비선형 정적 해석

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

선형과 비선형

- ✓ 선형 문제
 - 미소변형
 - 선형의 응력-변형률 관계
 - 해석과정 중 일정한 변위 경계조건
 - 해석과정 중 일정한 작용 하중
- ✓ 비선형 문제
 - 선형문제를 제외한 모든 문제는 비선형문제!
 - 기하비선형: 비선형의 변형률-변위 관계
 - 재료비선형: 비선형의 재료 구성방정식
 - 경계비선형(접촉): 해석과정 중에 변하는 변위 경계조건, 접촉
 - 하중의 비선형성: 종동력 (follow-up loads)

비선형 문제의 종류

비선형 해석의 계산 방법

하중을 분할하여 각 증분 구간에 대해 평형 조건을 만족하는 해를 계산

평형조건식

K_τ :구조물의 접선 강성행렬

ΔU : 증분 변위

ΔP : 증분 하중

빔 모델의 해석 비교 (선형/기하비선형/종동력)

빔 해석 예제

기하형상 - L = 5000 mm 재료 : alloy steel - E = 210 GPa - v = 0.28 하중(F): 3000 kN 이론 해 (선형)

$$\sigma = \frac{My}{I} = 9020 \text{ MPa}$$

$$y_{\text{max}} = \frac{PL^3}{3EI} + \frac{PL}{GA_s} = -2059 \text{ mm}$$

A_s = kA : 유효전단면적

빔 단면 정보 : W360 X 101

Parameter Definition	Value
Dimension (DIM1)	357.000
Dimension (DIM2)	255.000
Dimension (DIM3)	255.000
Thickness (DIM4)	10.500
Thickness (DIM5)	18.300
Thickness (DIM6)	18.300

1D 빔 모델 생성

1D 빔 모델 생성

요소망 생성

구속조건과 힘 생성

비선형 해석 케이스 설정 (1)

비선형 해석 케이스 설정 (2)

	HyperMesh 2017.2 - OptiShuct w Collectors Geometry Mesh Connectors Materials Properties BCs S Control Collectors Geometry Mesh Connectors Materials Properties BCs S Narme ID Color Include Color Include ID Color Include ID Narme ID Color Include Card Image User Comment: NINC NULPARM NULPARM MAXITER CONV EPSU EPSP EPSV MAXLS LSTOL TTE DM	etup Tools Morphing Optimization Post XYPlots Preferences Appl Sollectors (4) spc 1 0 forcs 2 0 NLPARM 3 0 NLDUT 4 0 Value 1 NLPARM 3 [Master Model] NLPARM 3 [Master Model] NLPARM 5 Hide In Menu/Export	plications Help Name Solver Keyword Name ID Color Include Card Image User Comments ■ NINT VALUE ■ SVNONCNV VALUE		Ctrl + F 를 누르고 NLPARM, NLOUT 생성 (혼동하지 않도록 이름 설정) Load Collectors 에 생성된 것을 확인 후 그림과 같이 입력 입력한 값들에 대한 설명 참고
3	DT	Initial load increment. ^[7] No default (Real \geq 0.0)			
	NINT	Number of intervals specifie Default = 10 (Integer > 0)	ied to output inte	ermediate results. ^[2]	
	SVNONCNV	Output the non-convergent Default = YES (YES, NO, or	nt solution flag, if blank)	nonlinear iterations does no	t converge.

÷.

비선형 해석 케이스 설정 (3)

Collectors Geometry Mesh Connectors Materials Properties Mask Model P **F** Q v × 1 1 . 1 i-shape Cards (1) PARAN Components [1] 1 🔲 Dear 0 Load Collectors 1 DE Spc 2 📕 forcs 3 NLPARM 0 NLOUT 4 🔳 0 Load Steps (1) do nonlinea Materials (1) 1 📕 0 TT alloy stee Properties (1) 1 🚺 0 - PBEAML Value Subcase Definit Analysis type Non-linear quasi-s SPC (1) spc LOAD (2) forcs Unspecified NLPARMILGDISP (3) NLPARM SUPORT1 (Unspecified) DEFORM <Unspecified> PRETENSION (Unspecified) (Unspecified) MDC STATSUB (PRETENS) <Unspecified> NLADAPT (Unspecified) NLOUT (4) NLOUT CNTSTB (Unspecified) DLOAD (Unspecified) MOTNIG <Unspecified SUBCASE OPTIONS Boundary Conditions and Solvers

비선형 해석 결과

			🦷 Summary 에서 해석 진행
gnl.fem - HyperWorks Solver View		- 🗆 ×	🏓 상황 확인 가능
Solver: optistruct_2017.2_win64.exe			
Input file: gnl.fem	Job completed		
			₭ Results 클릭
Run command:/hwsolver.tcl -solver OS -screen	/gnl -analysis -optskip		
Message log:	Optimization summary:	Graph	
Messages for the job:	0 -20 Err_EPI_st	1 0.601052	
ANALYSIS COMPLETED.	0 -21 Non1_EUI_st 0 -21 Frr EPL st	2 1.660683E-03	
	0 -21 Meas_EWI_st	2 1.662924E-06	
	0 -22 Err_EPI_st	3 1.262446E-04 3 7.315594E-08	
	0 1 MaxDisp	201_Z -1791.19	
<	> <	>	
Run summary:			
*****	*****	Find:	
The amount of memory allocated for the This run will use in-core processing i MUMPS solver will allocate memory sepa run in different core (in/out) mode.	e run is 830 MB. n the solver. wrately and may		
ANALYSIS COMPLETED.			
==== End of solver screen output ====			
==== Job completed ====			
		~	
<u><</u>	2 Results	View View	

선형/비선형 해석 비교

기하 비선형 해석 결과

비선형 해석의 경우 하중이 가해지지 않은 x방향에도 변 형이 나타난 것을 확인

비선형 해석의 경우 선형 해 석 대비 y방향의 변위, 고정 점의 응력이 낮게 나타남

※ σ_F는 I-beam 의 F점에서 응력을 나타냄

FOLLOWER LOAD (종동력)

변형이 큰 경우, 하중의 방향이 변화하는 것도 고려가 필요함 → 종동력

1D 모델 생성

단면정보 입력, 재료와 특성 생성, 요소망 생성까지 이전 단계와 동일

구속조건 적용

종동력 적용 (1)

종동력 적용 (2)

차체구조

비선형 해석 케이스 설정 (1)

비선형 해석 케이스 설정 (2)

N	ame	Value
	Solver Keyword	NLPARM
	Name	NLPARM
	ID	3
	Color	
	Include	[Master Model]
	Card Image	NLPARM
	User Comments	Hide In Menu/Export
	NINC	
	DT	0.1
	KSTEP	
	MAXITER	
	CONV	
	EPSU	
	EPSP	
	EPSW	
	MAXLS	
	LSTOL	

Nam	e	Value	Name	Value
S	olver Keyword	NLOUT	Solver Keyword	FLLWER
N	lame	NLOUT	Name	FLLWER
IC)	4	ID	5
C	olor	1	Color	
In	nclude	[Master Model]	Include	[Master Model]
С	ard Image	NLOUT	Card Image	FLLWER
U	Iser Comments	Hide In Menu/Export	User Comments	Hide In Menu/Export
ΞN	IINT		OPT	1
	VALUE	10	Number_of_Loadsets	= 0
🗉 S'	VNONCNV			
	VALUE	YES		

NLPARM, NLOUT, FLLWER 를 그림과 같이 설정

Load step 생성 후 analysis type과 생성했던 구속조건, 하중조건, NLPARM, NLOUT 입력

Load step 의 subcase option 에서 FLLWER 체크 후 생성했던 FLLWER load collector 입력 후 해석

Name	Value
Subcase Definition	
🖃 Analysis type	Non-linear quasi-
SPC	(1) spc
LOAD	(2) force
NLPARM	<unspecified></unspecified>
NLPARM(LGDISP)	(3) NLPARM
SUPORT1	<unspecified></unspecified>
DEFORM	<unspecified></unspecified>
PRETENSION	<unspecified></unspecified>
MPC	<unspecified></unspecified>
STATSUB (PRETENS)	<unspecified></unspecified>
NLADAPT	<unspecified></unspecified>
NLOUT	(4) NLOUT
CNTSTB	<unspecified></unspecified>
DLOAD	<unspecified></unspecified>
MOTNJG	<unspecified></unspecified>

Name	Value
TYPE	NLSTAT
CNTNLSUB	
EIGVRETRIEVE	
EIGVSAVE	
ENDLOAD	
🗉 FLLWER	
ID	(5) FLLWER
морсна	
NLMON	
POST	
RADSND	
RESVEC	
SOLVTYP	
TEMP	
TEMP_LOAD	
OUTPUT	
SUBCASE_UNSUPPORTED	

종동력 해석의 경우 하중의 방향이 변화한 것을 확인.

기존 비선형 해석 대비 X,Y의

변위, 응력도 모두 증가함.

선형/비선형 해석 비교

선형 해석 결과

기하 비선형 해석 결과

종동력 해석 결과

Copyright © Computational Design Lab. All rights reserved.

변형 정도에 따라 기하비선형/종동력을 적절히 적용하는 것이 필요함

		선형	기하비선형	기하비선형 (종동력)
수직 응력 (MPa)		9.024e3	8.311e3	8.711e3
변위	X방향	0	-3.969e2	-4.556e2
(mm)	Y방향	-2.061e3	-1.791e3	-1.906e3

SHELL 요소 비틀림 해석 (closed section/spot weld flange)

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © Computational Design Lab. All rights reserved.

- 예제 문제
 - Closed section beam
 - Spot weld flange
- 해석 프로세스
 - ▶ 기하형상 생성
 ▶ 재료 물성 및 특성 입력
 ▶ 요소망 생성
 ▶ 구속조건 설정
 ▶ 하중조건 설정
 ▶ 해석케이스 정의 및 해석 실행
 ▶ 후처리

예제: CLOSED SECTION BEAM

비틀림 강성을 계산하시오

CLOSED SECTION 쉘 요소

기하형상 생성 (1)

기하형상 생성 (2)

재료 물성 및 특성 입력 (1)

재료 물성 및 특성 입력 (2)

요소망 생성

하중조건 및 구속조건 설정 (1)

하중조건 및 구속조건 설정 (2)

하중조건 및 구속조건 설정 (3)

해석 케이스 정의 및 해석 실행 (1)

Load step 생성

Anaylsis type 설정 후 구속 조건과 하중조건 부여

해석 케이스 정의 및 해석 실행 (2)

후처리 (1)

후처리 (2)

차체구조

열린 단면인 경우: 단면 정보

Example: Torsion of beam with open section (p.59)

$$J_{EFF} = \frac{1}{3}t^{3}S = \frac{1}{3}(1mm)^{3}(100mm + 99mm + 141.4mm) = 113.46mm^{2}$$
$$\theta = \frac{TL}{GJ_{EFF}} = \frac{(25e4Nmm)(500mm)}{(78e3N / mm^{2})(113.46mm^{4})} = 14.1rad(803^{\circ})$$

열린 단면인 경우: 해석 결과

강체요소(RBE2) 대신 보간요소(RBE3) 사용

길이 방향 변형 허용을 위해 대각선 부분만 고정

강체요소(RBE2) VS. 보간요소(RBE3)

	RBE2	RBE3
정 의	연결된 절점들 모두 동일한 변위 및 회전	연결된 절점들에 모두 동일한 하중이 분배
차이점	절점들이 모두 동일한 변위 및 회전을 해야 하므로 각 절점에서 발생하는 MPC Force가 다르다.	동일한 하중이 분배되므로 각 절점에서 발생하는 변위 및 회전이 다르다.

앞선 closed section 쉘 요소 예제에 대한 결과 비교

RBE2

RBE3

SPOT WELD FLANGE 쉘 요소

예제: SPOT WELD FLANGE

비틀림 강성을 계산하시오

$$K = \frac{T}{\theta} = \frac{\left(\text{stiffness of closed tube w/o weld flange}\right)}{\left[1 + \frac{3}{4\pi^2(1+\nu)}\frac{p^2}{wS}\right]} \qquad \qquad \psi = \frac{1}{1 + \frac{3}{4\pi^2(1+\nu)}\frac{p^2}{wS}} = \frac{1}{1 + \frac{3}{4\pi^2(1+0.327)}\frac{80^2}{8(200+100\sqrt{2})}} = 0.882$$
$$\theta_{p=80} = \theta \times \frac{1}{\psi} = 5.471 \times 10^{-3} \times \frac{1}{0.882} = 6.205 \times 10^{-3} \text{ rad}$$

$$K_{p=80} = K \times \psi = 45.704 \times 0.882 = 40.297$$
 Nm/rad

단면형상 생성

재료 물성 및 특성 입력

기하형상 생성

요소망 생성 (1)

요소망 생성 (2)

요소망 생성 (3)

요소망 생성 (4)

구속조건 및 하중조건 설정

Load collector 두개 생성 후 문제와 같이 구속조건과 하 중조건 설정 (1D → rigids 사용)

해석 케이스 정의 및 해석 실행

Load step 생성 후 그림과 같이 analysis type과 SPC, LOAD 입력

2 외전변위를 보기 위해 그림 과 같이 체크 후 해석 실행

후처리

연습문제 1: 용접 거리에 따른 영향

연습문제 2

Toyota Yaris 모델의 rocker 단면 해석 (용접 거리에 따른 굽힘/비틀림 영향 확인) (빔의 길이는 800 mm, 요소 크기는 8 mm 로 적용)

해석적인 방법과 유한요소 프로그램으로 다음 문제의 비틀림 강성을 계산하시오 용접 거리에 따른 비틀림 강성을 구하고 해석적인 결과와 비교 분석하시오

재료 물성 및 하중은 예제와 동일

