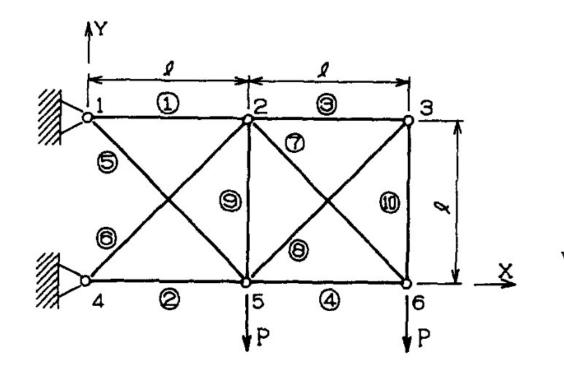

BMT: 10-bar planar truss structure

The 10-bar truss structure, shown in Fig. 2 [16], has previously been analyzed by many researchers, such as Schmit and Farshi [17], Rizzi [18], and Lee and Geem [16]. The material density is 0.1 lb/in³ and the modulus of elasticity is 10,000 ksi. The members are subjected to the stress limits of ± 25 ksi. All nodes in both vertical and horizontal directions are subjected to the displacement limits of ± 2.0 in. There are 10 design variables in this example and the minimum permitted cross-sectional area of each member is 0.1 in². Two cases are considered: Case 1, $P_1 = 100$ kips and $P_2 = 0$; and Case 2, $P_1 = 150$ kips and $P_2 = 50$ kips.



Variables		Optimal cross-sectional areas (in. ²)			
		Schmit [17]	Rizzi [18]	Lee [16]	
1	A_1	33.43	30.73	30.15	
2	A_2	0.100	0.100	0.102	
3	A3	24.26	23.93	22.71	
4	A_4	14.26	14.73	15.27	
5	A_5	0.100	0.100	0.102	
6	A6	0.100	0.100	0.544	
7	A_7	8.388	8.542	7.541	
8	A_8	20.74	20.95	21.56	
9	Ag	19.69	21.84	21.45	
10	A_{10}	0.100	0.100	0.100	
Weight (lb)		5089.0	5076.66	5057.88	

Comparison of	optimal	designs	for the	10-bar	planar	truss	(Case 2)
---------------	---------	---------	---------	--------	--------	-------	----------

Variables		Optimal cross-sectional areas (in. ²)			
		Schmit [17]	Rizzi [18]	Lee [16]	
1	A_1	24.29	23.53	23.25	
2	A_2	0.100	0.100	0.102	
3	A3	23.35	25.29	25.73	
4	A_4	13.66	14.37	14.51	
5	As	0.100	0.100	0.100	
6	A_6	1.969	1.970	1.977	
7	A7	12.67	12.39	12.21	
8 9	A_8	12.54	12.83	12.61	
9	Ag	21.97	20.33	20.36	
10	A_{10}	0.100	0.100	0.100	
Weight (lb)		4691.84	4676.92	4668.81	

Optimal Weight Design Problem: 10 Bar Truss

min
$$W(A) = \rho \sum_{i=1}^{10} l_i A_i$$

s. t. $G_i = \sigma_i \le b_i, (i = 1, 2, ..., 10)$
 $G_k = v_k \le b_k, (k = 2, 3, 5, 6)$

 $\begin{aligned} A_i^L &\leq A_i \leq A_i^U, \quad (i = 1, 2, ..., 10), \\ \sigma_i^L &\leq \sigma_i \leq \sigma_i^U, \quad (i = 1, 2, ..., 10), \\ v_k^L &\leq v_k \leq v_k^U, \quad (k = 2, 3, 5, 6), \end{aligned}$

where

$$\sigma_{i} = \epsilon_{i} E, (i = 1, 2, .., 10)$$
$$\begin{bmatrix} u_{k} \\ v_{k} \end{bmatrix} = \{F\} [K]^{-1}, (k = 2, 3, 5, 6)$$

$8.0 \leq A_2 \leq 9.0$	
$5.5 \leq A_4 \leq 6.5$	
$8.0 \leq A_6 \leq 9.0$	
$0.1 \le A_8 \le 1.0$	
$0.1 \leq A_{10} \leq 1.0$	
$\rho = 0.1$	
$ v_6 \le 5.0$	
$P = 10^{5}$	

Vehicle Structure

Size and Shape Optimization - 23

Results: 10 Bar Truss

	improved GA	DCOC	Dual	DOC-FSD
A_1	12.131896	12.161173957	12.161173956	12.126576172
A ₂	8.794619	8.707029023	8.707029026	8.827450732
A3	0.100000	0.100000000	0.100000000	0.100000000
A4	6.065801	6.040579884	6.040579884	6.046585281
A_5	5.100000	5.560164853	5.560164853	5.564322434
A_6	8.539911	8.573640198	8.573640196	8.497882192
A7	8.575261	8.542669996	8.542669996	8.551162911
A_8	0.100000	0.100000000	0.100000000	0.100000000
A ₉	0.100000	0.100000000	0.100000000	0.100000000
A10	0.100000	0.100000000	0.100000000	0.100000000
W(lb)	2118.626	2139.105	2139.105	2139.198

	σ_i	fi
l_1	166.2779	20215.11096
12	-2249.6584	-19784.88904
13	475.6522	47.56522
14	-1640.7454	-9952.43478
15	2713.3182	13837.92279
16	-1691.6275	-1446.34846
17	1641.3341	14074.86824
18	-672.6738	-67.26738
lg	2626.7618	262.67618
110	475.6522	47.56522

node	uk	Uk
1	0	0
2	0.606673	-1.817000
3	0.768973	-4.83595
4	0	0
5	-0.827898	-2.78003
6	-1.422710	-4.99826