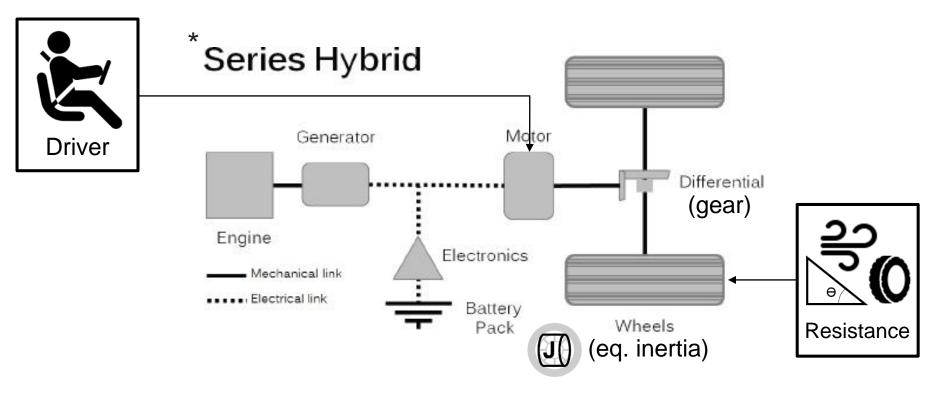
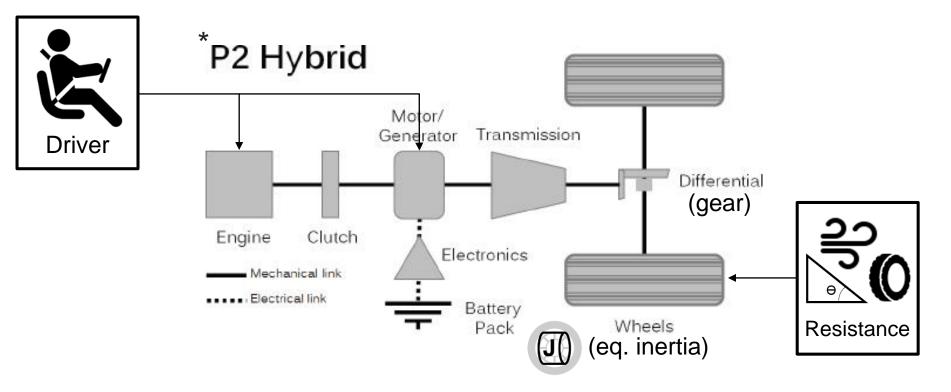

Contents

- Powertrain system model : HEV/EV
- Efficiency analysis
- Performance analysis
- Example: Chevrolet Bolt EV

Powertrain system model

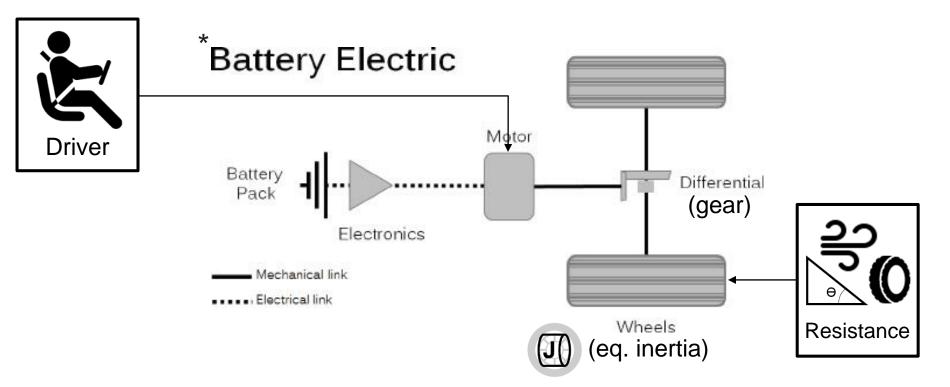

Modeling components

Powertrain system model: HEV(1)


- Series HEV
 - Powertrain: Engine, Generator, Motor, Battery, Gear
 - Others: Driver, Equivalent inertia, Resistance

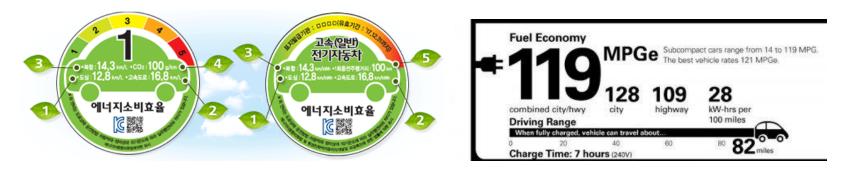
*National Research Council. Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. National Academies Press, 2015.

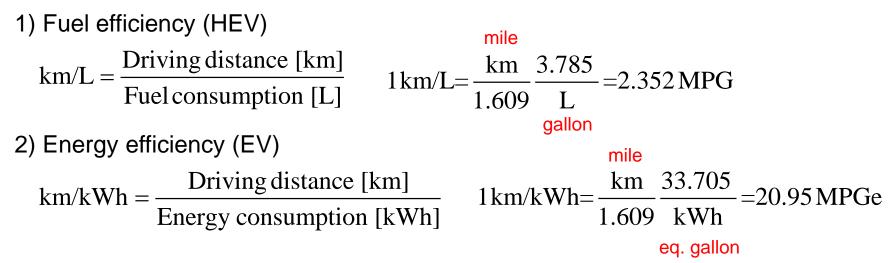
Powertrain system model: HEV(2)


- Parallel HEV
 - Powertrain: Engine, Clutch, Motor, Battery, T/M, Gear
 - Others: Driver, Equivalent inertia, Resistance

*National Research Council. Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. National Academies Press, 2015.

Powertrain system model: EV

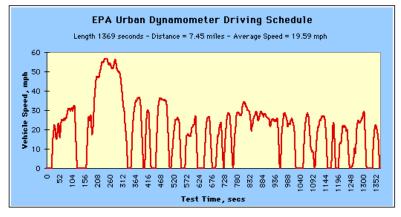

- Battery EV
 - Powertrain: Motor, Battery, Gear
 - Others: Driver, Equivalent inertia, Resistance

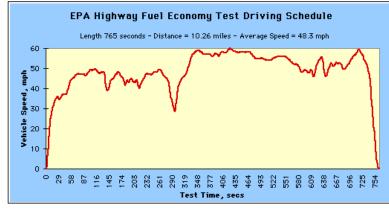


*National Research Council. Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. National Academies Press, 2015.

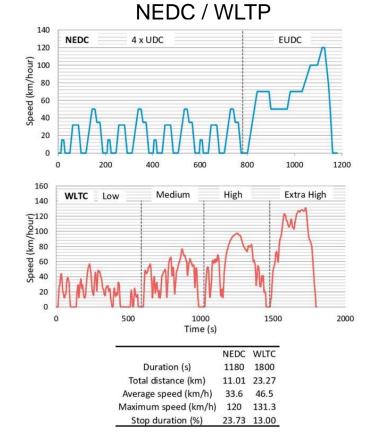
Efficiency analysis: Measurements

- HEV: Fuel efficiency (km/L, MPG, L/100km)
- EV: Energy efficiency (km/kWh, MPGe, kWh/100km)

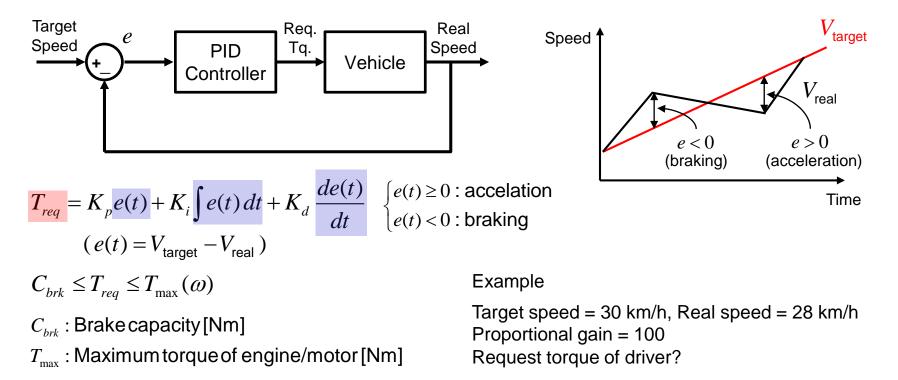




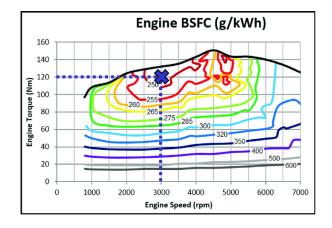
Efficiency analysis: Driving cycles


UDDS+HWFET(Korea, US), NEDC (Europe), WLTP

UDDS / HWFET


https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometerdrive-schedules#Economic

Ref. : Georgios et al., The difference between reported and real-world CO2 emissions: How much improvement can be expected by WLTP introduction? (2017)


Efficiency analysis: Speed control

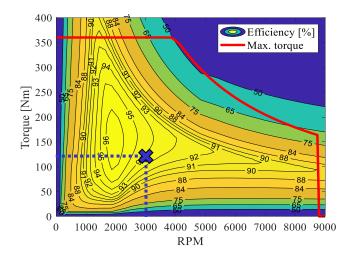
Concept for tracking vehicle speed of driving cycle

Efficiency analysis: Engine

- Efficiency map
 - Brake specific fuel consumption (BSFC)

Example

Engine: torque = 120 Nm, RPM = 3000 Fuel consumption per second? (L/s) BSFC(120 Nm, 3000 RPM) = 250 g/kWh $\frac{250 \text{ g}}{\text{ kWh}} \times \frac{120 \times 3000}{1000} \frac{\pi}{20} \times \frac{1\text{ h}}{2600 \text{ c}} \times \frac{1\text{ L}}{860 \text{ c}} = 0.003 \text{ L/s}$


When a vehicle is driving during 5 min with this condition, fuel efficiency? (Total gear ratio: 4, Tire radius: 0.3 m)

Driving distance:
$$\int_{0}^{5 \text{ min}} V \, dt = \int_{0}^{5 \text{ min}} \frac{\omega}{GR} R_{tire} \, dt = \left(\frac{3000}{4} \frac{\pi}{30} \times 0.3\right) \times 300 \,\text{s} = 7,068 \,\text{m}$$

Fuel consumption:
$$\int_{0}^{5 \text{ min}} 0.003 \,\text{L/s} \, dt = 300 \,\text{s} \times 0.003 \,\text{L/s} = 0.9 \,\text{L}$$

Fuel efficiency:
$$\frac{7.068 \,\text{km}}{0.9 \,\text{L}} = 7.85 \,\text{km/L}$$

Efficiency analysis: Motor

Efficiency map

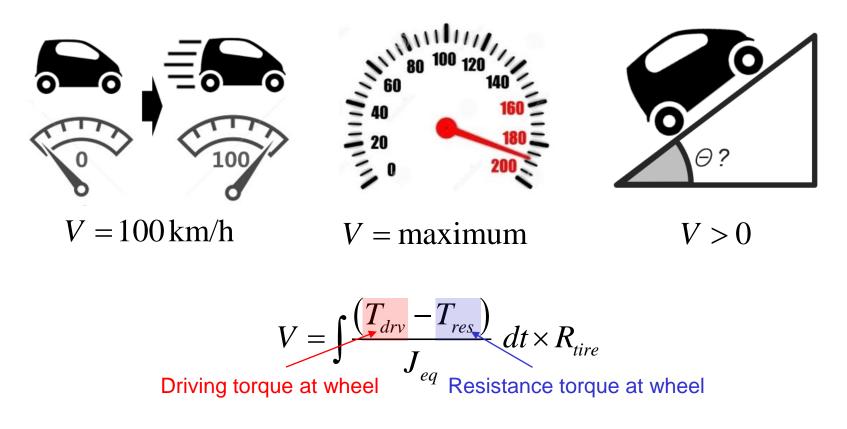
 Electric efficiency

Example

Motor: torque = 120 Nm, RPM = 3000 Battery: voltage = 350 V, capacity = 60 kWh SOC consumption per second? (%/s)

Motor efficiency = 94%

$$\frac{120 \times 3000}{\text{Motor power}} \frac{\pi}{30} = \underbrace{0.94 \times 350 \times I}_{\text{Eff. Voltage}} I = 114.59 \text{ A}$$


$$-114.59 \,\mathrm{A} \frac{100\% \times 350 \,\mathrm{V}}{60,000 \,\mathrm{Wh}} \times \frac{1 \,\mathrm{h}}{3600 \,\mathrm{s}} = -0.019 \,\,\%/\mathrm{s}$$

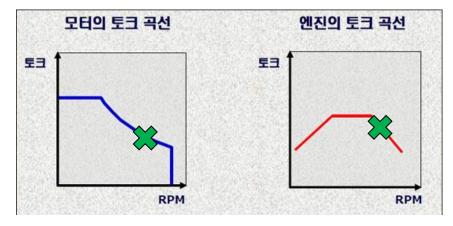
When a vehicle is driving during 5 min with this condition, energy efficiency? (Total gear ratio: 4, Tire radius: 0.3 m)

Energy consumption: $\Delta SOC = \int_0^{5 \text{ min}} -0.019 \text{ \%/s} dt = 300 \text{ s} \times 0.019 \text{ \%/s} = -5.7 \text{ \%}$ $60 \text{ kWh} \times 5.7\% = 3.42 \text{ kWh}$ Energy efficiency: $\frac{7.068 \text{ km}}{3.42 \text{ kWh}} = 2.07 \text{ km/kWh}$

Performance analysis: Measurements

 0-100 km/h acceleration time, maximum speed, ascendable slope

Performance analysis: Acceleration time

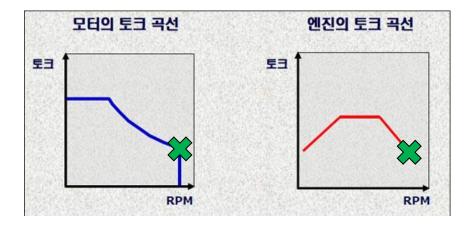

Calculation

$$V = \int_{0}^{t_a} \frac{\left(T_{drv} - T_{res}\right)}{J_{eq}} dt \times R_{tire} = 100 \text{ km/h}$$

Parallel HEV

Series HEV / Battery EV

$$J_{eq} = (J_{eng} + J_{mot}) \times GR(t)^{2} + m_{b}R_{tire}^{2} \qquad J_{eq} = J_{mot} \times GR^{2} + m_{b}R_{tire}^{2}$$
$$T_{drv} = (T_{eng}(t) + T_{mot}(t)) \times GR(t) \qquad T_{drv} = T_{mot}(t) \times GR$$
$$T_{res} = \left(\frac{1}{2}C_{d}A_{fr}\rho_{air}V^{2}(t) + \mu_{r}m_{b}g\right) \times R_{tire}$$



Powertrain System - 12

Performance analysis: Maximum speed

• Calculation $V_{\max} = \int \frac{\left(T_{drv} - T_{res}\right)}{J_{eq}} dt \times R_{tire} = \frac{R_{tire}}{J_{eq}} \left(T_{drv} \left(V_{\max}\right) - T_{res} \left(V_{\max}\right)\right) > 0$ therefore $T_{drv} \left(V_{\max}\right) - T_{res} \left(V_{\max}\right) > 0$ $V_{\max} = \frac{\omega_{\max}}{GR_{h}} \times R_{tire} \quad \text{GR is minimum ratio at highest speed (ex: 6th speed)}$

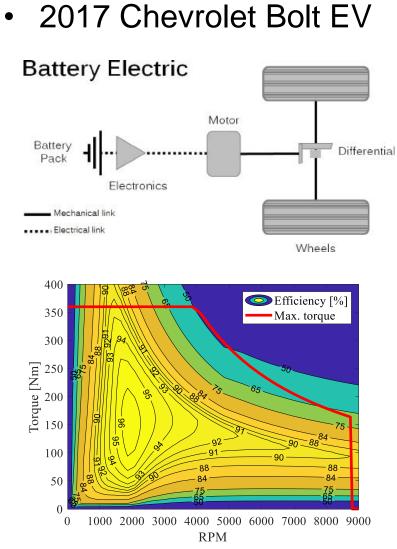
$$T_{drv} - T_{res} = (T_{eng}(\omega_{max}) + T_{mot}(\omega_{max})) \times GR_h - \left(\frac{1}{2}C_dA_{fr}\rho_{air}V_{max}^2 + \mu_r m_bg\right) \times R_{tire} > 0$$

Powertrain System - 13

Performance analysis: Ascendable slope

• Calculation

$$V = \int \frac{(T_{drv} - T_{res})}{J_{eq}} dt \times R_{tire} = \begin{bmatrix} R_{tire} \\ J_{eq} \end{bmatrix} (T_{drv}(0) - T_{res}(0)) = 0$$
therefore $T_{drv}(0) = T_{res}(0)$


$$T_{drv} = (T_{eng}(0) + T_{mot}(0)) \times GR_{l} \qquad \text{GR is maximum ratio at lowest speed (1st speed)}$$

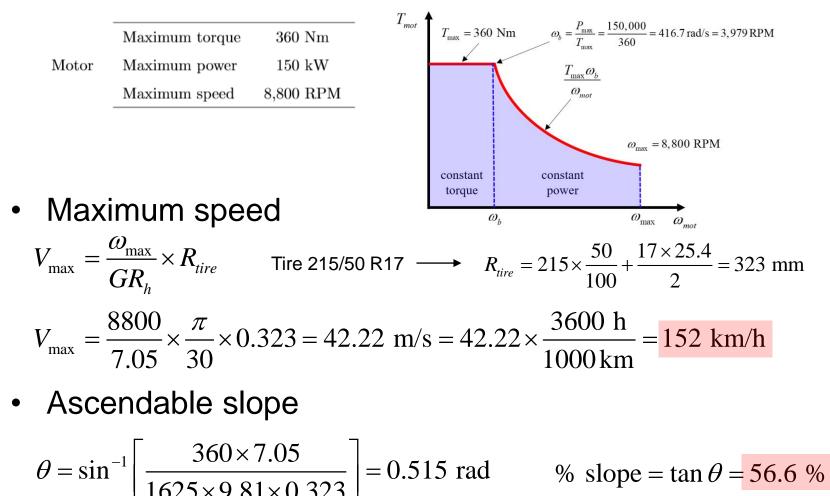
$$T_{res} = (\mu_{r}m_{b}g\cos\theta + m_{b}g\sin\theta) \times R_{tire} \approx m_{b}g\sin\theta \times R_{tire} \text{ (if theta is large value)}$$

$$\theta = \sin^{-1}\left[\frac{(T_{eng}(0) + T_{mot}(0)) \times GR_{l}}{m_{b}g \times R_{tire}}\right]$$
EXEQUEST AN EVALUATE THE Sector of the se

Powertrain System - 14

Example (1)

Item		Specification
Vehicle mass		$1,\!625~\mathrm{kg}$
Frontal area		$2.397~\mathrm{m}^2$
Drag coefficient		0.308
Tire		$215/50 \ R17$
Final gear ratio		7.050
Motor	Maximum torque	$360 \mathrm{Nm}$
	Maximum power	150 kW
	Maximum speed	8,800 RPM
Battery	Voltage	350 V
	Capacity	60 kWh


BASE BATTERY MEASUREMENTS

	Chevrol	et Bolt EV
Capacity (kWh)	60	
Output (hp)	200	
Output (lb-ft)	266	
Range (mi)	238	
Max Charging Rate	DC Fast (90 mi / 30 min)	
0-60 mph (sec)	6.5	
Top Speed (mph)	93	150 km/h
Pre-Incentive Base Price (USD)	\$37,495	

CAE

Example (2)

Maximum motor torque curve

