Classification (1)

[ Theoretical
Mechanics < Applied _
Computational
| Experimental
Nanomechanics
Micromechanics

Solids and Structures

physical scale

Computational Mechanics

> <

Continuum mechanics< Fluids

Multiphysics
 Systems
- Statics {Time Invariant {Linear
Computational Solid and Structural Mechanics —2<t2efeets Quasi-static Nonlinear

Dynamics
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Classification (2)

Sptial Discretization -

FEM Formulation <

Primary Unknown Variable Choice+

| Template Formulation

Displacement
Force
Mixed

CAE

| Hybrid

Finite Element Method (FEM)
Boundary Element Method (BEM)
Finite Difference Method (FDM)
Finite Volume Method (FVM)
Spectral Method

| Mesh-Free Method

(Mechanics of Materials (MoM) Formulation
Convential Variational Formulation

Advanced Variational Formulation

<> Solution ChoiceX

Stiffness
Flexibility

\Combined
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What is a Finite Element?

« Archimedes’ problem (circa 250 BC): rectification of
the circle as limit of inscribed regular polygons
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FIGURE 1.2. The “find 7™ problem treated with FEM concepts: (a) continuum object. (b) a discrete
approximation by nscribed regular polygons. (¢) disconnected element. (d) generic element.
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Physical FEM
model-based simulation of physical systems
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- Ideal — ;  yelevant
» Mathematical |
. I
i model |
E
CONTINUIFICATION = SOLUTION

Physical Discrete \" \ Discrete

system / model solution

IDEATTZATION & VERIFICATION

DISCRETIZATION solution error

simulation error: modeling & solution error

Model updating VALIDATION

P]l}’Si{fal Expel'ime]]tal FEM Pﬂl'ﬂ.ﬂlf‘tl'iZf_‘d Discrete
discrete

system database solution

model

EXPERIMENTS | simulation error
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Mathematical FEM
numerical approximation to mathematical problems

Discretization & solution error

VERIFICATION

IDEALIZATION I REALIZATION

SOLUTION

Ideal Discrete Discrete

Ph}’st*il‘ al : model = solution
system

IDEALTZATION &

DISCRETIZATION VERIFICATION

solution error

ocassionally relevant

I T M-ﬂ_M“H R T VD P (N S VD P T G G T R M“-lﬁﬂ?

i O Y M L B O
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Synergy of Physical and Mathematical FEM

(intermediate levels omitted)
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|dealization Process for a Simple Structure

: member
Physical System

support

Idealized and
Discrete System
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Physical Interpretation

« Breakdown (disassembly, tearing, partition,
separation, decomposition) of structural system into
components (elements) and reconstruction by the
assembly process

« Mechanical response of an element is characterized
in terms of a finite number of degrees of freedom

— DOF: values of the unknown functions as a set of node
points
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Mathematical Interpretation

* Numerical approximation of a boundary value
problem by Ritz-Galerkin discretization with functions

of local support
« geometry of Q) is only approximated by that of UQ(®©

« unknown function (or functions) is locally
approximated over each element by an interpolation
formula

— shape functions: states of the assumed unknown function(s)
determined by unit node values
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Stiffness and Deflection Analysis of Complex
Structures

M. J. TURNER,* R. W. CLOUGH,t H. C. MARTIN,{ anp L. J. TOPP*

Ansrracr

A mcthod is developed for caleolating stifiness influsnce co-
efficients of complex shell-Type structures.  The object is to pro-
vide s method that will vield structural data of sufficient accuracy
Lo be adequate for subseguent dynamic and acreclastic analyses.

Stiffness of the complete structure is obtained by summing
stifinesses of individual uwnits,  Stilfnesses of typical structural
componcnts are derived in the paper. B conditions of con-
tinuity and equilibrium arc established at selected points (nodes)
in the structure.  Tncreasiug the muunber of nodes inereases the
acenracy of results. Aoy physically possthle support conditions
can be taken into account.  Details in selting up the analysiy can
be performed by noneagineering trained personnel; caloulations
arc convenicatly carried out on automatic digital computing
oguipment.

Method is illustrated by application to a simple truss, a fAat
plite, sodd & box beam.  Duc to shear lag and gpar web deflection,
the box beamn has a 23 per cent greater defleetion than predicted
from beam theory. 1t is shown that the propused wmethod cor-
rectiy accounts for these effects.

Considerable extension of the material presented in the paper
is possible.

(1} IrRODUCTION

PRESENT CONFIGURATION TRENDS in the design of
high-speed  aircraft have created a number of
difficult, fundamental structural problems for the
worker in aervelasticity and structural dynamics. The
chiel problem in this calegory is lo predict, for a given
elastic structure, a comprehensive set of load-deflection
relations which can sorve as structural basis for dynamic
load ecaleulations, theoretical wibration and flutter
analyses, estimation of the cffects of structural deflee-
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#* Structures Engineer, Stractural Dynamies Unit, Boecing Air-
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I

tion on static air loads, and theoretical analvsis of aero-
elastic effects on stability and control.  This is a prob-
lem of exceptional difficulty when thin wings and tail
surfaces of low aspect ratio, either swept or unswept,
are involved,

it is recognized that camber bending (or rib bending)
is a significant feature of the vibration modes of the
newer configurations, even of the low-order mades;
in order to encompass (hese characteristics it seems
likely that the load-deflection rclations of a practical
siructure must be expressed in the form of either de-
flection or stilfoess influence coefficients. One ap-
proach is to employ structural models and to determine
the influence coefficients experimentally; it iz antici-
pated that the experimental method will be employed
extensively in the future, either in Hew of or as a final
check on Lhe result of avalysis. However, elaborate
models are expensive, they take a long time to build,
and tend Lo beeone obsolete because of design changes;
for these reasous it is considered cssentizl that a con-
tinuing research effort should be applied to the devel-
opment of analytical methods.
that modern developments in high-speed digital com-
puting machines will make possible a more fundamental
approach to the problems of structural analysis; we
shall expect o base cur analysis on a more realistic
and detailed conceplual madel of the real structure
than has been used in the past.  As indicated by the
titie, the present paper is exclusively concerned with
methads of theoretical analysis; also it is our ohject to
outline the development of a method that is well
adapted to the nse of high-speed digital computing
machinery,

(1) Revew or Exstive MreTnops o STRUCTURAL

ANALYSIS

(1} Elementary Theories of Flexure and Tarsion

The limitations of these venerable theories arc too
well known to justify extensive conuuent. They arc

It is to be expected
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* Divide the solution domain into simply shaped
regions or elements

« Develop an approximate solution for the PDE for
each element

« Generate total solution by linking together, or
“assembling,” the individual solutions taking care to
ensure continuity at the interelement boundaries
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Finite Element Method

* General PDE:L(u) —f =0

* Assumethat u= 1 =), u;p; (1)
Where @); is a set of basis functions.

(1) is a Fourier Prise ; 0y 153
ex0ansion polynom in constant value
P each mesh cell for each
cell/node
Spectral Finte _ Finite
methods elements ®; is piecwise volume
constant
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Discretization

Line element

(a) One-dimensional

Node

Nodal line

Quadrilateral Triangular
element ) element
(b) Two-dimensional
Hexahedron
element

Nodal plane

(¢) Three-dimensional

CAE

FEM-overview - 13



CAE

Element Equations

Must choose an appropriate function with unknown
coefficients that will be used to approximate the
solution.

Evaluation of the coefficients so that the function
approximates the solution in an optimal fashion

Choice of Approximation Functions:

— For one dimensional case the simplest case is a first-order
polynomial: u(x)=a,+a,x

Obtaining an Optimal Fit of the Function to the

Solution

— Most common approaches are the direct approach, the
method of weighted residuals, and the variational approach
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Node 1 Node 2

(a)
.
It I
u, =a,+ax u, =u(x,)
W2
u, =a,+ax, u, =u(x,)
Using Cramer's rule
b
bRty TR0 iy Ty )
a, = and a, = ——
Wy T Xy =X 1 N,
ux, —u,x, U, —u X,—X X—X
u=ag,+ax=——2—214 2 1y-"3 "4+ 14
X, — X, X, — X, X, — X, X, — X,
X,—X X—X (c)
u=Nu +N,u, where N,=—— N, =—"1
X, =% X =X N, 1
du dN, dN,
— = u, +—u,
dx  dx d.
Xy Xy ; .
J. udxzj (N, + Nyu, ) dx 2 2
X X
(d)
CAE
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« Mathematically, the resulting element equations will
often consists of a set of linear algebraic equations
that can be expressed in matrix form:

[k]{uf ={F}
| k] = an element property or stiffness matrix

{u} = a column vector of unknowns at the nodes

{F } = a column vector reflecting the effect of any external influences applied at the nodes
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