8. Singular Value Decomposition (SVD)

« Columns of V are orthogonal eigenvectors of ATA

« Av=cu gives orthonormal eigenvectors u of AAT

c? = eigenvalue of ATA = eigenvalue of AAT # 0

A = (rotation)(stretching)(rotation) UV for every A

Why is the SVD so important?

— It separates the matrix into rank one pieces like the other
factorizations A=LU, A=QR, S=QAQT

— Those pieces come in order of importance
— First piece o,u,v," is the closest rank one matrix to A
— Sum of the first k pieces is best possible for rank k
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30
Find the matrices U, X,V for A = L 5}

e W Ao [

T T _ A

« Example

« If S=QAQT is symmetric positive definite, what is its SVD?

« |f S=QAQT has a negative eigenvalue(Sx=-ax), what is the
singular value and what are the vectors v and u?

« |If A=Q is an orthogonal matrix, why does every singular value
equal 1?

« Why are all eigenvalues of a square matrix A less than or equal
to o,?

« If A=xy" has rank 1, what are u,, v,, ,? Check that | A, |< O,
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 IfAismbynandBisnbym, then AB and BA have
the same nonzero eigenvalues

« Geometry of SVD

A
x - e Ax
vT 3 U
Y ﬁ f,,-d—'-u\.l r’_,.F-——'_‘——u..‘.‘k . o
2 0o "“x
i \--a.___‘_‘_ \
ke S
Vv F1iq

a b| |cosf -—smb|o, cos¢ sing
¢ d| |sin@ cosd o, || —sing cosg

o J
Vv

4 parameters: two angles, two numbers
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* First singular vector v,

Maximize the ratio W — The maximum is o, at the vector x = v,
X
2 T T
= Find the maximum value A of HAX‘J = (AXZ Ax _X TS X 5 28x=2x
NI

Maximize H H }H(H under the conditon v, x = 0 — The maximumis o, at x = v,
X

« Polar decomposition: A= UZV'= (UVT)(VEVH=QS

0 {ei ? : orthogonal matrix
%

xt+iy = re 9 o .
—— polar form r > 0 : positive semideinite matrix

complex number

3 0 1 |2 -1 2 1
A= = Q S =—— J5
|:4 5:| rotEtFiJonSt;e:Ch \/g |:1 2 i| |:1 2:|
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11. Norms of Vectors and Matrices

— The norm of a nonzero vector v is a positive number ||v||
— That number measures the “length” of the vector

every norm for vectors or functions or matrice must share these two properties

of the absolute value ‘c‘ of a number

multiply v by ¢ (rescaling) — HCVH = ‘C‘HVH
Allnorms
add v to w (Triangle inequality) — HV + WH < HVH + HWH

2

[* norm = Euclidean norm : HVH2 = \/‘vl‘z ety

N

' norm=1-norm: HVH1 :‘Vl‘+"’+ v,

v \%

IEEER) n

[” norm = max norm : HVHoo = maximum of

p)/p

o, =l -

r

vl’l
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* Important vector norms and a failure

=g
2 ' 2
£! norm / ; £2 norm \\
[oa] + Jv2| <1 v+ 02 <1

diamond \ circle J

e R T )

£°° norm £1/2 norm )

|v1] < 1,]ve| <1 Vel +4/lvz] €1 (1,0)
square not convex
v = —1

Applied Mathematics for Deep Learning Highlights of Linear Algebra - 25




* Minimum of ||v||, on the line a,v,+ a,v, =1

Minimize ||v||, among vectors (vq, vz) on the line v, + 4vz = 1‘

1
1) has ||jv*||: = 3 A ) has ||[v*|l2 =3 1 1) has [[v*]leo = 3

S5

* |nner products and S=norm

Inner product = length squared:v-v=v'v = HVH2 } {Cauchy- Schwarz : ‘VTW‘ <|[v|w]
%

Angle @ between vector vand w: v’ w = HVHHWH cos@ Triangle Inequality : HV + WH < HVH + HWH
Choose any symmetric positive definite matrix S
HVH; = v'Sv gives a norm for vin R" (called the S - norm)

T . . .
(v,w)s = v''Sw gives the S - inner product for v, w in R"
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Norm of Matrices

* Frobenius Norm
» Matrix Norm ||A]| from vector norm ||v||
* Nuclear Norm

Al :\/\an\2+---+\aln\2+-~+ a [

Al =[uzz’| ==V’ =], — Jol+t0?

2 .
A|. =traceof A" A =sum of eigenvalues =gy +--+ 0,

All=max+—="

= largest growth factor

[> norm: HAH , = largest singular value o, of A

N

[' norm: HAH | = largest/ ' norm of the columns of A

\l°° norm: HAHOO = largest /' norm of the rows of A

AHN =0, +---+0, = tracenorm
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9. Principal Components

* major tool in understanding a matrix of data

* Eckart-Young low rank approximation theorem
— The norm of A-A, is below the norm of all other A-B,

* Frobenius norm squared = sum of squares of all entries

Eckart - Young : If B has rank £, then HA — BH > HA -A, H

T T
A, =owv, +---+ou.v,

-

Spectral norm : HAH , =Mmax—— =0,

Frobenius norm: A . = \/0'12 e

N

Nuclear norm: HAHN =0, ++0,

\
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Eckart-Young Theorem

« Best approximation by A,

Eckart- Youngin L” :

If rank(B)< k, then HA = BH = max H H
X# X

Eckart - Young in the Frobenius norm:

If Bis closest to A, then U'BV is closest to U' AV
D 0 L+E+R F

B =Uj| v V', A=
0 0 H G

The matrix D must be the same as E = diag(o,,...,0,)

The singular values of H must be the smallest (1 — k) singular values of A

The smallest error | A —B| must be |[H]|| . = \/0',3+1 +ot ol

Applied Mathematics for Deep Learning Highlights of Linear Algebra - 29




Principal Component Analysis

* Understand n sample points in m-dimensional space

« Data matrix Ay: n samples, m variables
— Find the average (the sample mean) along each row of A,
— Subtract that mean from m entries in the row
— Centered matrix A=A,-(mean)

— How will linear algebra find that closest line through (0,0)? It
is in the direction of the first singular vector u, of A

' A is 2 x n (large nullspace)
E s

x AAT is 2 x 2 (small matrix)

L 3

A" A is n x n (large matrix)

Two singular values o1 > 032 > 0
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o Statistics behind PCA

— Variances: diagonal entries of the matrix AAT
— Covariances: off- diagonal entries of the matrix AAT
— Sample covariance matrix: S=AAT/(n-1)

« Geometry behind PCA

— Sum of squared distances from the data points to the line is
a minimum

« Linear algebra behind PCA

— Singular values o, and singular vectors u; of A

— Total variance: - HAHi ) 012 +---+af

n—1 n—1
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