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Introduction

« Mathematical Modeling and Engineering Problem
Solving requires understanding of engineering systems
— Empiricism: observation and experiment
— Theoretical analysis: generalization

« Computers are great tools, however, without
fundamental understanding of engineering problems,
they will be useless
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Problem
definition

Mathematical

THEQRY e
model

Problem-solving tools:
computers, statistics,
numerical methods,
graphics, etc.

Numeric or
graphic results

Societal interfaces:
scheduling, optimization,
communication,
public interaction,
etc.

{

Implementation

Engineering Problem-Solving Process
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Precomputer era

FORMULATION

Fundamental
laws explained
briefly

« Computer era

FORMULATION

In-depth exposition
of relationship of
problem to fundamental
laws

SOLUTION

Elaborate and often
complicated method to
make problem tractable

INTERPRETATION

In-depth analysis
limited by time-
consuming solution

9

SOLUTION

Easy-to-use
computer
method

v

INTERPRETATION

Ease of calculation
allows holistic thoughts
and intuition to develop;

system sensitivity and behavior
can be studied

FTHR

Three Phases of Engineering Problem Solving

Modeling / Error - 4



CAE

Mathematical Model

parameters,

variables, functions

dependent independent forcing
variables

Dependent variable: characteristic that usually reflects the
state of the system

Independent variables: dimensions such as time and space
along which the systems behavior is being determined

Parameters: reflect the system’s properties or composition

Forcing functions: external influences acting upon the
system
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Mathematical Modeling

» Are there any basic principles to follow when a
differential equation is set up?
— No general answer
* Modeling: art
— Problem types, simplifying assumptions
— Chemical engineering: conservation principles
— Electromagnetic field theory: Maxwell’s equations
— Control theory: block diagram

» Classification
— Differential equations considered as nature laws
— Constitutive differential equations
— Conservative differential equations
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Nature Laws

« Mathematical relation that cannot be derived from
physical facts
— Observations
— No experiment has been designed that contradicts the law

« Examples
— Newton’s law for the motion of a particle
— Maxwell's laws for the electromagnetic field
— Schrodinger’s equation in quantum mechanics
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Newton’s 2nd Law of Motion

« States that “the time rate change of momentum of a
body is equal to the resulting force acting on it.”

F =ma
F: net force acting on the body [N]
m : mass of the object [kg]

a: its acceleration [m/s”]

» Characteristics
— It describes a natural process or system in mathematical terms
— It represents an idealization and simplification of reality

— Finally, it yields reproducible results, consequently, can be
used for predictive purposes
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Parachutist Problem (1)

« Mathematical model

F dv mg—cv dv C
F=ma—>a=——>—= =8V
m dt m dt m
dv ¢ : : :
— + —v = g : differential equation
dt m
c
v, =ce” > A=——
m
(—;jt C am
v=ce tC, >—C =826 ="
m C

C

v=cle(_’"jt +ﬂ<—(t=0,v=0):> c __&"
c c

— ¢ t
_ &M {1 — e( ’"J } :analytical (or exact) solution

c

v

>> dsolve (‘Dv=g-c/m*v’ ,’v(0)=0")
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Parachutist Problem (2)

« Numerical methods

ﬂzlim AvEAv:v(tm)—v(ti)

di  ~-0 At At t, —t

dv_ e o)) e
a ETRV T T Ty &8,

old

new ~  step size

-~
slope

: Euler's method

F Vit )

= 1’“;‘)’

True slope
dv/dt

|
|
|
|
|
|
I

S

Approximate slope
Av _ W) = wi;)
At

l'!-+1 = ":'

u:' i e S S S S e Sy
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v, m/s

Parachutist Problem (3)

40 —

20

Terminal velocity

Approximate, numerical solution

Exact, analytical solution

Y

I, O
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Constitutive Equations

« Mathematical model of the physical properties of a
gas, fluid, or solid: empirical nature
— Observations of a phenomenon
— Measurements of an experiment

« Examples
— Equations in heat transfer problems
— Equations in mass diffusion problems
— Equations in mechanical moment diffusion problems
— Equations in elastic solid mechanics problems
— Equations in chemical reaction engineering problems
— Equations in electrical engineering problems
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Heat Transfer Problems

- Fourier's law of heat diffusion: conduction (T =)

» Newton’s law of cooling: convection (CHi &)

0=—ki(1,~T)

« Stefan-Boltzmann's law for temperature radiation loss
(= A

O =—Aec(T,' -T*)
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Heat Transfer Problems

g  heat flux [J/(m2 S):|

i : thermal conductivity [J /(K- ms)]

p : density [kg/nf]

C, : heat capacity at constant pressure [J/K -kg |

E : thermal energy [J / m3]

o : thermal diffusivity | m”/s |

QO : heat flow [J/s]

A :area [mz]

k : convection heat transfer coefficient [J / (K .m’ s)]

e : material constant

o=567TEF-8 [J/(K4 -m’ S)] : Boltzmann's constant
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Mass Diffusion Problems

 Fick’s law of mass diffusion

dp
- D
s dx
uA
F=-1"(p -
/ (£ =p) Adolf Fick

(1829~1901)

[ £ mass flux [kg/(m2 S):|
D : mass diffusivity [mz / s}
F :mass flow [kg/s]

p - diffusivity | m* /s |

[ : thickness [m]

-
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Mechanical Moment Diffusion Problems

* Newton'’s law of viscosity

z,, :shear stress [N/mz]
v, : velocity along the x-axis and orthogonal to the y-axis [m/s]
(= pv): dynamic viscosity [N-S/mz]

v : kinematic viscosity [mz / s} (diffusion coefficient of the mechanical moment)

CAE Modeling / Error - 16




Viscosity

_ [ shear modulus vs. viscosity ]
* Measure of a fluid’s |

resistance to shear

— Inversely with
temperature, directly with

Rubber element

Fluid element

pressure
» Absolute viscosity (M)
— calculation Cross-sectional area, A (a)
« Kinematic viscosity (v) Todeer e
— measurement
V= ﬁ g ‘1‘% | U; %
IO where G = shear modulus where u = absolute viscosity

(b) (c)

At equilibrium, torque T At equilibrium, torque T

produces elastic displacement, produces laminar flow

8, across a solid element velocity, U, across a fluid
element
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Elastic Solid Mechanics Problems

« Hooke’s law for an elastic bar

o=EFEeg¢, 5:@
dx

o :stress [N/mﬂ
¢ :strain | |

u : displacemnt per unit length of the bar [m]
E : elasticity module [N / mz} (Young's module)
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Chemical Reaction Engineering Problems

* Mass action law in chemical kinetics

reaction: o, 4, +---+a, A — BB +--+ [ B
E
m

r=kllc®, k=Ae &7

i=1

* General gas law

pV =nRT
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Electrical Engineering Problems

« Ohm’s law in electromagnetics

j=0cE

e Lorentz’ law

qu(E—l—VxB)

j : electrical current density [A/ mz]
o : conductivity [A/ (V- m)]

E : electrical field strength [V/m]|

F : force [N]

q : electrical charge [C]

B : magnetic field [V : s/mz}

v : velocity [m/sz}
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curl divergence

line——— surface

Electromagnetic Theory

> volume

electrostatic field: Gauss's law magnetostatic field: Ampere's law
(Coulomb's force law)mD -dS = Ipvdv —V-D=p, (Biot-Savart law)mLH -dl = msJe dS—>VxH=1J,
(conservation)mE-dl =0>VxE=0 (conservation)mSB [dS=0—->V-B=0
B=uH=VxA T2 A J,=0 240
TW)V V= _B D23 5,V =0 Vx(VxA)=V(V-A)-V2A VA =—ud, >V'A=0
&

[H : magnetic field intensity [amperes / m]

D : electric flux density [coulombs/ mz}
J, :electric current density [amperes / mz}

p, : volume charge density [coulombs/ m3]
B : magnetic flux density [tesla,vebers/ mz}

E : electric field strength [volts/m]

p - permeability [ henries / m](FAHE)

& dielectric permittivity [ farads/ m]( & ?%)

electric + magnetic field: Maxwell's equations
(V-D=p,
V-B=0

VxE——a—B—J
ot

VxH=J, +8_D
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Conservative Equations

Based on the principle that physical quantities, such
as mass, moment, and energy, are conserved in a
system

— Changes of some quantity in a control volume that is fixed in
space > balance principle must hold for the quantity during
a given time interval

AAcc = In — Out + Prod — Cons

(Adcc: change of amount of the accumulated quantity

In : amount of the quantity that has flowed in

N\

Out : amount of the quantity that has flowed out

Prod : amount of the quantity produced

| Cons : amount of the quantity consumed
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Conservative Equations

« Conservation principle leading to
— ODE with time as independent variable: lumped model
— PDE in time and space: distributed model

dM

O(1) = — where M (¢): amount of a quantity at time 7, O(¢): flow
d (1 d(O d( Prod d(C

—> in(t) = Ez’tn) ,out(t) = %,prod(t) = ( dl;o ),cons(t) = ( djns)
AAcc = Ltw(in(t) —out(t) + prod (l‘) —cons(t))dt

. AAcc . 1 ey,
lim vl BTOA_t t (zn(t)—aut(t)+pr0d (t)—cons(t))dt
dAcc | o :

” = in —out + prod — cons [contlnulty equatlon]
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Conservation Laws and Engineering

« Change = increases — decreases

« Change implies changes with time (transient). If the
change is nonexistent (steady-state),

* |ncreases = Decreases

— Example: steady-state incompressible fluid flow

Pipe 2
Flow in = 80

¥

Pipe 1 Pipe 4
Flow in = 100 — = Flow out = ?

i

Pipe 3
Flow out = 120

CAE Modeling / Error - 24




Field Device Organizing Principle Mathematical Expression

Chemical engineering __\r_ﬁ Conservation of mass  Mass balance:

Reactors Input —‘Gﬁ- Output

[ ] Over a unit of time period —— |
Amass = inputs - outputs
Civil engineering l Conservation of Force balance: ;
momentum +Ey
Structure l

At each node
X horizontal forces (Fy) = 0
X vertical forces (Fy) = 0

Mechanical engineering Machiria Conservation of Force balance:

Upward force
,} momeanium P 0
P =

Downward force

2
m % = downward force — upward force
Electrical engineering Conservation of charge Current balance:
tiy —=@— -ij
+ For each node
X current (i) =0
i +iy
Circuit
Conservation of energy Voltage balance: iRy
iRy £

Around each loop
% emf's - X voltage drops for resistars =0

CAE XE-2iR=0 Modeling / Error - 25



Analogy

Linear Torsional | Electrical ___

CAE

Mass
Stiffness
Damping
Force

m
K
Cc

Pysinot

Displacement x

Velocity

X

V

Moment of inertia
Torsional stiffness
Torsional damping
Torque

Angular
displacement

Angular velocity

I
K
Cc

Inductance
1/Capacitance
Resistance

Tysinot Voltage

¢

%

Q

Condenser
charge

Current

L

1/C

R
E,sinot
Q

O=i
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Approximations and Round-Off Errors

For many engineering problems, we cannot obtain
analytical solutions

Numerical methods yield approximate results that are
close to the exact analytical solution

We cannot exactly compute the errors associated
with numerical methods

— input = algorithm - output

How confident we are in our approximate result?

— “how much error is present in our calculation and is it
tolerable?”
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Significant Figures

* Number of significant figures indicates precision

— Significant digits of a number are those that can be used
with confidence

— Number of certain digits plus one estimated digit

« How many significant figures?
— 53,8007
 Scientific notation: 5.38 x 104, 5.380 x 104, 5.3800 x 104

— Zeros?
 0.00001753, 0.0001753, 0.001753

— Speedometer: 48.8
— Odometer: 87324 .45

CAE Modeling / Error - 28



CAE

Accuracy and Precision

Accuracy

— How close is a computed or
measured value to the true value

Precision (or reproducibility)

— How close is a computed or
measured value to previously
computed or measured values

Inaccuracy (or bias)

— A systematic deviation from the
actual value

Imprecision (or uncertainty)
— Magnitude of scatter

Increasing precision

Increasing accuracy

Modeling / Error - 29



Error Definition (1)

* True Value = Approximation + Error
* True error: E, = True value — Approximation (+/-)

. : true error
True fractional relative error =
true value
. true error
True percent relative error, &, = x100%
true value

* For numerical methods, true value?
— only when we solve functions analytically (simple systems)

 |In real world applications, no answer a priori

_approximate error current a—previous a

x100% =

— x100%
approximation(a) current a

E
a

——

(+1-)
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Error Definition (2)

« Use absolute value
« Computations are repeated until stopping criterion is

satisfied Pre-specified % tolerance
&, <@ based on the knowledge of
your solution

« Correct result to at least n significant figures if

g =(0.5 x10%")%
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Example

Problem Statement.  Suppose that you have the task of measuring the lengths of a bridge
and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and
10 cm, respectively, compute (a) the true error and (b) the true percent relative error for

each case.
E;=1cm, g =?

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, the exponential function can be computed using
3 n
e‘T:]+.:r—|——+X——|—----|—X— (E3.2.1)
I !
Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of e*. Equation (E3.2.1) is called a Maclaurin series expansion.
Starting with the simplest version, e* = 1, add terms one at a time to estimate &,
After each new term is added, compute the true and approximate percent relative errors
with Egs. (3.3) and (3.5), respectively. Note that the true value is ¢** = 1.648721 . ... Add
terms until the absolute value of the approximate error estimate £, falls below a prespeci-
fied error criterion &5 conforming to three significant figures.
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Round-off Errors
 Limitations of a computer’'s number system
 Arithmetic manipulations of computer numbers

» Numbers such as =, e, or 4/7 cannot be expressed by
a fixed number of significant figures

« Computers use a base-2 representation, they cannot
precisely represent certain exact base-10 numbers
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Integer Representation

« Signed magnitude method

 Limitation

— Capability to represent integers

— storage, manipulation of fractional quantities

110

0|0(0|0]O0

1

0

0|1 -173

"

Sign

Problem Statement

on a 16-bit computer.

CAE

Number

Determine the range of integers in base-10 that can be represented

32767(215-1): -32768~+32767 why? (+0/-0)
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Floating-Point Representation

« Fractional quantities are typically represented in
computer using “floating point” form
— Take ore room and longer to process than integer numbers

Integer part —»

be*
4

— exponent

m
Mantissa (1 £%) /

Signed
exponent

- -

Base of the number system used

Mantissa
A

T

Sign

only a finite number of significant figures

156.78—>0.15678x10° ~ round-off error

1

= =0.029411765—2decimalplaces () )294x1()°

34

CAE

Lo«
b

»0.2941x10"!

Modeling / Error - 35
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Example

Problem Statement. Create a hypothetical floating-point number set for a machine
that stores information using 7-bit words. Employ the first bit for the sign of the number,
the next three for the sign and the magnitude of the exponent, and the last three for the

magnitude of the mantissa (Fig. 3.8).

Rounding

g1 90 941 92 953 Chopping

0 01 [ 1 O [ R T o

/ T , AMagrvlitudeJ

Sign of ~ Sign of of mantissa
number exponent
Magnitude
7

of exponent
f + + { Overflow —=

Underflow “hole”
at zero
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Limitations

« Limited range of quantities that may be represented
— Overflow error, underflow hole

* Only a finite number of quantities that can be
represented within the range (quantizing error)
— Chopping
— Rounding
— Example: m(3.14159265) 7-bit

* |nterval between numbers, AX, increases as the
numbers grow in magnitude

-

chopping: ‘Ax‘ <& e =b"
‘x ‘ & : machine epsilon

‘ ‘ & | b:number base
roundmg —<— o o
‘ ‘ 2 ¢ : number of significant digits
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Arithmetic Manipulations

« Common arithmetic operations
— Addition, subtraction, multiplication, division

« Large computations
« Adding a large and a small number
« Subtractive cancellation

* Smearing

— the individual terms in a summation are larger than the
summation itself.

* Inner products
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Examples

I I
0.1557 - 10" +0.4381 - 10~! subtracting 26.86 from 36.41 PROGRAM fig0312
0.1557 - 10! 0.3641 - 102 0.7642 - 10° iﬂ?éégéT:?D”e
0.004381 - 10! —0.2686 - 102 — 0.7641 - 10° REAL: 'suml. sum?. x1. x2
0.160081 - 10! 0.0955 - 10° 0.0001 - 10° DAURCE HRECISION: st 43
0.1600 - 10! 0.9550 - 10' =9.550  0.1000 - 10° = 0.1000 | |-\ > ()
sum3=0.
0.1363-10% % 0.6423- 107! = 0.08754549 - 10? =1
0.08754549 - 10% — 0.8754549 - 10! x§=%~3"2
1 Xa=1, 00—
0.8754 - 10 DO i=1.100000
suml=suml+x1
0.4000 10! X _pL m SUMZ=SUmZ+X2
: A B sum3=sum3+x3
0.4000001 - 10* B > dac, PRINT *, suml
X1 e PRINT *, sum2
— PRINT *, sum3
}’=1+x+£+£!+--- % bEob—4ac END
2 3! putput ;
100000 . 000000
= 1.000990
Z;-ﬁﬁ?z:ftﬂ'+xlﬁ'+"'+”ﬁfh 9.099999999980838E-001
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Truncation Errors and Taylor Series

* Truncation errors

— Errors that result from using an approximation in place of an
exact mathematical procedure

« Taylor series
— Any smooth function can be approximated as a polynomial

— means to predict the value of a function at one point in terms
of the function value and its derivatives at another point
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Taylor Series Expansion

f f(n)
f(lerl) f(x)+f(x)(xl+l_x)+_(xl+l_x) pabiidie s (xz+1_x) +R
Ro=L O e
l (n+ 1)!

f(x,)= f(x)+f(x)h+f—h2+ +f(’:)h”+Rn

h=%;,1 —X;

_ f(nﬂ)(g) h(n+1) _ O(h(n+1))

T (n+D)!
& 1s not known exactly, lies somewhere between x, <& <x,_,

Need to determine /""" (x), to do this you need f”(x)

If we knew f'(x), we don't need to perform the Taylor series expansion
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Example

f(x) =—0.1x* -0.15x’ —=0.5x* —=0.25x +1.2

x, =0, predict the function's value atx,,, =1

Zero order

flxi 4 q) = flx)
1.0 fx; . 1) = flx) + flx)h
05— flx . ) = flx) + flc)h + %];’}' h?
f{.l} + 1]I
0 | 5
..1; = 0 lj 1= 1
h
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Example

Approximate f (x) = cosx at x,,, = 77/3

on the basis of the value of /'(x) and its derivatives at x, = /4

Order n f(7)( x) f(z/3) £}
0 Cos X 0.707106781 -41.4
1 —sin x 0.521986659 —4.4
2 —COS X 0.49775449] 0.449
3 sin X 0.499869147 2.62 x 1072
4 Cos X 0.500007551 =1.51 % 104
5 —sin x 0.500000304 ~6.08 x 1077
6 —COS X 0.4999000088 2.44 x 10-°

CAE
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Sflx)

f”

f(xi+1):f(xi)+f,(xi)h+ X

R, =f'(xl.)h+f”h2+---—>Ro = f'(x)h

2!

| derivative mean-value theorem| /(&) = 70 —R,=f'()h—> R, =

R = J‘xmuf(nﬂ) (l‘)dl‘

Remainder for the Taylor Series Expansion

h2+"'_>f(xi+1)gf(x")

[ e(t)n(r)di=g(£)[ "n(r)ds

11,

2!

(n+1)
>R, = / (Sg) (xi+l — X )}H1

Ty n!

=
'~ Zero-order prediction

g(t)=r"" (1).h(1)=

h

n!

(xi+1_t)n n (n—}-l)'

Slope =f'(¢)
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Estimate Truncation Errors

v(t,)=v(t)+v'(2) (6., —1)+ R, il
. 15 (—
V(1) = v(t)—v(4) R L
i —1 ) lig—L =
first-order al\:;proximation truncation error =
R V(¢ _ -
ta—t, 2! (b1 =5)= Ot =1) 10 -
— Example: effect of ]
nonlinearity and step size N
f(x) =x" s

0 I | 1 L
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Numerical Differentiation

 Forward difference
Floa)= 1) 7o =) 0 s )= A 0) )
h . h T
« Backward difference
Fl)= ) 7o)+ TS P ()= LS ) S
R — R — o fz)

« Central difference
— Error| # of function evaluation 1

— Perturbation?

— If the function is not too nonlinear, 72 =0.01|x,

f"(x;)

f(xm): f(xi)-l_f'(xi )(xm _x;)"' Il (xm X i i+ i

~

P
==

N—
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Error Propagation

F0)= @ @9+ LD ey
S (x)= 7 (%)= f"(%)(x-%)
S )= = =

Af (%) AX
relative error of £ (x 'f(x)_f(i)zf’(i)(x_i)
lat £/ (x): e TE N
relative error of x : x;i

relative error of f (x)

— condition number = _ =
relative error of x

. sensitivity, stability

g
ox,

9

Ox

n

A'il’l

Af(il,,in); A)Zl_|_..._|_

CAE

flx)

True error
[F(D)|Ax
Estimated error

|
|
I
|
I
1
I
1
[
1
1
l
[
I
|
ettt

|

|

!

|

I

|

|

|

|

I

X

AX
Operation Estimated Error
Adaition Alo4+v] AT+ Av
Subfraction Al — | AD + AV
Multiplication Al x v} Il AV + [Vl AD
Biidion ﬂ[g) lolAY 4 ¥l AG
ision = ol Al Wi

712
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Total Numerical Error

centered difference approximation

: _ f(xi+1)_f(xi—1) _f(3)(ég) 2
{T(f’%?ﬂ 2h 6 "

~
finte-difference approximation  truncation error

f(xi—l): f(xi—l) + i:_ll

rounded function value ~ associated
round-off error

f(xi+1): f~(xi+1)+ei+1

~

f~ (xi+l ) - f (xi—l) €€

Point of
diminishing
returns

log error

_|_
2h 2h

_f~(xi+1)_f(xi—l)
2h

- f'(x,) =

Total error =|f'(x;)

el Ol & h°M

3¢

= 3 —

o M

CAE

(3) o
_ f (é:) h? log step size

6
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Example

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(#) to estimate the first derivative of the following function at x = 0.5,

flx)=—01x'—0.15x° —0.5x%* —0.25x + 1.2

Perform the same computation starting with ## = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how round-off becomes dominant as the step size is
reduced. Relate your results to Eq. (4.31). Recall that the true value of the derivative
is —0.9125.

Flot of error versus step size

10% —

102

1 e

Error

1075

102

10-10

10—32 | | | | |
10" 1078 108 {0 e 1072 107

Step size
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Control of Numerical Errors

* No systematic and general approaches to evaluate
numerical errors

— Avoid subtracting two nearly equal numbers, or use
extended-precision arithmetic

— Sort the numbers and work with the smallest numbers first

— Perform numerical experiments to increase your awareness
of computational errors and possible ill-conditioned problems

« Source of errors
— Blunder
— Formulation error
— Data uncertainty
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What is Verification and Validation ?

ing / Error - 51

Reality of Interest
(Component, Subassembly, Assembly, or System)

Abstraction

+

Conceptual
Model
1 1
Mathematical Physical
Modeling Modeling
3 2
i Mathernatical Physical
¥ e Model Model
/
I
Code Implementation Implementation
Verification
/ Lﬁ P Revise
NE Computational Preliminary Experiment Appropriate
P Model Calculations Design Model
/ or
Lo Experiment
Calculation Calculation Experimentation o
Verification
, * +
LI Simulation Experimental
Results Data
Uncertainty Validation Uncertainty
Quantification < Y. Quantification
s [ M ¥
Simulation Quantitative Experimental
Outcomes Comparison Outcomes
Modeling, Simulation Acceptable X
& Experimental Activities Agreement? o
- = Assessment Activities
Yes
2

AA sanen An

Dﬁoﬁ Reality of Interest in the Hierarchy

CAE



Engineering Simulation

* Three types of models
— Conceptual
— Mathematical
— Computational

* Verification: domain of mathematics

— Process of determining that a computational model
accurately represents the underlying mathematical model
and its solution

« Validation: domain of physics

— Process of determining the degree to which a model is an
accurate representation of the real world from the
perspective of the intended uses of the model
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Verification

 (Code verification

— Mathematical model and solution algorithms are working
correctly

— Domain of software developers: Software Quality Assurance
techniques along with testing of each released version

— To compare code outputs with analytical solutions

e (Calculation verification
— Discrete solution of the mathematical model is accurate
— Domain of user of the software

— Estimating the errors in the numerical solution due to
discretization

— Mesh-to-mesh comparison: to determine the rate of
convergence of the solution

CAE Modeling / Error - 53



Validation

« Answering the adequacy of the selected models for representing
the reality of interest

— Mechanics (physics) included in the models sufficient to provide
reliable answers to the questions posed in the problem statement

« Interaction between mathematics and physics in V&V process
— Close cooperation among modelers and experimentalist

— ‘cross-talk’ activity to model the same conceptual model, e.g., fixed-
end condition

— Segregation of the outcomes

* Role of uncertainty quantification (UQ)
— Different experimental results
— Distributed numerical and physical parameters

ASME V&V 10-2006 - Guide for Verification and Validation in Computational Solid Mechanics
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