Crashworthiness

Computational Design Laboratory

Department of Automotive Engineering

Hanyang University, Seoul, Korea

목차

- 예제 문제
 - Non-linear joint moment analysis
 - ➤ Mid rail analysis
- 해석 프로세스
 - ▶ 기하형상 생성
 - ▶ 재료 물성 및 특성 입력
 - ▶ 요소망 생성
 - ▶ 구속조건 설정
 - ▶ 하중조건 설정
 - ▶ 해석케이스 정의 및 해석 실행
 - ▶ 후처리

FIRST ORDER ANALYSIS: CRASHWORTHINESS

2004-01-1660

First Order Analysis for Automotive Body Structure Design - Part 3: Crashworthiness Analysis Using Beam Elements

Hidekazu Nishigaki Toyota Central R&D Labs., Inc.

> Noboru Kikuchi The University of Michigan

Copyright © 2003 SAE International

기하 형상 정보

쉘 모델 해석

빔 모델 해석

JOINT MOMENT ANALYSIS

예제: JOINT MOMENT ANALYSIS

• Shell 모델의 등가 강성 계산

HYPERCRASH 실행

Run 클릭

유한요소해석 모델 불러오기

♥ 모델 파일 클릭 후 불러오기 (Week12_Model_01.fem)

재료 물성 입력 (1)

🎙 Piecewise linear(36) 재료

2 재료 물성치 입력 [RHO_I]: 7.85e-6

> [E]: 240 [Nu]: 0.3

재료 물성 입력 (2)

Stress-Strain curve 입력 (마우스 우클릭 후 "Define function" 클릭) ²√"Import curve" 클릭 후 "Material Property.txt" 파일 불러오기 모델에 재료 적용 Function name : New FUNCT

1.500000E-001

3.000000E-001

Undo Reference

A Function Window

¥ ∰ ¥

.08 .16

5.790000E-001

2.895000E-001

.5575 0.000000E+000

.4237

4809

.5008

Validate

특성 입력

SHELL		••••	
ID		2	
Title		New PROP 2	
Local Unit System		None	
[Ismstr] Flag for shell small strain formulation		0: Use value in /D	EF_SHELL
[Ishell] Flag for 4 node shell element formulation		0: Use value in /D	EF_SHELL
[Ish3n] Flag for 3 node shell element formulation		0: use value in /D	EF_SHELL
[Idrill] Flag for drilling degree of freedom stiffness		0: No	
[P_thick_fail] Percentage of through thickness integration		0	
[hm] Shell membrane hourglass coefficient		0	
[hf] Shell out of plane hourglass		0	
[hr] Shell rotation hourglass coefficient		0	
[dm] Shell membrane damping		0	
[dn] Shell numerical damping		0	
[N] Number of integration points through the thickness		0	
[Istrain] Flag to compute strains for post-processing		0: Use valgo /D	EF_SHELL
[Thick] Shell thickness*		1.6	
[Ashear] Shear factor		0	
[lthick] Flag for shell resultant stresses calculation		0: Default set to value defined with /DEF_SHELL	
[lplas] Flag for shell plane stress plasticity		0: Default ny v	alue defined with /DEF_SHELL
Support*		1 items 2	
Close Sa		ve	Cancel

² 모델에 특성 적용

RBE2 생성 (1)

RBE2 생성

Master node 좌표: (200, 25, 40)

₃ Support: X방향 끝단 노드 선택

RBE2 생성 (2)

₩ 새로운 RBE2 생성

2 Master node 좌표: (200, 25, 83.3)

Support: 이전에 만든 RBE2 mater node

구속조건 설정

Boundary condition 생성

완전 구속 설정

구속할 절점 선택

변위조건 설정

접촉조건 설정

LoadCase > Contact Interface클릭, 마우스 우클릭 후 "Multi usage (Type 7) 클릭

² Self Impact 체크

[Stfac]:1

[Gapmin]: 0.9

[Fric]: 0.2

[Mast id]: 모델 선택

해석 케이스 설정

³모델 export (RADIOSS 선택)

해석 실행 (RADIOSS)

Radioss2020 실행

ໃ앞서 제작한 모델 불러온 뒤 Run 클릭

후처리 (1)

후처리 (2)

후처리 (3)

해석 결과 파일 불러오기 (*.h3d 파일)

Reaction Forces 선택, 548번 절점 선택, ¦ X 방향으로의 그래프 확인

그래프 csv파일로 저장

후처리 (4)

후처리 (5)

참고 논문 결과

해석 결과

FIRST ORDER ANALYSIS 빔 요소

예제: JOINT MOMENT ANALYSIS

기하형상 생성 (1)

User Profiles (🙎) 클릭

RADIOSS 선택

기하형상 생성 (2)

3개의 line 생성

(0,0,0) - (0,400,0) (0,400,1) - (150,600,1)(150,600,0) - (150, 1000, 0)

재료 입력

요소망 생성 (1)

<u></u>	
ame	Value
)2/ Solver Keyword	/PROP/BEAM/
UD ID	1
Name	property1
Color	
Include	[Master Model]
Defined	
User Comments	Hide In Menu/Export
Card Image	P3_BEAM
	(1) beamsection1
Regular_OR_encrypted_flag	Regular
L	

<u></u>	<u> </u>		1
3	Name	Value	L
	Solver Keyword	/PART/	į
	ID	1	l
	Name	auto1	l
	Color		į
	Include	[Master Model]	i
	Defined		l
	User Comments	Hide In Menu/Export	į
	Card Image	Part	i
	⊕ Prop_Id	(1) property1	ŀ
	Mat_ld	(1) material1	İ
	·		i

Property 생성 Card Image: P3_BEAM Lage: Beam section 설정

Component에 특성, 재료 설정 Card Image는 Part로 변경

요소망 생성 (2)

1D > line mesh

lines 선택 element size : 500 입력 element config: bar2 선택 property 설정

Orientation: z-axis 설정

조인트 요소 생성 (1)

Joint property 생성 Card Image: P8_SPR_GENE

Mass: 0.0001 Inertia: 0.0001

Tx,Ty,Tz,Rx,Ry: K1 = 1e10

Pz: K1 = 0, fct_ID16 활성화하여 회전 ! 강성 테이블 입력

조인트 요소 생성 (2)

Joint component 생성 후 property 부여

spring2 생성에서 절점 두 개 선택하여 joint 요소 | 생성

조인트 요소 생성 (3)

Temp node: (0,0,1), (150, 1000, 1)

구속조건 설정 (1)

View>Browsers> HyperMesh>Solver 클릭

Solver 탭에서 마우스 우클릭 하여 BCS 생성

3 grnd_ID 우클릭 하여 절점 ; set 생성 ! → 고정 구속할 노드 추가

DOF 1~6 모두 구속

구속조건 설정 (2)

같은 방법으로 반대편 절점은 DOF2 제외하고 ¦ 모두 구속

변위 조건 설정 (1)

fct_ID(T) 우클릭하여 시간-변위 함수 생성

변위 조건 설정 (2)

	Name	Value
	Solver Keyword	/IMPDISP
	ID	3
	Include	[Master Model]
~~	Engineering type	Weighted Constraint
	Туре	IMPDISP
1	grnd_ID	<unspecified></unspecified>
	Title	Loads
	User Comments	Hide In Menu/Export
9	🏠 fct_ID(T)	(2) curve2
	² / Dir	Υ
	System Input Type	Skew System
	skew_ID	<unspecified></unspecified>
	sens_ID	<unspecified></unspecified>
	icoor	0: Cartesian coordinates
	Ascale(X)	
	Fscale(Y)	
	Tstart	0,0
	Tstop	

grnd_ID 클릭하여 set 생성 후 절점 추가

해석 케이스 설정

[ENG_RUN] RunMumber: 1 Tstop: 0.1

[ENG_ANIM_DT] Treq: 0.001

[ENG_ANIM_VECT] | FREAC

해석 실행

모델 export

후처리

MID RAIL ANALYSIS 쉘 요소

모델 불러오기

재료 물성 입력 (1)

🎙 Piecewise linear(36) 재료

2 재료 물성치 입력 [RHO_I]: 7.85e-6

> [E]: 240 [Nu]: 0.3

재료 물성 입력 (2)

Stress-Strain curve 입력 (마우스 우클릭 후 "Define function" 클릭) ²√"Import curve" 클릭 후 "Material Property.txt" 파일 불러오기 모델에 재료 적용

특성 입력

SHELL	•••	••••	
ID		2	
Title		New PROP 2	
Local Unit System		None	
[Ismstr] Flag for shell small strain formulation		0: Use value in /DEF_SHELL	
[Ishell] Flag for 4 node shell element formulation		0: Use value in /DEF_SHELL	
[lsh3n] Flag for 3 node shell element formulation		0: use value in /DEF_SHELL	
[Idrill] Flag for drilling degree of freedom stiffness		0: No	
[P_thick_fail] Percentage of through thickness integration		0	
[hm] Shell membrane hourglass coefficient		0	
[hf] Shell out of plane hourglass		0	
[hr] Shell rotation hourglass coefficient		0	
[dm] Shell membrane damping		0	
[dn] Shell numerical damping		0	
[N] Number of integration points through the thickness		0	
[Istrain] Flag to compute strains for post-processing		0: Use valging /DEF_SHELL	
[Thick] Shell thickness*		1.6	
[Ashear] Shear factor		0	
[lthick] Flag for shell resultant stresses calculation		0: Default set to value defined with /DEF_SHELL	
[lplas] Flag for shell plane stress plasticity		0: Default yalue defined with /DEF_SHELL	
Support*		1 items 2	
Close Sa		ve	Cancel

² 모델에 특성 적용

RBE2 생성

RBE2 생성

Master node 좌표: (150, 1000, 0)

₃ Support: Y방향 끝단 노드 선택

구속조건 설정 (1)

구속조건 설정 (2)

강체 중심 절점은 Y 방향 구 속조건을 제외한 모든 자유 도 구속 (Tx,Tz,Rx,Ry,Rz 구속)

변위조건 설정

Imposed displacement 생성

<mark>2</mark> 시간-변위 그래프 생성 ┆ (0,0), (100,-200)

Support: 앞서 만든 RBE2 요소의 master node 선택

접촉조건 설정

New INTER 1 Self Impact M Local Unit System Formulation 0: Classical 0: Default, set to value defined in /DEFAULT/INTER/TYPE [Istf] Stiffness definition [Ithe] Heat contact [lgap] Gap/element option 0: Default, set to value defined in /DEFAULT/INTER/TYPE [Fpenmax] Maximum fraction of initial penetration [lbag] Vent hole closure when contact 0: Default, set to value defined in /DEFAULT/INTER/TYP [Idel] Node and segment deletion 0: Default, set to value defined in /DEFAULT/INTER/TYP [lcurv] Slave gap with curvature 0: No curvature [ladm] Local curvature flag [Stfac] Scale factor for stiffness [dtmin] Limiting nodal time step [Irem_gap] Flag for deactivating slave nodes if element's 0: Default, set to value defined in /DEFAULT/INTER/TYPI [Irem_i2] Flag for deactivating the slave node, if the sam 0: default, set to the value defined in /DEFAULT/INTER/I [Gapmin] Min. gap for impact activ ▶ [I_BC] Bound, cond. deactivation [Inacti] Stiffness deactiv. (init. penetration) 0: Default, set to value defined in /DEFAULT/INTER/TYP [VisS] Critical damping coeff. on interface stiffness [VisF] Critical damping coeff. on interface friction [Tstart] Start time [Tstop] Stop time [Bumult] Sorting factor 0 [Ifric] Friction formulation [Fric] Coulomb friction 0: Default, set to value defined in /DEFAULT/INTER/TYP [Iform] Friction penalty formulation [Ifiltr] Friction filtering 0: No filtering [sens_ID] Sensor to Activate/Deactivate the interface ffct IDfl Friction coefficient with temperature function id None [AscaleF] Abscissa scale factor on FCT_IDK Ifric ID1 Friction identifier for friction definition for select None [Mast_id] Master surface* Mast_id] Master surface (Advanced selector)

LoadCase > Contact Interface클릭, 마우스 우클릭 후 "Multi usage (Type 7) 클릭

² Self Impact 체크

[Stfac]: 1

[Gapmin]: 0.9

[Fric]: 0.2

[Mast id]: 모델 선택

해석 케이스 설정

<mark>3</mark>모델 export (RADIOSS 선택)

후처리 (1)

참고 논문 결과

해석 결과

후처리 (2)

