

OPTISTRUCT FOR LINEAR ANALYSIS, V2019 CHAPTER 8: OPTIMIZATION IN LINEAR ANALYSIS

AGENDA

- 1. Introduction to Linear Analysis
 - Type of Analysis
 - Type of Elements and Materials
 - Type of Loads & Boundary Conditions
- 2. Linear Static Analysis
- 3. Inertia Relief Analysis
- 4. Modal Analysis
- 5. Linear Buckling Analysis
- 6. Thermal Stress Steady State Analysis

- 7. Advanced Topics
 - Debugging Guide
 - Parameters
 - Transitioning Elements
 - Introduction to Parallelization
 - Run Options
 - Output Management

8. Optimization in Linear Analysis

- OptiStruct Optimization
- DRCO Approach
- Setting up Optimization
- Optimization Responses for Linear Analysis

OPTIMIZATION IN LINEAR ANALYSIS: DETAILED OVERVIEW

Linear Analysis Optimization

- What is OptiStruct Optimization?
- The DRCO Approach
- Setting Up Optimization
- OptiStruct Responses for Linear Analysis
- Optimization Examples and Demos
- OptiStruct Optimization Summary

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

WHAT IS OPTISTRUCT OPTIMIZATION?

INTRODUCTION TO OPTISTRUCT OPTIMIZATION

Altair OptiStruct contains a wide range of optimization methods which can be used for concept design and fine tuning

Load cases are optimization ready and only require a few additional parameters to set up and run an optimization study

Optimization methods can be used with a wide range of loading types

- Noise & vibration
 - Normal modes, Frequency response, Modal Transient, Random Response, Acoustics
- Linear static, Buckling
- Multi-Body Dynamics, Inertia relief
- Non-Linear, Heat transfer, Fatigue

Multiple simulation types can be combined within a single optimization

WHAT IS OPTISTRUCT OPTIMIZATION?

OptiStruct optimization solves for the optimum value of an objective function based upon the response of the model to its load cases by changing model geometry and properties

- OptiStruct is a gradient-approach optimization platform
- OptiStruct can utilize any of the analysis types available in the HyperWorks suite
- OptiStruct iterates your solution based on responses from your existing model and load cases

CONCEPT-LEVEL OPTIMIZATION TYPES

Topology Given a design envelope, topology optimization finds the optimum material placement within that space according to the constraints and objective

Topography Given a shell structure, topography optimization creates a bead pattern from the elements that meets the constraints and objective

Free Size Given a shell structure, free size optimization finds the optimum thickness on an element-by-element basis that meets the constraints and objective

FINE-TUNING-LEVEL OPTIMIZATION TYPES

Shape Given a structure and a number of user-defined shapes, shape optimization finds the optimum fractional summation of those shapes that meets the constraints and objective.

Size/Gauge Given a structure, size optimization finds the optimum component thickness that meets the constraints and objective.

Free Shape Given a structure with features on its boundaries, free shape modifies the boundary nodes to find a more optimal structure that meets the constraints and objectives

OPTISTRUCT OPTIMIZATION OVERVIEW

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

THE DRCO APPROACH

THE DRCO APPROACH

Optimization in OptiStruct is based upon the "DRCO" approach

Design Variable

- The parameters, properties, or elements that OptiStruct can change to achieve different responses
- Typically either an entire part or a significant part feature

<u>R</u>esponse

- A measurement of an output characteristic of the modeled system
- Empirically sampled via sensor, oscilloscope probe, or computer imaging system

<u>C</u>onstraint

- A numerical limit (either upper or lower limit) applied to a response
- Either specified by external guidelines (MIL-SPEC, FAA, ISO standards), internal project requirements, or computed from physical limitations and characteristics (E, v, α , ρ , μ)

<u>O</u>bjective

- A non-numerical indicator of the ultimate goal of the optimization
- Empirically/traditionally limited by time, monetary or manpower resources, availability of access to data/testing facilities

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

SETTING UP OPTIMIZATION

Optimization entities can be created in HyperMesh in one of three areas

vectors	load types		interfaces	control cards	C Geom
systems	constraints		rigid walls	output block	C 1D
preserve node	equations	temperatures	entity sets	loadsteps	C 2D
	forces	flux	blocks		C 3D
	moments	load on geom	contactsurfs	optimization	Analysis
	pressures		bodies		C Tool
			nsm	OptiStruct	C Post

Optimization Panel

Session	Mask	Model	
— 🗟	S 🖻	5 6 5	
🔁 • 🗒		🗢 - 📂	• 🗟
Entities ID			
	Due		

Model Browser

nectors	Materia <u>l</u> s	<u>P</u> roperties	<u>B</u> Cs	<u>S</u> etup	<u>T</u> ools	Morph <u>i</u> ng	Optimization	P <u>o</u> st	<u>X</u> YPlots	Preferences	<u>Applications</u>	<u>H</u> elp
· · 스	📥 🚖 (4 .	2	·		x t ^z x x ^z t t	z , , z	y ^z x 📄	. 👩 🚬 🧑	5 0 to 0	Mb 🛶

Optimization Menu

Definition of Design Variables

	Optimi <u>z</u> ation	P <u>o</u> st <u>X</u> YPlots Prefe <u>r</u> ences	A						
h	<u>Create</u> Edit ► Assign ►	<u>T</u> opology Desvar T <u>o</u> pography Desvar <u>F</u> ree Size Desvar							
	<u>D</u> elete ► Card Edit ►	Free Shape Desvar <u>C</u> omposite Shuffle Desvar							
	<u>O</u> rganize ► Re <u>n</u> umber ►	<u>C</u> omposite Size Desvar <u>G</u> auge Desvars Size Desvars							
	OptiStruct	S <u>h</u> ape Desvars	l						
	OS <u>S</u> mooth	Desvar Relationships 🔹 🕨	l						
		Desvar <u>L</u> inks	l						
		<u>R</u> esponses	l						
		<u>C</u> onstraints	l						
		O <u>bj</u> ective References Objective							
		Table Fusies	ľ						

Session Mask Model	D Type Info
Create 🔸	Optimization Problem
Edit Assign Set Export Remove From Problem Delete Entities Card Edit Rename XRef Entities Show Hide Ledate	Topology Desvar Topography Desvar Free Size Desvar Composite Shuffle Desvar Composite Shuffle Desvar Gauge Desvars Size Desvars Size Desvars Design Variable Relationships > Desing Variable Links
Isolate Only	Responses
Collapse All Expand All	Constraints Objective References Objective
Show Find Show Filter	Table Entries Design Equations
Configure Browser	Discrete Design Values

Optimization Menu

Model Browser - Optimization View

topology	size	responses	table entries	opti control	
topography	gauge	dconstraints	dequations	constr screen]
free size	desvar link	obj reference	discrete dvs		
free shape		objective			
	shape		-		
composite shuffle	perturbations				
composite size	HyperMorph]			return

Optimization Panel

 \bigtriangleup

Definition of Responses

Model

Mask 🔲 🗟 🔂 🖗 🖏 🖓

Session

Optimization > Responses Panel

Definition of Design Constraints

Session

Mask

Model 🔲 🗟 🔂 🖗 🖏 🖓

Optimization > Dconstraints Panel

Definition of Objective

Model

Mask 🔲 🗟 🔂 🖗 🖏 🖓

Session

Optimization > Objective Panel

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

OPTISTRUCT RESPONSES FOR LINEAR ANALYSIS

WHAT IS AN OPTIMIZATION RESPONSE?

A response is the result of a design analysis iteration

- These responses can be used as a design objective or as design constraints
- These responses are defined in OptiStruct using DRESP#(1,2,3) cards
- The extended options on the DRESP1 card are applicable to NVH responses such as frf displacement, frf acceleration etc.
- Optimization responses are a characterization of the model are often a direct function of the type of analyses specified in the model
 - Frequency, by mode number
 - Static displacement
 - FRF acceleration
 - Volume
 - Mass
 - User defined functions

CONSTRAINT AND OBJECTIVE LOAD CASE REFERENCE

Objective and design constraints need to be defined load case dependent if the response is a reaction to a load

Load case dependent responses include:

- Compliance, frequency, displacement, stress, strain, force, composite responses
- Functions using these responses w/o load case assignment
- Load case independent (global) responses include:
 - Mass, mass fraction, volume, volume fraction, center of gravity, moments of inertia, weighted compliance, weighted frequency, compliance index
 - Functions using these responses
 - Functions using compliance, frequency, displacement, stress, strain, force, composite responses with load case assignment

OPTIMIZATION RESPONSES

DRESP1

- Simple response definition
- Mass, mass fraction, volume, volume fraction, compliance, frequency, displacement, stress, strain, force, composite responses, weighted compliance, weighted frequency, and compliance index, frequency response analysis responses

DRESP2

- Response definition using a user defined function
- Defines responses as function of design variables, grid location, table entries, responses, and generic properties

• Example: Average displacement of two nodes:
$$F(x_1, x_2) = \frac{x_1 + x_2}{2}$$

where x1 and x2 are nodal displacements

DRESP3

- Response definition using a user defined external function
- May be written in C (C++), Fortran, or MS Excel

OPTIMIZATION RESPONSES

These responses are commonly used in optimization with OptiStruct:

Compliance, strain energy (COMP) – Total and Regional

 $C = \frac{1}{2} u^{T} f$ with Ku=f or $C = \frac{1}{2} u^{T} K u = \frac{1}{2} \int \varepsilon^{T} \sigma dv$

Weighted Compliance (WCOMP) $C_w = \sum w_i C_i = \frac{1}{2} \sum w_i u_i^T f_i$

Natural Frequency (FREQ) $f_i = \frac{\sqrt{\lambda_i}}{2\pi}$

Inverse of Weighted Eigenvalues (WFREQ) $f_w = \sum w_i I \lambda_i$ with $[K - \lambda_i M] u_i = 0$

Combination of Weighted Compliance and Weighted Inverse Eigenvalues (COMB)

$$S = \Sigma w_i C_i + NORM \quad \frac{\Sigma w_i l\lambda_i}{\Sigma w_i} \qquad NF = C_{max} \lambda_{min}$$

OPTIMIZATION RESPONSES

Subcase Independent

Combined Compliance Index

Weighted Reciprocal Eigenvalue (Frequency)

Weighted Compliance

Fraction of Mass and Fraction of Design Volume

Bead Discreteness Fraction

Subcase Dependent

Linear Static: Static Compliance, Displacement, Force, SPC/Grid Point Force, Stress, Strain, Failure Normal Modes Analysis : Frequency, Mode Shape Thermal Analysis: Temperature, Thermal Compliance Linear Buckling Analysis: Buckling Factor

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

OPTIMIZATION EXAMPLES AND DEMOS

File Name and Location

```
...\STUDENT-
EXERCISE\8a_Rail_Joint\joint_size.fem
```

Exercise Goal

The purpose of this exercise is to set up a property parameter optimization on an automobile rail joint modeled with shell elements. The deflection at the end of the tubular cross-member should be limited. The optimal solution would use as little material as possible.

Design Variables

• Property parameter thickness of tube1 and tube2 with initial values of 1.0, lower bounds of 0.1 and upper ones of 5.0

Steps

- Import the model in HyperMesh Desktop with OptiStruct user profile selected
- Review the model and check the constraints and load steps
- Run an analysis with OptiStruct and review displacements U_x and U_z according to the later constraints
- Create two size/parameter design variables with initial values of 1.0, lower bounds of 0.1 and upper ones of 5.0, empty (default) move limit and no ddval.
- Create two generic relationships to link the property parameters thickness to the according design variables
- Create a volume response
- Create a static displacement response in x-direction for the load application point (ID 5555), U_x
- Create a static displacement response in z-direction for the load application point (ID 5555), U_y
- Create a constraint for U_x response to be lower than 0.9 for load step LOAD_X
- Create a constraint for U_z response to be lower than 1.6 for load step LOAD_Z
- Define the objective function to minimize volume response
- Export and review . ${\tt fem}$ file wrt optimization cards
- Run optimization with OptiStruct, review .out file

Steps with Description

- Import the model in HyperMesh Desktop with OptiStruct user profile selected
- Review the model and check the constraints and load steps
- Run an analysis with OptiStruct and review displacements U_x and U_z according to the later constraints: $U_x = 1.273$ and $U_z = 2.144$
- Create two size/parameter design variables with initial values of 1.0, lower bounds of 0.1 and upper ones of 5.0, empty (default) move limit and no ddval.
- Create two generic relationships to link the property parameters thickness to the according design variables

Name	Value	Name	Value	Name	Value 🕞	Name	Value 🕞
Solver Keyword	DESVAR	Solver Keyword	DESVAR	Solver Keyword	DVPREL1	Solver Keyword	DVPREL1
Name	dv_tube1	Name	dv_tube2	Name	rel_t1	Name	rel_t2
ID	1	ID	2	Include	[Master Model]	Include	[Master Model]
Include	[Master Model]	Include	[Master Model]	Config	Generic	Config	Generic
Config	size/shape	Config	size/shape	Global Ply		Global Ply	
Move Limit		Move Limit		Property Type	PSHELL	Property Type	PSHELL
Ddval Id	<unspecified></unspecified>	Ddval Id	<unspecified></unspecified>	Property Id	(1) tube1	Property Id	(2) tube2
Shape Id	 Unspecified> 	Shape Id	 Unspecified> 	Property Name	Thickness T	Property Name	Thickness T
Initial Value	1.0	Initial Value	1.0	Constant	0.0	Constant	0.0
Lower Bound	0.1	Lower Bound	0.1	List of Design Variables	1 Designvars	List of Design Variables	1 Designvars
Upper Bound	5.0	Upper Bound	5.0	Number of Design Variables	1	Number of Design Variables	1
RAND		RAND		Desvar Coefficients		Desvar Coefficients	
RANP		RANP					

Steps with Description

- 6. Create a volume response
- 7. Create a static displacement response in *x*direction for the load application point (ID 5555), U_x
- 8. Create a static displacement response in *z*direction for the load application point (ID 5555), U_{ν}
- 9. Create a constraint for U_x response to be lower than

0.9 for load step LOAD_X

10.Create a constraint for U_z response to be lower than

1.6 for load step LOAD_Z

11.Define the objective function to minimize volume response

Steps with Description

12.Export and review . fem file wrt optimization cards

[
DESOBJ(MIN)=1						(12
SUBCASE	1					Ŭ
LABEL Force	X					
SPC =	1					
LOAD =	2					
DESSUB =	3					
SUBCASE	2					
LABEL Force	Z					
SPC =	1					
LOAD =	3					
DESSUB =	4					
\$						
BEGIN BULK						
DESVAR	1dv_tub	e11.0	0.1	5.0		
DESVAR	2dv_tub	e21.0	0.1	5.0		
DVPREL1 1	PSHELL		1	4	0.0	
+ 1	1.0					
DVPREL1 2	PSHELL		2	4	0.0	
+ 2	1.0					
DRESP1 1	r_volu	meVOLUM	Ξ			
DRESP1 2	r_ux	DISP			TX	5555
DRESP1 3	r_uz	DISP			ΤZ	5555
DCONSTR	1	2	0.9			
DCONSTR	2	3	1.6			
DCONADD	3	1				
DCONADD	4	2				
[]						
PSHELL	1	11.0		1	1	0.0
PSHELL	2	10.8		1	1	0.0

Steps with Description

13.Run optimization with OptiStruct, review .out file

ITERATION 4			(13)								(13
the 2nd satisfied conver	rgence ratio = 2.7998E-05										
Objective Function (Minimi Maximum Constraint Violati	ize VOLUM) = 2.28294E+05 ion % = 0.92458E-01	<pre>% change = -0.00</pre>		Design Variable ID	Design Variable Label	Lower Bound	Design Variable	Upper Bound	1		
volume	= 2.28294£+005	Mass = 0.00000E+000									
Subcase Compliance 1 3.534265E+03 -1. 2 8.007397E+03 1.	Epsilon 106546E-14 515182E-13			2	dv_tube1 dv_tube2	1.000E-01 1.000E-01	9.803E-(1.679E+(00 5.000E	2+00 		
Note : Epsilon = Residual	Strain Energy Ratio.				DESI	IGNED PROPER	TY ITEMS 1	TABLE			
	RETAINED RESPONSES TABLE			DVPREL1	/2 USER-ID	PROP-TYPE	PROP-ID	ITEM-CODE	PROP-VALUE		
Response Type Response User-ID Label	Subcase Grid/ DOF/ /RANDPS Element/ Comp /Model MID/PTD/ /Beg	Response Objective Value Reference/ Constraint	Viol. %	DVPREL1 DVPREL1	1 2	PSHELL PSHELL	1 2	T T	9.803E-01 1.679E+00		
	+Frqncy Mode No. /Times	Bound		******	******	******	*******	******	******	****	
1 VOLUM r volume	TOTL	2.283E+05 MIN		OPTIMIZ	ATION HAS CO	DNVERGED.					
2 DISPL r_ux	1 5555 TX	7.069E-01 < 9.000E-01	0.0								
3 DISPL r_uz	2 5555 TZ	1.601E+00 < 1.600E+00	0.1 A	FEASIBL	E DESIGN (AI	LL CONSTRAIN	ITS SATISFI	IED).			

Steps with Description

\$·									
\$ PROPE	RTI	ES	AND	MATER	IALS	AT	ITERA:	LION	(15)
s									
PSHELL,	1,	1,	. 98	303087	1461	1,	1.0,	1,,	0.0
PSHELL,	2,	1,	1.6	578964	0958	1,	1.0,	1,,	0.0

15.Import .prop file in HyperMesh Desktop

EXERCISE 8B: SIZE OPTIMIZATION OF A SHREDDER

File Name and Location:

../8b_Modal_Size_Opti/shredder.hm

Exercise Goal

The purpose of this exercise is to set up a property parameter

optimization on a shredder. The deflection at the end of the tubular cross-member should be limited. The optimal solution would use as little material as possible.

EXERCISE 8B: SIZE OPTIMIZATION OF A SHREDDER

Exercise 8b:

Size Optimization of a Shredder

File Name and Location:

../8b_Modal_Size_Opti/shredder.hm

Objectives:

- Open the model in HyperMesh Desktop
- · Switch the Model Browser to Optimization View
- · Create the size design variables for the shredder components
- Create relationships between the design variables and properties
- Create responses for the total mass, third natural frequency mode, and fourth natural frequency mode
- Create a mass upper bound constraint of 1.8 and a 4th mode frequency lower bound of 6 Hz
- Create an objective to maximize the third mode frequency response for the 1d1 loadstep
- Run the analysis in **OptiStruct** & review the *****.**prop** and *****.**out** files for the optimized property values

EXERCISE 8B: SIZE OPTIMIZATION OF A SHREDDER

Exercise Results:

Files: shredder.prop

3	<pre>\$ PROPERTIES A</pre>	ND MATERIALS AT	ITERA	TION 7					
4	\$								
5	\$								
6	\$HMNAME PROP		1"fra	ame2" 3					
7	\$HWCOLOR PROP		1	38					
8	PBARL 1	1	HAT						
9	+, 125.0, 11.5	25224906, 80.0,	40.0,	0.0					
10	\$ A=4459.681 I	1=8799222. I2=7	028952	. I12=	0.0 J=	197461.0	K1=.526	9398 K2:	3539209
11	\$ C1~F2 = +	65.87983	40.0-5	59.1202	80.0-5	9.1202	-80.065	.87983	-40.0
12	\$M1A~N2B= +	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	\$HMNAME PROP		2"co	ver" 4					
14	\$HWCOLOR PROP		2	3					
15	PSHELL, 2, 1,	.63122871619, 1	, 1.0,	1, .8333	333, 0.0				
16									

628	DVPREL1/2	2 USE	R-ID	PROP-TYPE	PROP-ID	ITEM-CODE	PROP-VALUE	
629								
630	DVPREL1		1	PSHELL	2	т	6.312E-01	
631	DVPREL1		2	PBAR	1	DIM1	1.250E+02	
632	DVPREL1		3	PBAR	1	DIM2	1.153E+01	
633	DVPREL1		4	PBAR	1	DIM3	8.000E+01	
634	DVPREL1		5	PBAR	1	DIM4	4.000E+01	
635								
636								
637	ITERATION	7						
638	TRACKED	OBJEC	TIVE F	UNCTION/CO	NSTRAINT	MODE # 4 (GOES OUT OF B	DUND,
639	RETURNED	D TO 1	THE PRE	EVIOUS GOOD	DESIGN.			
640								
641	Objective	Funct	tion (M	laximize FR	EQ) = 6	.34153E+00	% change =	0.00
642	Maximum Co	onstra	aint Vi	iolation %	= 0	.00000E+00		
643	Volume				= 2.	33075E+008	Mass =	1.79468E+000
644								
645	Subcase N	lode	Order	r Weigh	it Fr	equency	Eigenvalue	Weight/Eigen
646	1	1	1	1.000E+	00 1.03	1023E+00	4.196590E+01	2.382887E-02
647	1	2	2	0.000E+	00 1.53	4846E+00	9.300133E+01	0.00000E+00
648	1	3	3	0.000E+	00 6.34	1527E+00	1.587623E+03	0.00000E+00
649	1	4	10	0.000E+	00 8.14	5025E+00	2.619055E+03	0.00000E+00
650	1	5	4	0.000E+	00 7.35	8200E+00	2.137484E+03	0.00000E+00
651	1	6	5	0.000E+	00 7.35	8540E+00	2.137682E+03	0.00000E+00
652	1	7	6	0.000E+	00 7.35	9955E+00	2.138504E+03	0.00000E+00
653	1	8	7	0.000E+	00 7.36	1666E+00	2.139498E+03	0.00000E+00
654	1	9	8	0.000E+	00 7.36	3115E+00	2.140341E+03	0.00000E+00
655	1	10	9	0.000E+	00 7.42	3498E+00	2.175590E+03	0.00000E+00
656								
657	~ implies	mode	is amb	oiguously t	racked	* implies	mode cannot	be tracked.
658								

DEMO: SHAPE OPTIMIZATION OF A TUNING FORK

Model: diapson_02.fem

- Shape optimization can be used to modify the first flexible mode of a tuning fork
- How do we set the target frequency?
- · What responses are used to control the optimization constraints?

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

OPTISTRUCT OPTIMIZATION SUMMARY

OPTISTRUCT OPTIMIZATION SUMMARY

OptiStruct Optimization can be set up in HyperWorks using D-R-C-O:

- Design Variable
- Response
- Constraint
- Objective

The choice of optimization type (concept or fine-tuning) will influence the type of optimization. This, in turn, will determine the type of design variable and the manufacturing and design constraints which need to be applied.

For more information on OptiStruct Optimization using HyperWorks, ask your Altair professional about the OptiStruct for Optimization Training Course.

CHAPTER 9: QUESTION & ANSWER

