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Shape Function Requirements

• (A) Interpolation
– Takes a unit value at node i , and is zero at all other nodes

• (B) Local Support
– Vanishes over any element boundary (a side in 2D, a face in 

3D) that does not include node i

• (C) Continuity (Intra- & Inter-Element)
– Satisfies C0 continuity between adjacent elements over any 

element boundary that includes node i

• (D) Completeness
– The interpolation is able to represent exactly any displacement 

field which is a linear polynomial in x and y; in particular, a 
constant value



CAE Shape Functions and Convergence - 3

Direct Construction of Shape Functions:
Are Conditions Automatically Satisfied?

• (A) Interpolation
– Yes: by construction except scale factor

• (B) Local Support
– Yes: by construction except scale factor

• (C) Continuity (Intra- & Inter-Element)
– No: a posteriori check necessary

• (D) Completeness
– Satisfied if (B,C) are met and the sum of shape functions is 

identically one
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Rules 

– R1: Select the Lj as the minimal number of lines or curves linear 
in the natural coordinates that cross all nodes except the i th
node. Primary choices in 2D are the element sides and medians.

– R2: Set coefficient ci so that Ni has the value 1 at the i th node.

– R3: Check that Ni vanishes over all element sides that do not 
contain node i .

– R4: Check the polynomial order over each side that contains 
node i . If the order is n, there must be exactly n + 1 nodes on the 
side for compatibility to hold.

– R5: If local support (R3) and interelement compatibility (R4) are 
satisfied, check that the sum of shape functions is identically one.
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Three Node Linear Triangle
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Six Node Quadratic Triangle: Corner Node
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Six Node Quadratic Triangle: Midside Node
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Cubic Triangle (Exercise 18.1)
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Four-Node Bilinear Quadrilateral
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Nine-Node Biquadratic Quadrilateral (1)
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Nine-Node Biquadratic Quadrilateral (2)
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Nine-Node Biquadratic Quadrilateral (3)
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Eight-Node “Serendipity” Quadrilateral
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Can the Magic Wand Fail? Yes
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Transition Element Example

corner nodes but midnodes only over certain sides
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Convergence Requirements for
Finite Element Discretization

• Convergence
– discrete (FEM) solution approaches the analytical (math 

model) solution in some sense

– Consistency (Completeness, Compatibility) + Stability

• Consistency (discrete vs. mathematical model)
– Completeness: individual elements

– Compatibility (continuity?): element patches

• Stability
– Rank Sufficiency: individual elements

– Positive Jacobian: individual elements
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Variational Index (m)

– Highest derivative of unknown variable (displacement)

• Bar: m = 1

• Beam: m = 2
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Completeness & Compatibility in Terms of m

• Completeness
– The element shape functions must represent exactly all polynomial terms 

of order ≤ m in the Cartesian coordinates. A set of shape functions that 
satisfies this condition is call m-complete

– Applies at the element level and involves all shape functions of the 
element

– Satisfied if the sum of the shape functions is unity and the element is 
compatible

• Compatibility (complete finite element mesh)
– The patch trial functions must be C(m-1) continuous between elements 

[“conforming”], and Cm piecewise differentiable inside each element 
[“finite energy”]

– Applies at two levels: individual element, and element patch

– Element with conforming shape function: conforming

– Conforming element that satisfies finite energy requirement: compatible
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Element Patches

• A patch is the set of all elements attached to a given node:

• A finite element patch trial function
– union of shape functions activated by setting a degree of freedom 

at that node to unity, while all other freedoms are zero

– "propagates" only over the patch, and is zero beyond it

• Ex. plane stress: m = 1 in two dimensions
– any linear polynomial in x, y with a constant as special case

– patch trial functions must be C0 continuous between elements, and 
C1 inside elements
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Interelement Continuity is the Toughest to Meet

• Simplification: for matching meshes it is enough to 
check compatibility between a pair of adjacent elements
– one in which adjacent elements share sides, nodes and 

degrees of freedom

– restrict consideration first to a pair of adjacent elements, and 
then to the side shared by these elements
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Side Continuity Check for Plane Stress Elements

– Polynomial Shape Functions in Natural Coordinates

– Let k be the number of nodes on a side:

• The variation of each element shape function along 
the side must be of polynomial order k − 1
– If more, continuity is violated

– If less, nodal configuration is wrong (too many nodes)
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2D Nonmatching Mesh Examples

nonmatching nodes, matching nodes but different element types
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3D Nonmatching Mesh Examples

Nodes and boundary-quad edges and DOFs match, but 
element types are different, leading to violation of C0 continuity
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Nonmatching Meshes in Contact-With-Slip
(a Geometrically Nonlinear Problem)

In contact and impact problems, matching meshes are the exception 
rather than the rule. Even if the meshes match at initial contact, 
slipping may produce a nonmatching mesh in the deformed configuration.
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Nonmatching Meshes in FSI Problem

Two-dimensional model to simulate flow around a thin plate. 
If the meshes are independently prepared, node locations will not generally match.
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Stability

• Rank Sufficiency
– Discrete model must possess the same solution

– Uniqueness attributes of the mathematical model

– For displacement finite elements:
• rigid body modes (RBMs) must be preserved

• no zero-energy modes other than RBMs

– Can be tested by looking at the rank of the stiffness matrix

• Jacobian Positiveness: positive Jacobian determinant
– The determinant of the Jacobian matrix that relates 

Cartesian and natural coordinates must be everywhere 
positive within the element



CAE Shape Functions and Convergence - 27

Rank Sufficiency

• The element stiffness matrix must not possess any 
zero-energy kinematic modes other than rigid body 
modes

• This can be checked by verifying that the element 
stiffness matrix has the correct rank:
– correct rank = # of element DOF − # of RBMs

• A stiffness matrix that has correct rank (a.k.a. proper 
rank) is called rank sufficient
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Rank Analysis of Element Stiffness

 

:  number of element DOF

:  number of independent rigid body modes

:  number of Gauss points in integration rule for 

:  order of  (stress-strain) matrix

:  correct (proper) rank

:  actual rank
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Rank Sufficiency for Some
Plane Stress iso-P Elements
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Positive Jacobian Requirement (1)

• Three-node triangle
– J = 2A (constant): J > 0  corner nodes must be positioned 

and numbered so that A > 0 (convexity condition)

• 2D elements with more than 3 nodes
– proper location of corner nodes

Displacing a Corner Node 4 of 4-Node Quad

J값계산?
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Positive Jacobian Requirement (2)

• For higher order elements 
– proper location of corner nodes is not enough

– non-corner nodes (midside, interior, etc.) must be placed 
sufficiently close to their natural locations (midpoints, 
centroids, etc.) to avoid violent local distortions

Displacing a Midside Node 5 of 9-Node Quad

J값 계산?
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Positive Jacobian Requirement (3)

Displacing Midside Nodes of 6-Node Equilateral Triangle along midpoint normals

J값 계산? OK


