Topology Optimization

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

예제 문제

 2D structure example: compliance minimization problem volume minimization problem eigenvalue maximization problem

- Practical example: automotive control arm (with manufacturing constraint) volume minimization problem
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 최적설계 문제 정식화 및 최적설계 실행
 ▶ 후처리

차체구조

TOPOLOGY OPTIMIZATION

Copyright © Computational Design Lab. All rights reserved.

TOPOLOGY OPTIMIZATION: NFX

표 5.11.1 목적함수에 따른 문제구성 종류

목적함수	설계 제약조건	관련 해석	제조조건(공통)
정적 컴플라이언스(최소)	부피비	· 선형 정적 해석	
동적 컴플라이언스(최소)	부피비	· 주파수 응답 해석	
부피비(최소)	변위/응력	· 선형 정적 해석	· 성형 방향
		· 주파수 응답 해석	·대칭 조건
		(변위제약)	(1~3축 대칭)
평균 고유치(최대)	부피비	·모드 해석	
부피비(최소)	모드	·모드 해석	

표 5.11.2 재료 보간 방법

	SIMP	RAMP ¹²	1.0
	solid isotropic material with penalization	rational approximation of material properties	0.8
보간식	$k_e(x_e) = x_e^p k_{e0}$	$k_{e}(x_{e}) = \frac{x_{e}}{1 + q(1 - x_{e})} k_{e0}$	0.0 p=1.0 or q=0.0
미분식	$\frac{\partial k_e}{\partial x_e} = p x_e^{p-1} k_{e0}$	$\frac{\partial k_e}{\partial x_e} = \frac{1+q}{\left[1+q\left(1-x_e\right)\right]^2} k_{e0}$	0.2 0.4 0.2
관련해석	선형 정적	모달, 주파수 응답	0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Material density, x _e
벌칙계수	$p = 3.0 \sim 4.0$	$q = 5.0 \sim 6.0$	그림 5.11.1 재료보간모델별 밀도에 따른 강성비

TOPOLOGY OPTIMIZATION: NFX

최적화 문제 구성

2D STRUCTURE 목적함수: 컴플라이언스 최소화 구속조건: 부피율

기하형상 생성 (1)

						₩OptiStruct 선택
Untitled - HyperMesh 2017.2 - OptiStruct File Edit View Collectors Geometry Mesh Connectors Materials	Properties BCs Setup Tools Morphing D	Intimization Post XYPlots Preferences Applications	Help		- 0	× ()
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			nu p			
Utility Mask Model	User Profiles	×				
	Customize user interface:					
Enter Search String	Application: HyperMech 💌					
	C Default (HyperMesh)	i				
Entities ID 🚯 Include	GRADIUSS Radiom Rediom	2017 🛨				
	C Abaqus Standard	30 🔪				i i
	C Actran					i i
	C Exodus	D				i
	C LiDyna Keyword	971_R8.0 ×				
	C Marc Marc3D	<u>vu v</u>				
	C Nastran Nastran	ASC ·				
	C Permas	K2G2016 <u>→</u>				
	C Samoef					
	Always show at start-up					
	OK	Cancel				
.						
Name Value						i i
	v					i
		\ \				1
		Ilser Profiles	×]		
	₹ ×	User Promes	~		2	
	866654	Customize user interface:		*		
	nodes	Application: HyperMesh	•	solids	quick edit @ Geom	
	temp nodes			nibs	pointedit C 1D	
	distance	C Default (HyperMesh)			autocleanup C 3D C Apalysis	
		C RADIOSS	Radioss2017 💌		C Tool	
]	 OptiStruct 			(* Post	
		C Abaqus	Standard3D *			
		C Actran]			i
		C Ansus				Ì
		C Exedus				Ι
		CLD	Sierra_SD 👻			I
		 LsDyna 	Keyword971_R8.0 💌			
		C Madymo	Madymo70 👻			
		C Marc	Marc3D 👻			
		C Nastran	NastranMSC +			
		C Pamorash	Pamerash262016			
		C Permas				
		C Samost				
		> Samcer				i i
		Always show at start-up				
						l
			OK 2 jel			I
			······································			I

기하형상 생성 [2]

Copyright © Computational Design Lab. All rights reserved.

재료 물성 및 특성 입력

P			
-		· · · ·	
Er	iter Search String		Q, ~ *
F	- •	👫 🔷 - 👘 - 🗟 🛁	
En	itities		.,
+	- 🔍 Assembly Hiera	rchv	
Ē	Components (1)	
Ē	- 🉀 Materials (1)	·	
	steel	1 0	
÷	- 📋 Titles (1)		
Na	ime	Value	Ţ
Na	ame Solver Keyword	Value MAT1	
Na	me Solver Keyword Name	Value MAT1 steel	
Na	ame Solver Keyword Name ID	Value MAT1 steel	Ĭ
Na	ame Solver Keyword Name ID Color	Value MAT1 steel 1	,
Na Q	ame Solver Keyword Name ID Color	Value MAT1 steel 1	,
Na 2 ((ame Solver Keyword Name ID Color Include	Value MAT1 steel 1 [Master Model]	,
Na Q	ame Solver Keyword Name ID Color Include Defined	Value MAT1 steel 1 [Master Model]	Ţ
Na	ame Solver Keyword Name ID Color Include Defined Card Image	Value MAT1 steel 1 [Master Model] [V] MAT1	Ĩ
Na	ame Solver Keyword Name ID Color Include Defined Card Image User Comments	Value MAT1 steel 1 [Master Model] [V] MAT1 Hide In Menu/Export	
Na Q	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E	Value MAT1 steel 1 [Master Model] WAT1 Hide In Menu/Export 210000.0	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G	Value MAT1 steel 1 [Master Model] [V] MAT1 Hide In Menu/Export 210000.0	,
Na	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU	Value MAT1 steel 1 [Master Model] [V] MAT1 Hide In Menu/Export 210000.0	
Na	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU NU	Value MAT1 steel 1 (Master Model] MAT1 Hide In Menu/Export 210000.0	
Na	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU NU	Value MAT1 steel 1 Master Model] W MAT1 Hide In Menu/Export 210000.0	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G G NU RHQ A TEFE	Value MAT1 steel 1 Master Model] MAT1 Hide In Menu/Export 210000.0	Ĭ
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU RHO A TREF C	Value MAT1 steel 1 Master Model] MAT1 Hide In Menu/Export 210000.0	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G G NU NU A TREF GE	Value MAT1 steel 1 [Master Model] I MAT1 Hide In Menu/Export 210000.0 0.3	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G User Comments E G R NU RHC A TREF GE ST	Value MAT1 steel 1 Master Model] MAT1 Hide In Menu/Export 21000.0	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU RHO A TREF GE ST SC	Value MAT1 steel 1 Master Model] MAT1 Hide In Menu/Export 210000.0 0.3	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G Sat Image NU RHO A TREF GE ST SC SS	Value MAT1 steel 1 [Master Model] ☑ MAT1 Hide In Menu/Export 210000.0 0.3	
	ame Solver Keyword Name ID Color Include Defined Card Image User Comments E G NU RHC A TREF GE ST SC SS SS	Value MAT1 steel 1 Master Model] MAT1 Hide In Menu/Export 210000.0 0.3	

E Materials (1)	(1)			
Steel		1 🔲	0	
Titles (1)				
	Create	×.	Assembly	
	Expand All		Beam Section Collector	
	Collanse All		Beamsection	
	condpoortin		Block	
	Configure Bro	wser	Component	
			Contact	
			Contact Surface	
			Cross Section	
Name Value			Curve	
			Feature	
			Field	
			Group	
			Include File	
			Laminate	
			Load Step	L
			Luau Step Material	L
			Multibodu	L
			Output Block	L
			Parameter	L
			Plot	L
			Ply	L
			Property	L
			Region	
			Rigid Body	
			Sensor	

우클릭, Create > Material Name > steel 탄성계수(E) > 210 Gpa (210000 N/mm²) 푸아송비(NU) > 0.3 재료 생성

2 Create > Property Card Image > PSHELL Material > steel T > 1mm Name > 2D

요소망 생성

DESIGN VARIABLE SETTING

→ Design variable

- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

Analysis > optimization > topology

RESPONSE SETTING (1)

- \rightarrow Design variable
- → Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

Analysis > optimization > Responses

RESPONSE SETTING (2)

- \rightarrow Design variable
- → Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

<u> </u>	• [response =	Wcomp				
5_	≑ ▼	response typ weighted co	oe mp		loadsteps	K	
	-				·		
			V lo	adstep1	¥	1.	0 0 0

Analysis > optimization > Responses

OBJECTIVE SETTING

- \rightarrow Design variable
- \rightarrow Responses
- → Objective
- \rightarrow Dconstraints
- \rightarrow Opti control

min

response =

CONSTRAINTS SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective
- → Dconstraints
- \rightarrow Opti control

Analysis > optimization > Dconstraints

CONTROL SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

ഷ				_			
1		DESMAX=	50		$\overline{\mathbf{v}}$	OBJTOL=	0.005
\bigcirc		MINDIM=	0.000	•		DELSIZ=	0.500
		MATINIT=	0.600			DELSHP=	0.200
		MINDENS=	0.010			DELTOP=	0.500
	V	DISCRETE=	3.000			GBUCK=	0
		CHECKER=	1			MAXBUCK=	10
		MMCHECK=	0			DISCRT1D=	1.000

2D STRUCTURE (다중 하중) 목적함수: 컴플라이언스 최소화 구속조건: 부피율

다중 하중 조건

• Combined load vs. Multiple loads

2001, O. Sigmund, "A 99 line topology optimization code written in Matlab", *Struct. Multidisc. Optim.*, Vol. 21 2008, F. Wein, "Topolgy Optimization Using the SIMP Method", Presentation at LSE

Copyright © Computational Design Lab. All rights reserved.

Copyright © Computational Design Lab. All rights reserved.

2D STRUCTURE 목적함수: 부피 최소화 구속조건: 변위

하중조건 변경

DESIGN VARIABLE SETTING

→ Design variable

- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

Analysis > optimization > topology

RESPONSE SETTING (1)

- \rightarrow Design variable
- → Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

Analysis > optimization > Responses

Volumefrac > create

RESPONSE SETTING (2)

- \rightarrow Design variable
- \rightarrow **Responses**
- \rightarrow Objective
- \rightarrow Dconstraints
- → Opti control

response type

response =

Analysis > optimization > Responses

Y방향(dof2) 변위 > create

OBJECTIVE SETTING

- \rightarrow Design variable
- \rightarrow Responses
- → Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

CONSTRAINTS SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective

→ Dconstraints

 \rightarrow Opti control

Analysis > optimization > Dconstraints Y-displacement \geq -0.1mm create response = disp loadsteps I I ✓ loadstep1

CONTROL SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

ഷ				_			
1		DESMAX=	50		$\overline{\mathbf{v}}$	OBJTOL=	0.005
\bigcirc		MINDIM=	0.000	•		DELSIZ=	0.500
		MATINIT=	0.600			DELSHP=	0.200
		MINDENS=	0.010	_		DELTOP=	0.500
	V	DISCRETE=	3.000			GBUCK=	0
		CHECKER=	1			MAXBUCK=	10
		MMCHECK=	0			DISCRT1D=	1.000

후처리 (1)

Entities	ID (👔 Include		
🕀 💫 Assembly Hierarchy				
🕀 🛜 Components (1)				
🕂 🙀 Design Variables (1)				
	1	0		
🗄 🙀 Load Collectors (2)				
- 🗾 🖽 SPC	1	0		
📖 💋 🖽 load	2	0		
🖨 🔂 Load Steps (1)				
🦾 📥 loadstep1	1	0		
🖶 🙀 Materials (1)				
🗄 😡 Objectives (1)				
	1	0		
🚊 🙀 Optimization Constraints (1)	_			
i ∐∦ disp	1	0		
🖻 \overline ன Optimization Controls (1)			-	
🖬 optistruct_opticontrol	1	0		
📄 🔀 Optimization Responses (2)				
volfrac	2	0		
disp	3	0		
🗄 🏭 Properties (1)				7
🕀 🧊 Titles (1)				
Name				
Solver Keuword DCONS	TR			
Name disp	In			
ID 1				
Master Master	Modeli			
Lower Bound -0.1	in o d o i			
Response (3) disp				
List of Loadsteps 1 Loads	teps			->
PROB				-

Solver Keyword	DCONSTR
Name	disp
ID	1
Include	[Master Model]
Lower Bound	-0.2
Upper Bound	
Response	(3) disp
List of Loadsteps	1 Loadsteps
PROB	

Name	Value
Solver Keyword	DCONSTR
Name	disp
ID	1
Include	[Master Model]
Lower Bound	-0.3
Upper Bound	
Response	(3) disp
List of Loadsteps	1 Loadsteps
PROB	

변위 제약조건 0.1 → 부피율: 51.5%

Contour Plot Displacement(Y) Analysis system - 0.000E+00 - 1.109E-02 - 2.217E-02 - 3.326E-02 - 4.435E-02 - 6.652E-02 - 6.652E-02 - 7.760E-02 - 8.869E-02 - 8.869E-02 - 9.978E-02 Max = 0.000E+00 Grids 5 Min = -9.978E-02 Grids 47 변위 제약조건 0.2 → 부피율: 30.6%

변위 제약조건 0.3 → 부피율: 22.5%

Copyright © Computational Design Lab. All rights reserved.

2D STRUCTURE 목적함수: 고유주파수 최대화 구속조건: 부피율

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

구속조건 변경

3 Material > Rho > 7.85e-9 추가

양 끝 가운데 절점을 핀지지 로 구속조건 설정

0

0

0

0

0

0

0.000

0.000

0.000

0.000

0.000

0 0 0

0

.

=

=

=

=

-

=

=

=

=

=

=

=

SPC

SPC

Tz, Rx, Ry 구속

ਤਮੂਦ ਤੁਮੂਦ ਤੇਅੱਛ ਰੇਮੁੱਟ

Solver Keyword

Name

Color

Include

Defined

Card Image

User Comments

ID

Ε

G

RHO

MAT1

steel

1

~

03.

MAT1

210000.0

7.85e-009

[Master Model]

Hide In Menu/Export

구속조건 및 하중조건 설정

· · · · · · · · · · · · · · · · · · ·		
2 Name	Value	
Solver Keyword	EIGRL	
Name	EIGRL	
ID	2	
Color		
Include	[Master Model]	
Card Image	EIGRL	
User Comments	Hide In Menu/Export	
V1		
V2		
ND	6	
MSGLVL		
MAXSET		
SHFSCL		
NORM	MASS	
0		
()ame	Value	
Solver Keyword	SUBCASE	
Name	loadstep1	
ID	1	
Include	[Master Model]	
User Comments	Hide In Menu/Export	
Subcase Definition		
🗆 Analysis type	Normal modes	~
SPC	(1) spc	
MPC	<unspecified></unspecified>	
METHOD (STBUCT)	(2) EIGBL	

<Unspecified>

<Unspecified>

METHOD (FLUID)

STATSUB (PRELOAD)

DESIGN VARIABLE SETTING

→ Design variable

- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

Analysis > optimization > topology

create

RESPONSE SETTING (1)

- \rightarrow Design variable
- → Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

Analysis > optimization > Responses

Volumefrac > create

→ Responses

freq

- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

response type

frequency

response =

۲

Ŧ

no regionid

.

Mode Number:

FRF based mode identification

Analysis > optimization >

Objective

create

OBJECTIVE SETTING

- \rightarrow Design variable
- \rightarrow Responses
- → Objective
- \rightarrow Dconstraints
- \rightarrow Opti control

CONSTRAINTS SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective

→ Dconstraints

 \rightarrow Opti control

Analysis > optimization > Dconstraints Volfrac \leq 70% create

volf

r a c

response =

CONTROL SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

\mathbf{M}				_	 	
11		DESMAX=	50		OBJTOL=	0.005
\bigcirc		MINDIM=	0.000		DELSIZ=	0.500
		MATINIT=	0.600		DELSHP=	0.200
		MINDENS=	0.010	_	DELTOP=	0.500
	V	DISCRETE=	3.000		GBUCK=	0
	I	CHECKER=	1		MAXBUCK=	10
		MMCHECK=	0		DISCRT1D=	1.000

create

모드 차수	1차	2차	3차
변형 형상			
고유주파수	5757	5832	6304

2D STRUCTURE 목적함수: 컴플라이언스 최소화 구속조건: 부피율 + 대칭조건

하중조건 변경

OBJ = 2.15e-4

제조조건 입력

YZ 대칭

YZ, YZ+ZX 대칭에 대해 수행

제조조건을 부여하는 경우 목적함수가 증가하는 것 확인 (대칭 없는 경우 2.15e-4)

3D STRUCTURE AUTOMOTIVE CONTROL ARM

목적함수: 부피 최소화 구속조건: 변위 + 성형 방향 고려

서스펜션의 종류

BMW NEW 5 SERIES

BENZ E CLASS

<u>차체구조</u>

예제: AUTOMOTIVE CONTROL ARM

기하 형상, 하중 및 경계조건

최적설계 문제 정식화

Objective:	Minimize volume.				
Constraints:	SUBCASE 1 -	The resultant displacement of the point where loading is applied must be less than 0.05mm.			
	SUBCASE 2 -	The resultant displacement of the point where loading is applied must be less than 0.02mm.			
	SUBCASE 3 -	The resultant displacement of the point where loading is applied must be less than 0.04mm.			
Design variables:	Element density (and corresponding stiffness of the element) of each element in the design space.				

기하형상 불러오기

제공한 모델 파일을 열어서 기하형상 확인 메시, 재료 물성 및 특성이 입력되어있음

File Edit View Collectors Geometry Mesh Connectors Materials Properties BCs Setup Tools Morphing Optimization Post XYPlots Preferences Applications Help

구속조건 및 하중조건 설정 [1]

구속조건 및 하중조건 설정 [2]

Analysis > optimization >

topology

create

DESIGN VARIABLE SETTING

→ Design variable

- \rightarrow Responses
- \rightarrow Objective
- \rightarrow Dconstraints
- \rightarrow Opti control

RESPONSE SETTING (1)

- \rightarrow Design variable
- → Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

Analysis > optimization > Responses

Volumefrac > create

disp

- \rightarrow Objective
- \rightarrow **Dconstraints**
- \rightarrow Opti control

response type static displacement

response =

OBJECTIVE SETTING

- \rightarrow Design variable
- \rightarrow Responses
- → Objective
- \rightarrow Dconstraints
- \rightarrow Opti control

CONSTRAINTS SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective

→ Dconstraints

 \rightarrow Opti control

CONTROL SETTING

- \rightarrow Design variable
- \rightarrow Responses
- \rightarrow Objective
- \rightarrow **Dconstraints**
- → Opti control

\mathbf{M}				_	 	
11		DESMAX=	50		OBJTOL=	0.005
\bigcirc		MINDIM=	0.000		DELSIZ=	0.500
		MATINIT=	0.600		DELSHP=	0.200
		MINDENS=	0.010	_	DELTOP=	0.500
	V	DISCRETE=	3.000		GBUCK=	0
	I	CHECKER=	1		MAXBUCK=	10
		MMCHECK=	0		DISCRT1D=	1.000

create

Contour Plot Element Densities(Density) Simple Average 1.000E+00 8.900E-01 6.700E-01 6.700E-01 1.200E-01 1.200E-01 1.200E-01 1.200E-01 Nonce-02 Nonce-02 Nonce-02 Nonce-02 Nin = 1.000E+02 Grids 775			결과 형상 확인 2 Iso > apply
: 💋 - : 💊 👰 By Comp 🗸) 🏟 • 📦 • 🏟 4 📭 🗄	🔎 🛄 🗇 🎯 🦨 🛃	• 👊 🌮 🗑 🛅 🏷 🖓 🥍 🌋 🥮
Result type:	Selection: Components I Resolved in: System Use tracking system Show midside node results	Averaging method: Simple Variation < 30 (%) Averaging Options Use Contour Settings Apply	Current value: 0.2

AUTOMOTIVE CONTROL ARM (VOLUME MINIMIZATION PROBLEM) 제조 조건 추가

제조조건 입력

최적화 결과 비교


```
제조조건 없음
Obj = 0.0867
```


Draw single(z) Obj = 0.1662

Extrusion(z), no twist Obj = 0.1780

Draw split(z) Obj = 0.1294
숙제: 2D 문제

- The steering column bracket holds the steering column at two points (the solid black circle above). When the maximum moment is applied to the steering column, the bracket must react loads at the attachment R as shown.
- Determine the optimal shape of the steel bracket to maximize the stiffness under loads R. The bracket is flat (w=0) and at most 100mm x 100mm

숙제: 3D 문제

- The van shown is supported on three wheels with the fourth wheel unsupported. This condition applies a force downward at the left front suspension (F=4000N). We wish to maximize the stiffness under this load condition for a fixed volume of structural material. The structure is made of a set of interconnected steel beams which are enclosed by the area shown.
- Determine the optimal shape for the four conditions shown below.

