

OPTISTRUCT FOR LINEAR ANALYSIS, V2019 CHAPTER 5: LINEAR BUCKLING ANALYSIS

AGENDA

- 1. Introduction to Linear Analysis
 - Type of Analysis
 - Type of Elements and Materials
 - Type of Loads & Boundary Conditions
- 2. Linear Static Analysis
- 3. Inertia Relief Analysis
- 4. Modal Analysis
- 5. Linear Buckling Analysis
- 6. Thermal Stress Steady State Analysis

- 7. Advanced Topics
 - Debugging Guide
 - Parameters
 - Transitioning Elements
 - Introduction to Parallelization
 - Run Options
 - Output Management
- 8. Optimization in Linear Analysis
 - OptiStruct Optimization
 - DRCO Approach
 - Setting up Optimization
 - Optimization Responses for Linear Analysis

LINEAR BUCKLING ANALYSIS

Thin structures subject to compression loads that haven't achieved the material strength limits can show a failure mode called buckling.

- This failure can be analyzed using a technique well known as linear buckling analysis.
- Linear buckling is a mathematic tool used to predict the theoretical buckling strength of an ideal elastic structure. It is solved by first applying a reference level of loading, P_{ref}, to the structure.
- A standard linear static analysis is then carried out to obtain stresses which are needed to form the geometric stiffness matrix K_G.

LINEAR BUCKLING ANALYSIS

- This new matrix is evaluated using the initial stiffness matrix augmented by the initial stress matrix corresponding to the load specified in the static load step, multiplied with a factor that is determined such that the resulting matrix has zero as its lowest Eigen frequency.
- The buckling loads are then calculated by solving an eigenvalue problem:

$$\left[\mathbf{K} - \lambda \mathbf{K}_{G}\right]\mathbf{x} = 0$$

• The lowest eigenvalue λ_{Cr} is associated with buckling and the critical or buckling load is:

$$\mathbf{P}_{\rm Cr} = \lambda_{\rm Cr} \mathbf{P}_{\rm Ref}$$

LINEAR BUCKLING ANALYSIS

The problem of linear buckling is solved in two stages:

- A standard linear static analysis is carried out to obtain stresses, which form the geometric stiffness matrix .
- The buckling loads are then calculated by solving the eigenvalue problem.

A subcase requires a STATSUB card for a Buckling Analysis:

HOW TO SETUP A LINEAR BUCKLING ANALYSIS

Solver Keyword

Name

Color

Include File

Card Image

SHFSCL NORM

User Comments

ID

V1 V2 ND MSGLVL MAXSET

Linear buckling analyses can be defined in seven steps:

- Step 1 Generate a FEM model
- Step 2 Set up material and properties
- Step 3 Define the constraint load collector and the BCs
- Step 4 Define the loads
- Step 5 Define the EIGRL card
- Step 6 Define the linear buckling load case
- Step 7 Run and post process the results

File Name and Location

...\STUDENT-EXERCISE\5a_Wing\wing.hm

Objectives (1/2)

This exercise runs a linear buckling analysis on a simple aircraft wing. This is a typical problem in aerospace structures that need to be very light and consequently become slender. Because the structure has a high slenderness ratio, the buckling failure verification becomes necessary.

The objective of this project is to determine if the 3 static load cases applied to the wing will cause failure, the positive buckling factors should be higher than 1.5.

- 1. Open the model in HyperMesh Desktop
- 2. Review the model (control cards, components, properties, materials, load collectors & steps)
- 3. Run the static analysis in OptiStruct, review the results in HyperView and check if
 - Max. static displacement < 20 mm for all load cases.
 - Max. von Mises stress < 70 MPa
- 4. Create a load collector buckling (card image EIGRL) and set the number of desired roots (ND) to 10 and V1 to 0.001

Objectives (2/2)

- 5. Create the buckling load steps for each static load step
- 6. Run the analysis with OptiStruct
- 7. Review the .out file wrt warnings and errors and check if the lowest λ for each buckling subcase is > 1.5
- 8. Review contours of the buckling modes in HyperView

Hints (1/4)

2. To review the model wrt components, properties and materials the component view in the model browser is well suited.

Common control cards requests are set: SCREEN and OUTPUT

There are three static load steps defined:

- (1) pressure on skin
- (2) load on tip
- (3) combination of both using LOADADD card

Entities	ID 😵 In	clude			
🖽 💫 Assembly Hierarchy					
🖨 🔞 Cards (2)					
- 🍘 SCREEN	1	0			
🧼 🖉 OUTPUT	2	0			
😑 💫 Components (2)					
- 💋 🎛 skin	1 📕	0			
🗆 💋 🎛 web	2 📃	0			
🖨 😜 Load Collectors (4)					
- 📁 🚮 constraints	1 📘	0			
📁 🖪 pressure	2 📃	0			
- 📁 🖪 tip_load	3 📕	0			
🗖 🛃 SUM	4 📕	0			
😑 🔂 Load Steps (3)					
- 👍 PRESSURE	1	0			
👍 TIP	2	0			
🛶 🖕 SUM	3	0			
🖻 🗽 Materials (1)					
🔤 🍸 aluminium	1 📘	0			
🗄 💫 Properties (2)					
🏷 skin	1 📘	0			
崎 web	2 📃	0			

Hints (2/4)

- Max. displacement = 13.9 mm (load case SUM) < 20 mm Max. von Mises stress = 12.25 MPa (load case SUM) < 70 Mpa
- 4. Use HyperMesh's Quick Access Tool

(Crtl+f) to create an EIGRL card. Note that with 0.001 as V1 negative buckling factors (i.e. load with opposite direction) are not considered.

eigrl	Q
EIGRL	

Hints (3/4)

5. As the three new linear buckling load steps only differ by STATSUB entry, it is easier to create the first and use duplicate functionality for the others.

Name	Value
Solver Keyword	SUBCASE
Name	BUCK_PRESSURE
ID	4
Include	[Master Model]
User Comments	Hide In Menu/Export
Subcase Definition	
🗏 Analysis type	Linear buckling
SPC	(1) constraints
MPC	<unspecified></unspecified>
STATSUB(BUCKLING)	(1) PRESSURE
METHOD (STRUCT)	(5) buckling
DEFORM	<unspecified></unspecified>
STATSUB (PRELOAD)	<unspecified></unspecified>
SUBCASE OPTIONS	
LABEL	
SUBTITLE	
ANALYSIS	
TYPE	BUCK
EIGVRETRIEVE	
EIGVSAVE	
EXCLUDE	
POST	
RADSND	
RESVEC	
OUTPUT	
SUBCASE UNSUPPORTED	

Vame		Value			
Solv	er Keyword	SUBCASE			
Nan	10	BUCK_TIP	BUCK_TIP		
ID		5			
Inclu	de	[Master Model]		
Use	r Comments	Hide In Menu/	Hide In Menu/Export		
Sub	case Definition				
	nalysis type	Linear buckling	3		
	SPC	constraints			
	MPC	<linspecified></linspecified>			
	STATSUB(BUCKLING)	(2) TIP			
	METHOD (STRUCT)	(5) buckling			
	DEFORM	<unspecified></unspecified>			
	STATSUB (PRELOAD)	<unspecified></unspecified>			
SUE	CASE OPTIONS				
L	ABEL				
S	UBTITLE				
E A	NALYSIS	V			
	TYPE	BUCK			
E	IGVRETRIEVE				
E	IGVSAVE				
E	XCLUDE				
F	OST				
F	ADSND				
F	RESVEC				
C	UTPUT				
S	UBCASE_UNSUPPORTED				

Name	Value			
Solver Keyword	SUBCASE			
Name	BUCK_SUM			
ID	6			
Include	[Master Model]			
User Comments	Hide In Menu/Export			
Subcase Definition				
🖃 Analysis type	Linear buckling			
SPC	(1) constraints			
MPC	<unspecified></unspecified>			
STATSUB(BUCKLING)	(3) SUM			
METHOD (STRUCT)	(5) buckling			
DEFORM	<unspecified></unspecified>			
STATSUB (PRELOAD)	<unspecified></unspecified>			
SUBCASE OPTIONS				
LABEL				
SUBTITLE				
🖃 ANALYSIS				
TYPE	BUCK			
EIGVRETRIEVE				
EIGVSAVE				
EXCLUDE				
POST				
RADSND				
RESVEC				
OUTPUT				
SUBCASE_UNSUPPORTED				

Hints (4/4)

- 6. buckling factors $\lambda_4 = 10.0$, $\lambda_5 = 3.0$, $\lambda_6 = 2.9$, so $\lambda_i > 1.5$
- 7. buckling modes 1 for load steps 4-6

Subcas	se	Compli	ance		Epsi	lon	1	
	1	2.61252	1E+01	1.	- 1773	84E	-11	
	2	2.69707	9E+04	2.	2883	66E	-11	
	3	2.83723	3E+04	8.	7696	68E	-12	
ote :	Eps	silon =	Residu	al	Stra	in	Energy	Ratio.
Subca	se.	Mode B	ucklin	gЕ	igen	val	ue	
	4	1	9.9	981	86E+	01		
	4	2	1.0	053	57E+	02		
	4	3	1.1	658	63E+	02		
	4	4	1.1	804	83E+	02		
	4	5	1.4	145	77E+	02		
	4	6	1.5	121	88E+	02		
	4	7	1.5	382	73E+	02		
	4	8	1.5	634	34E+	02		
	4	9	1.6	234	50E+	02		
	4	10	1.6	774	72E+	02		
	5	1	3.0	217	08E+	00		
	5	2	3.1	304	09E+	00		
	5	3	3.6	078	63E+	00		
	5	4	3.6	870	46E+	00		
	5	5	3.8	453	68E+	00		
	5	6	3.8	999	62E+	00		
	5	7	4.5	228	65E+	00		
	5	8	4.7	424	50E+	00		
	5	9	4.9	322	86E+	00		
	5	10	5.0	062	07E+	00		
	6	1	2.9	357	46E+	00		
	6	2	3.0	382	17E+	00		
	6	3	3.5	256	03E+	00		
	6	4	3.5	752	50E+	00		
	6	5	3.7	339	72E+	00		
	6	6	3.8	040	11E+	00		
	6	7	4.3	827	73E+	00		
	6	8	4.6	432	37E+	00		
	6	9	4.7	853	82E+	00		
	6	10	4.8	891	05E+	00		

Ν

 Δ

QUESTIONS & ANSWERS

- 1. Which of the following describes linear buckling analysis?
 - a) Determining the natural frequency values of a structure undergoing vibration.
 - b) Determining the factor by which a load must be increased before the structure fails due to buckling
 - c) Determining the mode shapes of a structure undergoing vibration.
 - d) None of the above
 - e) a) and c)
- 2. What does a buckling factor less than 1 for a load case signify?
 - a) The structure would buckle under every load case in the analysis run
 - b) The structure will not buckle under at least one load case in the analysis run
 - c) The structure would buckle under the selected load case in the analysis run
 - d) The selected load case is partially reinforcing the structure in the analysis run

