|^{2} + \dots + \left| a_{1n} \right|^{2} + \dots + \left| a_{mn} \right|^{2}} \\ \left\| \mathbf{A} \right\|_{F} = \left\| \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^{T} \right\|_{F} = \left\| \mathbf{\Sigma} \mathbf{V}^{T} \right\|_{F} = \left\| \mathbf{\Sigma} \right\|_{F} = \sqrt{\sigma_{1}^{2} + \dots + \sigma_{r}^{2}} \\ \left\| \mathbf{A} \right\|_{F}^{2} = \text{trace of } \mathbf{A}^{T} \mathbf{A} = \text{sum of eigenvalues} = \sigma_{1}^{2} + \dots + \sigma_{r}^{2} \end{cases}$$

$$\begin{aligned} \left\| \mathbf{A} \right\| &= \max_{\mathbf{v} \neq 0} \frac{\left\| \mathbf{A} \mathbf{v} \right\|}{\left\| \mathbf{v} \right\|} = \text{largest growth factor} \\ l^2 \text{ norm} : \left\| \mathbf{A} \right\|_2 &= \text{largest singular value } \sigma_1 \text{ of } \mathbf{A} \\ l^1 \text{ norm} : \left\| \mathbf{A} \right\|_1 &= \text{largest } l^1 \text{ norm of the columns of } \mathbf{A} \\ l^\infty \text{ norm} : \left\| \mathbf{A} \right\|_\infty &= \text{largest } l^1 \text{ norm of the rows of } \mathbf{A} \\ \left\| \mathbf{A} \right\|_N &= \sigma_1 + \dots + \sigma_r = \text{trace norm} \end{aligned}$$

9. Principal Components

- major tool in understanding a matrix of data
- Eckart-Young low rank approximation theorem
 - The norm of $A-A_k$ is below the norm of all other $A-B_k$
 - $A_k = \sigma_1 u_1 v_1^T + ... + \sigma_k u_k v_k^T$
- Frobenius norm squared = sum of squares of all entries

Eckart - Young : If **B** has rank k, then $\|\mathbf{A} - \mathbf{B}\| \ge \|\mathbf{A} - \mathbf{A}_k\|$

$$\mathbf{A}_{k} = \boldsymbol{\sigma}_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \dots + \boldsymbol{\sigma}_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$$

$$\left[\text{Spectral norm} : \left\| \mathbf{A} \right\|_{2} = \max_{\mathbf{x} \neq 0} \frac{\left\| \mathbf{A} \mathbf{x} \right\|}{\left\| \mathbf{x} \right\|} = \sigma_{1} \right]$$

$$\left\| \mathbf{A} \right\|_{F} = \sqrt{\sigma_{1}^{2} + \dots + \sigma_{r}^{2}}$$

Nuclear norm:
$$\|\mathbf{A}\|_{N} = \sigma_1 + \cdots + \sigma_r$$

Eckart-Young Theorem

Best approximation by A_k

Eckart - Young in L^2 :

If
$$\operatorname{rank}(\mathbf{B}) \le k$$
, then $\|\mathbf{A} - \mathbf{B}\| = \max_{\mathbf{x} \ne 0} \frac{\|(\mathbf{A} - \mathbf{B})\mathbf{x}\|}{\|\mathbf{x}\|} \ge \sigma_{k+1}$

Eckart - Young in the Frobenius norm:

If **B** is closest to **A**, then $\mathbf{U}^T \mathbf{B} \mathbf{V}$ is closest to $\mathbf{U}^T \mathbf{A} \mathbf{V}$

$$\mathbf{B} = \mathbf{U} \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ k \times k & \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^T, \mathbf{A} = \begin{bmatrix} \mathbf{L} + \mathbf{E} + \mathbf{R} & \mathbf{F} \\ \mathbf{H} & \mathbf{G} \end{bmatrix}$$

The matrix **D** must be the same as $\mathbf{E} = diag(\sigma_1, ..., \sigma_k)$

The singular values of **H** must be the smallest (n-k) singular values of **A**

The smallest error
$$\|\mathbf{A} - \mathbf{B}\|_F$$
 must be $\|\mathbf{H}\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$

Principal Component Analysis

- Understand n sample points in m-dimensional space
- Data matrix A₀: n samples, m variables
 - Find the average (the sample mean) along each row of A₀
 - Subtract that mean from m entries in the row
 - Centered matrix A=A₀-(mean)
 - How will linear algebra find that closest line through (0,0)? It is in the direction of the first singular vector u₁ of A

$$A$$
 is $2 \times n$ (large nullspace)

$$AA^{\mathrm{T}}$$
 is $\mathbf{2} \times \mathbf{2}$ (small matrix)

$$A^{\mathrm{T}}A$$
 is $n \times n$ (large matrix)

Two singular values $\sigma_1 > \sigma_2 > 0$

Statistics behind PCA

- Variances: diagonal entries of the matrix AA^T
- Covariances: off- diagonal entries of the matrix AA^T
- Sample covariance matrix: S=AA^T/(n-1)
- Geometry behind PCA
 - Sum of squared distances from the data points to the line is a minimum
- Linear algebra behind PCA
 - Singular values σ_i and singular vectors u_i of A
 - Total variance:

$$T = \frac{\left\|\mathbf{A}\right\|_F^2}{n-1} = \frac{\sigma_1^2 + \dots + \sigma_r^2}{n-1}$$