Contents

- Shape Functions
 - Requirements
 - Direct Fabrication
 - Triangular Element
 - Quadrilateral Element
 - Hierarchical Corrections
- Convergence Requirements
 - Variational Index
 - Consistency Requirements
 - Stability

Shape Function Requirements

- (A) Interpolation
 - Takes a unit value at node i, and is zero at all other nodes
- (B) Local Support
 - Vanishes over any element boundary (a side in 2D, a face in 3D) that does not include node *i*
- (C) Continuity (Intra- & Inter-Element)
 - Satisfies C⁰ continuity between adjacent elements over any element boundary that includes node *i*
- (D) Completeness
 - The interpolation is able to represent exactly any displacement field which is a linear polynomial in x and y; in particular, a constant value

Direct Construction of Shape Functions: Are Conditions Automatically Satisfied?

- (A) Interpolation
 - Yes: by construction except scale factor
- (B) Local Support
 - Yes: by construction except scale factor
- (C) Continuity (Intra- & Inter-Element)
 - No: a posteriori check necessary
- (D) Completeness
 - Satisfied if (B,C) are met and the sum of shape functions is identically one

products of fairly simple polynomial expressions in the natural coordinates :

 $N_i^e = c_i L_1 L_2 \cdots L_m$

 $L_k = 0$: equations of "lines" expressed in natural coordinates that cross all nodes except *i*

Rules

- R1: Select the L_j as the minimal number of lines or curves linear in the natural coordinates that cross all nodes except the *i* th node. Primary choices in 2D are the element sides and medians.
- R2: Set coefficient c_i so that N_i has the value 1 at the *i* th node.
- R3: Check that N_i vanishes over all element sides that do not contain node *i*.
- R4: Check the polynomial order over each side that contains node *i*. If the order is *n*, there must be exactly *n* + 1 nodes on the side for compatibility to hold.
- R5: If local support (R3) and interelement compatibility (R4) are satisfied, check that the sum of shape functions is identically one.

Three Node Linear Triangle

(A)
$$N_i^e = c_i L_i = c_i L_{j-k} = c_i \zeta_i \quad (\zeta_i = 0 \text{ over side } j - k)$$

(B) $c_i = 1 \quad (N_i^e = c_i \zeta_i = 1 \text{ at node } i)$

(C) variation of ζ_i along the 2 sides meeting at node *i* is linear and that there are two nodes on each side

(D)
$$N_1^e + N_2^e + N_3^e = \zeta_1 + \zeta_2 + \zeta_3 = 1$$

Six Node Quadratic Triangle: Corner Node

Therefore the polynomial order over each side is 2.

Because there are three nodes on each boundary, the compatibility condition is verified.

(D)
$$\sum_{i=1}^{6} N_i^e = 1$$

Shape Functions and Convergence - 6

Six Node Quadratic Triangle: Midside Node

(A)
$$N_4^e = c_4 L_{2-3} L_{1-3} = c_4 \zeta_1 \zeta_2$$

(B) $N_1^e (\zeta_1, \zeta_2, \zeta_3) = N_1^e (\frac{1}{2}, \frac{1}{2}, 0) = c_4 (\frac{1}{2}) (\frac{1}{2}) = 1 \rightarrow c_4 = 4 \rightarrow N_1^e = 4 \zeta_1 \zeta_2$

(C) Over each one the variation of N_4^e is quadratic in ζ_1 and ζ_2 . Therefore the polynomial order over each side is 2.

Because there are three nodes on each boundary, the compatibility condition is verified.

(D) $\sum_{i=1}^{6} N_i^e = 1$

Cubic Triangle (Exercise 18.1)

Four-Node Bilinear Quadrilateral

(A)
$$N_1^e(\xi,\eta) = c_1 L_{2-3} L_{3-4} = c_1 (\xi - 1)(\eta - 1) = c_1 (1 - \xi)(1 - \eta)$$

(B) $N_1^e(-1,-1) = c_1 (2)(2) = 1 \rightarrow c_1 = \frac{1}{4} \rightarrow N_1^e = \frac{1}{4}(1 - \xi)(1 - \eta)$

(C) Over side $1-2(\eta = -1) N_1^e$ is a linear function of ξ .

Over side 1-4($\xi = -1$) N_1^e is a linear function of η .

Therefore the polynomial order over both sides is 1.

Because there are two nodes on each boundary, the compatibility condition is verified.

(D)
$$N_i^e = \frac{1}{4} (1 + \xi_i \xi) (1 + \eta_i \eta) \rightarrow \sum_{i=1}^4 N_i^e = 1$$

Shape Functions and Convergence - 9

Nine-Node Biquadratic Quadrilateral (1)

Nine-Node Biquadratic Quadrilateral (2)

(A)
$$\begin{cases} \text{corner: } N_{1}^{e}(\xi,\eta) = c_{1}L_{2-3}L_{3-4}L_{5-7}L_{6-8} = c_{1}(\xi-1)(\eta-1)\xi\eta \\ \text{midside: } N_{5}^{e}(\xi,\eta) = c_{5}L_{2-3}L_{1-4}L_{6-8}L_{3-4} = c_{5}(\xi-1)(\xi+1)\eta(\eta-1) = c_{5}(1-\xi^{2})\eta(1-\eta) \\ \text{center: } N_{9}^{e}(\xi,\eta) = c_{9}L_{1-2}L_{2-3}L_{3-4}L_{4-1} = c_{9}(\xi-1)(\eta-1)(\xi+1)(\eta+1) = c_{9}(1-\xi^{2})(1-\eta^{2}) \\ \end{cases}$$
(B)
$$\begin{cases} \text{corner: } N_{1}^{e}(-1,-1) = c_{1}(2)(2)(-1)(-1) \rightarrow c_{1} = \frac{1}{4} \rightarrow N_{1}^{e} = \frac{1}{4}(\xi-1)(\eta-1)\xi\eta \\ \text{midside: } N_{5}^{e}(0,-1) = c_{5}(1)(-1)(2) \rightarrow c_{5} = -\frac{1}{2} \rightarrow N_{5}^{e} = -\frac{1}{2}(1-\xi^{2})\eta(1-\eta) \\ \text{center: } N_{9}^{e}(0,0) = c_{9}(1-\xi^{2})(1-\eta^{2}) = c_{9}(1)(1) \rightarrow c_{9} = 1 \rightarrow N_{9}^{e} = (1-\xi^{2})(1-\eta^{2}) \end{cases}$$

(C) The polynomial order of N_i^e over any side that belongs to node *i* is two. Because there are three nodes on each side, the compatibility condition is verified.

(D)
$$\sum_{i=1}^{9} N_i^e = 1 \leftarrow \text{Exercise 18.3}$$

Nine-Node Biquadratic Quadrilateral (3)

Shape Functions and Convergence - 12

Eight-Node "Serendipity" Quadrilateral

Because there are three nodes on each side, the compatibility condition is verified.

(D)
$$\sum_{i=1}^{8} N_i^e = 1 \leftarrow \text{Exercise 18.4}$$

Shape Functions and Convergence - 13

Can the Magic Wand Fail? Yes

(A)
$$N_1^e(\xi,\eta) = c_1 L_{2-3} L_{3-4} L_{2-5-4} = c_1(\xi-1)(\eta-1)(\xi+\eta) = c_1(1-\xi)(1-\eta)(\xi+\eta)$$

(B) $N_1^e(-1,-1) = c_1(2)(2)(-8) = 1 \rightarrow c_1 = -\frac{1}{8} \rightarrow N_1^e = -\frac{1}{8}(1-\xi)(1-\eta)(\xi+\eta)$

It violates (C) along sides 1-2 and 4-1, because it varies quadratically over them with only two nodes per side

 \Rightarrow hierarchical correction approach, which employs a combination of terms

$$N_i^e = \underbrace{c_i L_1^c L_2^c \cdots L_m^c}_{im} + \underbrace{d_i L_1^d L_2^d \cdots L_n^d}_{im} \quad (\text{superposition?})$$

lower order element parent element corrective shape function that vanishes at the nodes of the parentelement

Transition Element Example

corner nodes but midnodes only over certain sides

(A) $N_1^e = c_1 L_{2-3} L_{3-4} = c_1 \zeta_1 (\zeta_1 - \zeta_2)$ (B) $N_1^e (1,0,0) = c_1 (1) (1) = 1 \rightarrow c_1 = 1 \rightarrow N_1^e = \zeta_1 (\zeta_1 - \zeta_2)$

(C) Over side $1-3(\zeta_2 = 0) \rightarrow N_1^e = \zeta_1^2$, This varies quadratically but there are only 2 nodes on that side. \rightarrow Fail \rightarrow [Hierarchical Corrections]

start from the shape function for the 3-node linear triangle: $N_1^e = \zeta_1$

apply a correction that vanishes at all nodes but $4: N_1^e = \zeta_1 + c_1 \zeta_1 \zeta_2$ (superposition)

$$N_{1}^{e}\left(\frac{1}{2},\frac{1}{2},0\right) = \frac{1}{2} + c_{1}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = 0 \rightarrow c_{1} = -2 \rightarrow N_{1}^{e} = \zeta_{1} - 2\zeta_{1}\zeta_{2} \quad (D) \sum_{i=1}^{4} N_{i}^{e} = 1 \leftarrow \text{Exercise 18.8}$$

Shape Functions and Convergence - 15

Convergence Requirements for Finite Element Discretization

- Convergence
 - discrete (FEM) solution approaches the analytical (math model) solution in some sense
 - Consistency (Completeness, Compatibility) + Stability
- Consistency (discrete vs. mathematical model)
 - Completeness: individual elements
 - Compatibility (continuity?): element patches
- Stability
 - Rank Sufficiency: individual elements
 - Positive Jacobian: individual elements

Variational Index (m)

- Highest derivative of unknown variable (displacement)

• Bar: m = 1

$$\Pi[u] = \int_0^L \left(\frac{1}{2}u'EAu' - qu\right)dx$$

• Beam: m = 2

$$\Pi[u] = \int_0^L \left(\frac{1}{2}v''EIv'' - qv\right)dx$$

Completeness & Compatibility in Terms of m

- Completeness
 - The element shape functions must represent exactly all polynomial terms of order ≤ m in the Cartesian coordinates. A set of shape functions that satisfies this condition is call m-complete
 - Applies at the element level and involves all shape functions of the element
 - Satisfied if the sum of the shape functions is unity and the element is compatible
- Compatibility (complete finite element mesh)
 - The patch trial functions must be C^(m-1) continuous between elements ["conforming"], and C^m piecewise differentiable inside each element ["finite energy"]
 - Applies at two levels: individual element, and element patch
 - Element with conforming shape function: conforming
 - Conforming element that satisfies finite energy requirement: compatible

Element Patches

• A patch is the set of all elements attached to a given node:

- A finite element patch trial function
 - union of shape functions activated by setting a degree of freedom at that node to unity, while all other freedoms are zero
 - "propagates" only over the patch, and is zero beyond it
- Ex. plane stress: m = 1 in two dimensions
 - any linear polynomial in x, y with a constant as special case
 - patch trial functions must be C⁰ continuous between elements, and C¹ inside elements

Interelement Continuity is the Toughest to Meet

- Simplification: for *matching meshes* it is enough to check compatibility between a *pair of adjacent elements*
 - one in which adjacent elements share sides, nodes and degrees of freedom
 - restrict consideration first to a pair of adjacent elements, and then to the side shared by these elements

Two 3-node linear triangles

One 3-node linear triangle and one 4-node bilinear quad

One 3-node linear triangle and one 2-node bar

Side Continuity Check for Plane Stress Elements

- Polynomial Shape Functions in Natural Coordinates
- Let k be the number of nodes on a side:

- The variation of each element shape function along the side must be of polynomial order k – 1
 - If more, continuity is violated
 - If *less, nodal configuration is wrong* (too many nodes)

2D Nonmatching Mesh Examples

nonmatching nodes, matching nodes but different element types

3D Nonmatching Mesh Examples

Nodes and boundary-quad edges and DOFs match, but element types are different, leading to violation of C⁰ continuity

Nonmatching Meshes in Contact-With-Slip (a Geometrically Nonlinear Problem)

In contact and impact problems, matching meshes are the exception rather than the rule. Even if the meshes match at initial contact, slipping may produce a nonmatching mesh in the deformed configuration.

Nonmatching Meshes in FSI Problem

Two-dimensional model to simulate flow around a thin plate.

If the meshes are independently prepared, node locations will not generally match.

Stability

- Rank Sufficiency
 - Discrete model must possess the same solution
 - Uniqueness attributes of the mathematical model
 - For displacement finite elements:
 - rigid body modes (RBMs) must be preserved
 - no zero-energy modes other than RBMs
 - Can be tested by looking at the rank of the stiffness matrix
- Jacobian Positiveness: positive Jacobian determinant
 - The determinant of the Jacobian matrix that relates Cartesian and natural coordinates must be everywhere positive within the element

- The element stiffness matrix must not possess any zero-energy kinematic modes other than rigid body modes
- This can be checked by verifying that the element stiffness matrix has the correct rank:

– correct rank = # of element DOF – # of RBMs

 A stiffness matrix that has correct rank (a.k.a. proper rank) is called rank sufficient

Rank Analysis of Element Stiffness

- n_F : number of element DOF
- n_R : number of independent rigid body modes
- n_G : number of Gauss points in integration rule for K
- n_E : order of **E** (stress-strain) matrix
- r_C : correct (proper) rank $(n_F n_R)$
- r: actual rank of stiffness matrix
- d: rank deficiency $(r_C r)$

Rank Sufficiency for Numerically Integrated Finite Elements

 $\begin{cases} \text{rank of } \mathbf{K}: r = \min(n_F - n_R, n_E n_G) \\ \text{rank deficiency: } d = (n_F - n_R) - r \end{cases}$

 $\rightarrow n_E n_G \ge n_F - n_R$ plane stress (*n* nodes): $n_F = 2n$, $n_R = 3$, $n_E = 3$ $\rightarrow r = \min(2n - 3, 3n_G)$

Rank Sufficiency for Some Plane Stress iso-P Elements

Element	п	n _F	$n_F - 3$	$\operatorname{Min} n_G$	Recommended rule
3-node triangle	3	6	3	1	centroid*
6-node triangle	6	12	9	3	3-midpoint rule*
10-node triangle	10	20	17	6	7-point rule*
4-node quadrilateral	4	8	5	2	2 x 2
8-node quadrilateral	8	16	13	5	3 x 3
9-node quadrilateral	9	18	15	5	3 x 3
16-node quadrilateral	16	32	29	10	4 x 4

Positive Jacobian Requirement (1)

- Three-node triangle
 - J = 2A (constant): J > 0 → corner nodes must be positioned and numbered so that A > 0 (convexity condition)
- 2D elements with more than 3 nodes
 - proper location of corner nodes

Positive Jacobian Requirement (2)

- For higher order elements
 - proper location of corner nodes is not enough
 - non-corner nodes (midside, interior, etc.) must be placed sufficiently close to their natural locations (midpoints, centroids, etc.) to avoid violent local distortions

Displacing a Midside Node 5 of 9-Node Quad

Positive Jacobian Requirement (3)

Displacing Midside Nodes of 6-Node Equilateral Triangle along midpoint normals

