FutureSteelVehicle

Phase I Report

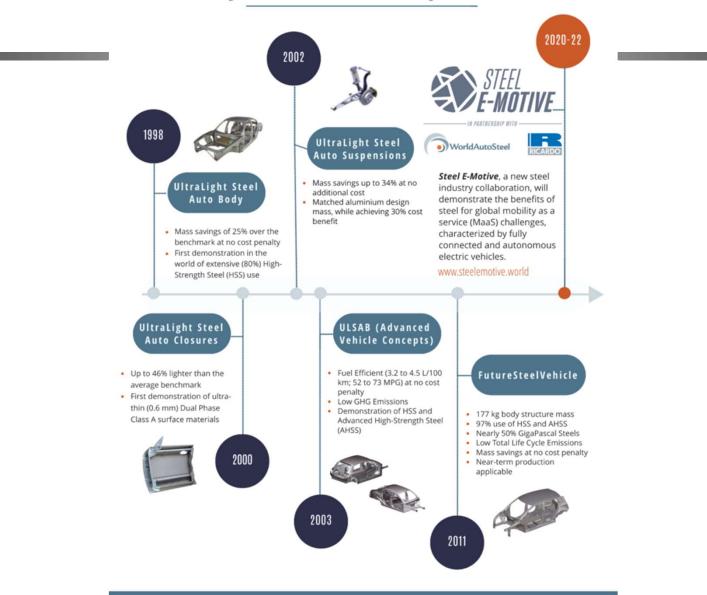
Nature's Way to Mobility

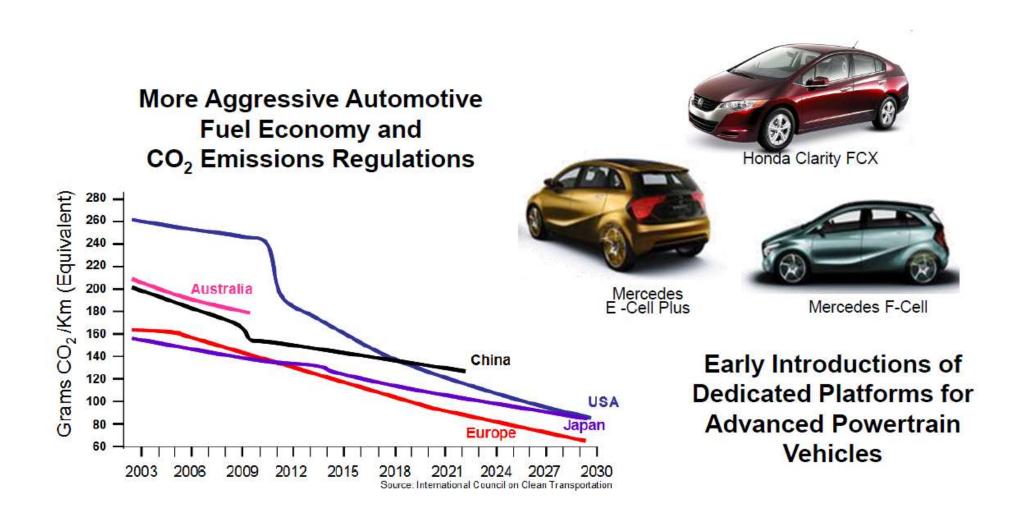
Phase I Summary - 1

History (1)

- Steel industry's series of initiatives
 - Increase the fuel economy
 - Reduce Green House Gas emissions
 - Improve safety, performance
 - Maintain affordability
- 1998, Ultra-Light Steel Auto Body (ULSAB)
- 2000, Ultra-Light Steel Auto Closures (ULSAC)
- 2000, Ultra-Light Steel Auto Suspension (ULSAS)
- 2001, ULSAB-AVC (Advanced Vehicle Concepts)

History (2)

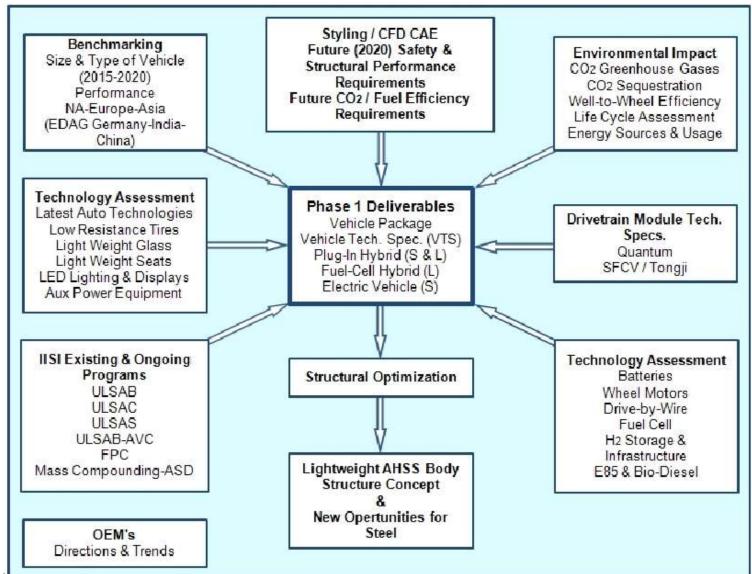




TIMELINE

History of Steel Industry Innovation

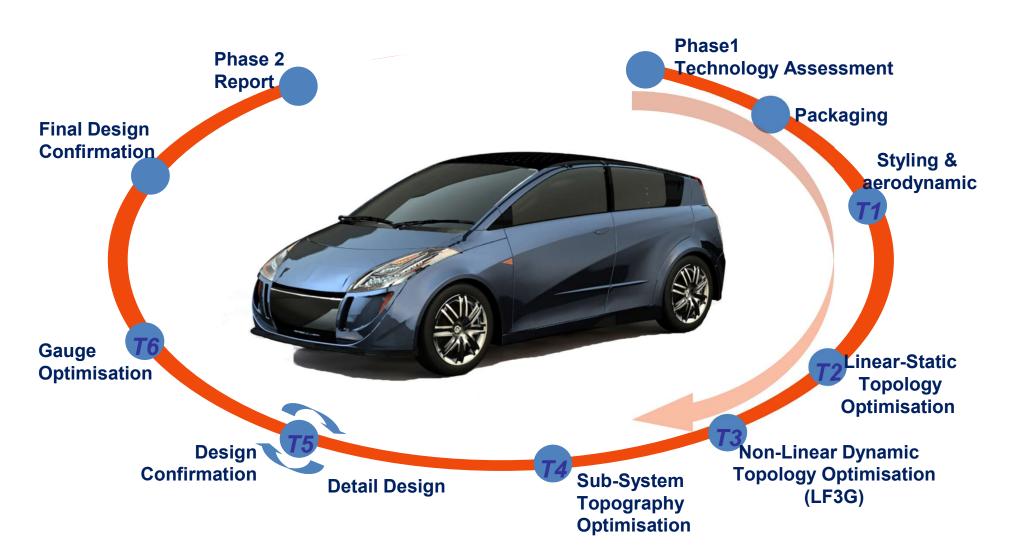
Background



Future Steel Vehicle (FSV)

- Launched at the 2007 United Nations Climate Change Conference in Bali
- Multi-million Euro, three-year programme to deliver safe, light weight Advanced High-Strength Steel (AHSS) body structures
 - address radically different requirements for advanced powertrains
 - reduce Greenhouse Gas (GHG) emissions over the entire life cycle
- Application of lightweight multi-grade advanced high strength all steel body structures in vehicle designs using advanced powertrain technologies
- Holistic approach to the concept development of innovative vehicle layout and optimized vehicle body structure, using the latest advanced steels and manufacturing technologies
- Computer aided optimization techniques, to achieve an optimal mass efficient design

- Meet year 2015-2020 performance criteria while achieving a 35% mass reduction target in addition to a detailed project cost analysis and life cycle impact assessment
 - Phase 1: Engineering Study (2008 July, 2009)
 - Comprehensive assessment and identification of advanced powertrains and future automotive technology applicable to high-volume vehicle production in the 2015-2020 timeframe
 - Phase 2: Concept Designs (August, 2009 2010)
 - Designing optimised AHSS body structures for four proposed vehicles
 - Phase 3: Demonstration and Implementation (2011 2012)


Phase 1: Engineering Study

Future Steel Vel

Finase I Summary - 8

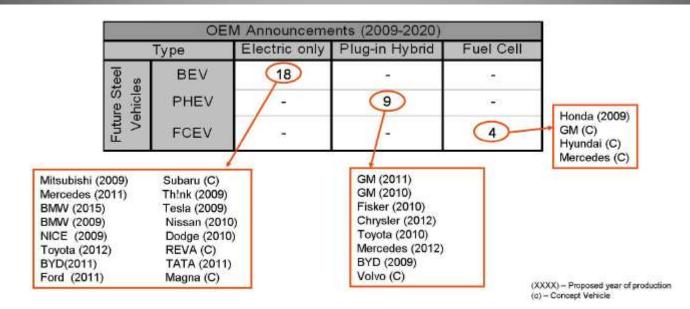
Phase 2: Overview

Contents

- Market Analysis
- Future Steel Vehicle Propulsion Systems
- Future Steel Vehicle Technology Implementation
- Vehicle Package Development
- Sensitivity Analysis
- Environmental Impact
- Advanced Powertrain Technologies
- Steel Technologies
- Other Advanced Technologies
- FSV Structure Design Methodology

Market Analysis

- Global market analysis
- OEM directional trends
- Alternative propulsion vehicles benchmarks
- Future safety requirements
- Future fuel economy requirements
- Future ozone emission standards
- Vehicle classification


Global Market Analysis

- Small cars represented 25% of new car sales globally in 2005, but this ratio is expected to rise to 31% in 2010
- 80% of this demand is expected to come from the developing economies of India and China
- India and China are expected to lead the growth trend with 11% and 34% of the global output of low-cost cars by 2014
- By 2012, consumers around the world are expected to buy a record
 29 million small cars annually, up 65% from a decade earlier
- Small cars account for more than 70% of the Indian car market
- Mini cars account for 35% of total volumes in Japan. The demand for mini vehicles in the Japanese market is expected to grow, eventually pushing sales past 2 million units per year
- A large number of Japanese consumers are moving from luxury cars to mini-cars due to environmental standards and increasing gas prices

OEM Directional Trends

- Conventional internal combustion engine (ICE) based vehicles that are smaller, and utilize more efficient gasoline/diesel engines
- Higher-efficiency hybrids (HEV) predominantly using fossil based petroleum fuels
- Plug-in hybrids (PHEV) with limited range of miles driven in electric mode. This option offers a significant reduction in fossil based petroleum usage, especially when the daily miles driven are close to the vehicle's electric range. The additional miles being driven above the vehicle's electric range, using petroleum or bio-fuels
- Battery Electric Vehicles (BEV) with a driving range of approximately 200 km
- Fuel Cell Electric Vehicles (FCEV) using hydrogen gas as a fuel source

OEM Announcements

- Exterior dimensions
- Luggage volumes
- Seating capacities
- Performance
 - Vehicle range (km)

- 0-100 km/h performance
- Top speed performance
- Drivetrain specifications
- Material of choice for bodystructure, closures and sub-frames

Battery Electric Vehicles

	1	Manufacturer	FSV	Mitsubishi	Mercedes	BMW	Toyota
		Name	BEV	I Miev	E cell	Mini-e	EV
		Production year	2020	2009	2011	2009	2012
Vehicle		Picture	600				
		Length (mm)	3700	3395	4220	3714	3048
		Width (mm)	1680	1475	1890	1683	1676
		Height (mm)	1518	1600	1590	1407	1498
Exterior I	Dimensions	Wheel base (mm)	2524	2550	unknown	2467	1998
		Curb Weight (kg)	1234	1080	unknown	1465	unknown
		Seating capacity	4+	4+	5	2	3+1
		Luggage volume (L)	250	246	500	60	unknown
		All Electric Range(km)	250	160	190	250	80
Perfe	rmance	0-100kmph (secs)	10-12	9	10.8	8.4	unknown
		Top Speed (kmph)	150	155	150	152	112
		Battery Technology	Li-ion	Li-ion	Li-Ion	Li-ion	Li-lon
Drive Train	Battery	Battery Capacity (Kwh)	35	16	35	35	11
Drive		Battery Weight (kg)	345	200	unknown	260	unknown
	Motor	Electric motor PP (kw)	67	47	100	150	45
		Body Structure	Steel	Steel	Aluminum	Steel	Steel
Material Usages		Closures	Steel	Steel	Aluminum	Steel	Steel
		Sub Frames	Steel	Steel	Aluminum	Steel	Steel
Estima	ated Cost	purchase cost (USD)	ť.	28000		60000	
L.Stille		lease cost (USD/month)		NA		850	

Benchmark Vehicle Selection

- 2009 Mitsubishi i-MiEV: FSV-1
- 2011 Chevrolet Volt: FSV-2 PHEV
- 2009 Honda Clarity FCX: FSV-2 FCEV
- Mercedes Blue-Zero concepts: E Cell, F Cell, E Cell+

2020 FSV1 BEV

2010 Mitsubishi IMiev

Mercedes E cell (prototype)

2020 FSV2 PHEV40

2011 Chevrolet Volt

Mercedes E cell Plus (prototype)

2009 Honda Clarity FCX

Mercedes F cell (prototype)

Future Steel Velucio

Benchmark Study

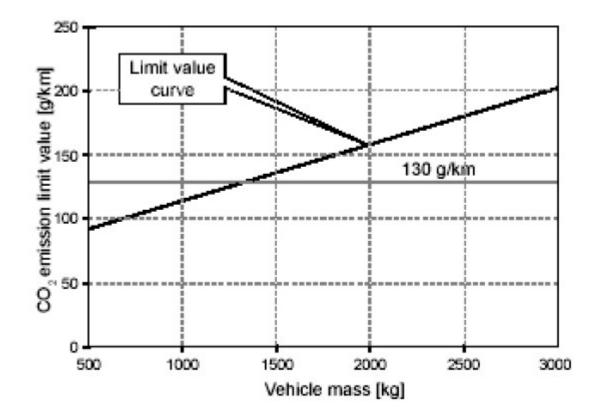
- Exterior Dimensions
- Material Usage
- Powertrain Packaging
- Electric Drive Components: battery module, traction motor, inverter and DC/DC converter
- Packaging: underhood, rear
- Suspension: front, rear
- Tires and Wheels
- Interior: passenger compartment, instrument cluster, shifter
- Safety: underbody structure

Future Safety Requirements

- US
 - Mandatory regulations: FMVSS
 - Consumer metrics tests: NCAP, IIHS

Regulation	Timeline	Mass	Cost	Fuel Used
Roof Crush/Rollover (FMVSS 216)	2016	\sim 2 kg	\$54	N/A
Roof Crush/Rollover (IIHS)	2016	\sim 2 kg	N/A	N/A
Electronic Stability Control (ESC)	2011	~ 1 kg	\$92.00	9.8 l (2.6 ga)
Pole Impact	2012	\sim 6-8 kg	\$208.00	N/A
Frontal Impact	TBD	N/A	N/A	N/A
Bumper Impact	2008	1 kg	N/A	N/A
Ped-Pro	2011	1-2 kg	N/A	N/A

Future Fuel Economy Requirements: US


- Environmental Protection Agency (EPA) operating under the Department of Transportation (DOT)
 - U.S. Department of Energy (DOE) to publish the annual Fuel Economy Guide
 - U.S. Department of Transportation (DOT) to administer the Corporate Average Fuel Economy (CAFE) program
 - Internal Revenue Service (IRS) to collect gas guzzler taxes

CO ₂	Emis	sions	Fuel Economy					
			Gas	oline	Diesel			
year		$\left[\frac{g(CO_2)}{km}\right]$	[mpg]	[km/l]	[mpg]	[km/l]		
2008		200	27.46	11.67	31.51	13.39		
2008	$\{ f_{ab}^{(i)} \}_{i \in I}$	160	34.33	14.59	39.39	16.74		
2015		153	35.70	15.17	<mark>41.19</mark>	17.51		
2012		130	42.25	17.96	48.48	20.60		
2012	100	120	45.77	19. <mark>4</mark> 5	52.52	22.32		
2020	\bigcirc	95	57.82	24.57	66.34	28.20		

CO2 emissions from a gallon of gasoline = 2,421 g x 0.99 x (44/12) = 8,788 g = 8.8 kg/gallon = 19.4 lbs/gallon CO2 emissions from a gallon of diesel = 2,778 g x <math>0.99 x (44/12) = 10,084 g = 10.1 kg/gallon = 22.2 lbs/gallon = 23.4 lbs/gallon = 24.4 lbs/gallon = 23.4 lbs/gallon = 2

Future Fuel Economy Requirements: EU

- Average CO_2 emissions of new passenger cars
 - 130 g/km by 2012, 95 g/km by 2020

Future Ozone Emission Standards

g/mi	Durab.	Bin 8	Bin 7	Bin 6	Bin 5	Bin 4	Bin 3	Bin 2
NMOG	50 k	0.100	0.075	0.075	0.075	3	19 29	
	120 k	0.125	0.090	0.090	0.090	0.070	0.055	0.010
CO	50 k	3.400	3.400	3.400	3.400		-	
	120 k	4.200	4.200	4.200	4.200	2.100	2.100	2.100
NOx	50 k	0.140	0.110	0.080	0.050		î.	
	120 k	0.200	0.150	0.100	0.070	0.040	0.030	0.020
PM	120 k	0.020	0.020	0.010	0.010	0.010	0.010	0.010
НСНО	50 k	0.015	0.015	0.015	0.015	>		
	120 k	0.018	0.018	0.018	0.018	0.011	0.011	0.004

Table 3.42: US EPA - emission limits

Tier	Date	CO	HC	NOx	HC+NOx	PM
EM1	1989	2.72 (3.16)	÷.	-	0.97 (1.13)	(1 4 3)
Euro 2	1993	2.20	- 5	÷	0.50	1.00
Euro 3	1997	2.30	0.2	0.15	120 1	1528 -
Euro 4	2003	1.00	0.1	0.08	-	140
Euro 5 (Future)	2009	1.00	0.1	0.06		0.0055
Euro 6 (Future)	2014	1.00	0.1	0.06	100	0.0055

Table 3.45: European emission standards for gasoline

g/mi	Durab.	LEV ₂	ULEV ₂	SULEV ₂	ZEV ₂
NMOG	50 k	0.075	0.040	9	0
	120 k	0.090	0.055	0.010	0
со	50 k	3.400	1.700	1	0
	120 k	4.200	2.100	1.000	0
NOx	50 k	0.050	0.050	1	0
	120 k	0.070	0.070	0.020	0
PM	50 k				0
	120 k	0.010	0.010	0.010	0
нсно	50 k	0.015	0.008	-	0
	120 k	0.018	0.011	0.004	0

Table 3.43: CARB emission limits

Low Emission Vehicle (LEV)

Ultra Low Emission Vehicle (ULEV)

Super Ultra Low Emission Vehicle (SULEV)

Zero Emission Vehicle (ZEV)

Vehicle Classification

American	British	Segment	Euro NCAP	Vehicle Example
MicroCar	Microcar	N/A	N/A	Smart For Two
N/A	City Car	A	Super Mini	Renault Twingo
Sub-compact	Super Mini	B	Super Mirin	Hyundai Accent
Compact	Small family	С	Small family	Ford Focus
Mid-size	Large Family	D	Lorgo family	VW Passat
Entry level Luxury	Compact Executive		N/A Super Mini Small family Large family Executive N/A Small MPV Small Off-Roader Large Off-Roader	Audi A4
Full-size	Executive	Е	Eveeutive	Chrysler 300
Mid-size Luxury	Executive	E	Executive	BMW 5-Series
Fill-size Luxury	Luxury	F	N/A	Mercedes S-Class
N/A	Leisure Activity	В		Peugeot Partner
N/A	Mini MPV	D	Small MPV	Opel Meriva
Compact Mini Van	Compact MPV	С		Mazda 5
Mini Van	Large MPV	D	MPV	Toyota Previa
Mini SUV	Mini 4x4	В	Small	Suzuki SX4
Compact SUV	Compact 4x4	C/D	Off-Roader	Honda CR-V
Mid-size Crossover SUV	Large 4x4	Г	Large	BMW X5
Mid-size SUV	Off-Roader			Jeep Cherokee
Full-size SUV	UII-Roader	N/A		Cadillac Escalade
SUV=Sports Utility Veh	icle, MPV=Multi Purpo	se Vehicle, N	A=No compara	able classification